QUIZ 3: <u>110 Minutes</u>

Answer **ALL** questions.

NO COLLABORATION or electronic devices. Any violations result in an F. NO questions allowed during the test. Interpret and do the best you can.

GOOD LUCK!

You **MUST** show **CORRECT** work to get full credit.

When in doubt, TINKER.

1	2	3	Total	
150	25	25	200	

1 Circle one answer per question. 15 points for each correct answer.

- (a) Let \mathbf{X} and \mathbf{Y} be independent random variables taking values in a set with n elements. What is the probability of the event $\mathbf{X} = \mathbf{Y}$?
 - $\boxed{\mathbf{A}} 1/n$
 - $\boxed{\mathrm{B}} \ 2/n$

 - $\boxed{\mathrm{D}} \ 2/n^2$
 - **E** Not enough information/none of the above
- (b) If \mathbf{X} and \mathbf{Y} are independent and have the same variance, which of these have the same variance as \mathbf{X} ?
 - (I) $(\mathbf{X} \mathbf{Y})/\sqrt{2}$
 - (II) $-\mathbf{X}$
 - (III) $(\mathbf{X} + \mathbf{Y})/2$
 - A I, II
 - B II, III
 - \Box I
 - DII
 - E III
- (c) Which of the following is true? (All complements are taken in Σ^* .)
 - A The complement of a regular language may not be a regular language
 - B The complement of a language may not be a language
 - The set of all infinite-length binary strings has smaller cardinality than the set of valid C programs
 - D The set of questions that can be asked using the English language is countable
 - E All of the above claims are true

(d)	Roll a six-sided die until you get a number greater than two. What is the expected number of rolls you need?				
	$oxed{A}$ 1.5				
	$oxed{B}$ 2				
	$oxed{ ext{C}}$ 3.5				
	$\boxed{\mathrm{D}}$ 4				
	E None of the above.				
(e)	Which of the following is not countable?				
	$\boxed{\mathbbm{A}}$ The Cartesian product $A \times B = \{(a,b) \mid a \in A \text{ and } b \in B\}$ of two countable sets				
	\fbox{B} The set of real solutions to the equation $\sin(x) = 0$				
	The set of all graphs (use the definition of a graph in terms of vertices and edges)				
	D The set of all languages (use the definition of "language" from Chapter 23)				
	E The set of prime numbers				
(f)	Which of the following strings is not in the language given by the regular expression $(\{0\} \bullet \{11\}^*) \cup \{01\}^*$?				
()	$rack {f A}arepsilon arepsilon$				
	B 001				
	C 0101				
	D 01111				
	E All of the above are in the language				

- (g) You toss m balls randomly into n bins. Let \mathbf{X} be the number of bins that contain exactly k balls. What is $\mathbb{E}[\mathbf{X}]$?
 - $\boxed{\mathbf{A}} \; n \frac{k!(m-k)!}{m!}$
 - $\boxed{\mathrm{B}} n/k$
 - $\boxed{\mathbf{C}} n \binom{m}{k} \left(\frac{1}{n}\right)^k \left(1 \frac{1}{n}\right)^{m-k}$
 - $\boxed{\mathbf{D}} \; n \frac{\binom{m}{k}}{\binom{m}{n}}$
 - E None of the above.

- (h) 100 student throw their graduation caps into the air, and the caps land randomly on the heads of the students. Let \mathbf{X} be the number of students who get back their own hats. Given that both the variance and mean of \mathbf{X} are 1, use Chebyshev's inequality to find an upper bound on the probability that \mathbf{X} is at least 50.
 - A 1/100
 - B 1/50
 - | C | 1/49
 - D 1/32
 - E None of the above
- (i) Count the number of injections from $\{1,2,3,4\}$ to $\{a,b,c,d,e\}$.
 - A 9
 - B 20
 - $\boxed{\mathrm{C}}$ 4^5
 - \boxed{D} $4!\binom{5}{4}$
 - $E 4! \binom{9}{2}$

(j)	Kofi is considering vacationing in the Bahamas and is attempting to determine how many da	ays c	of rain
	he should expect. His friend tells him that he can expect to wait 5 days between rainy days	ays	in the
	Bahamas. How many days of rain should Kofi expect during a 2 week stay in the Bahamas?		

- $\boxed{A} \ 1\tfrac{1}{5}$
- $\boxed{\mathrm{B}} \ 2\tfrac{4}{5}$
- $\boxed{C} \ 3\tfrac{1}{2}$
- D 4
- E None of the above

2 For a fair coin, compute the expected number of flips to get 2 heads in a row.

Prove or disprove: the union of uncountably many languages is a language.

3

SCRATCH

SCRATCH