QUIZ 1: <u>60 Minutes</u>

Answer **ALL** questions.

NO COLLABORATION or electronic devices. Any violations result in an F. NO questions allowed during the test. Interpret and do the best you can.

GOOD LUCK!

You **MUST** show **CORRECT** work to get full credit.

When in doubt, TINKER.

1	2	3	Total
100	25	25	150

(a) Identify the converse of the statement "If I have time and I am not too tired, then I will go to the gym".	
A If I will not go to the gym, then I have time and I am not too tired.	
C If I will not go to the gym, then I do not have time or I am too tired.	>
D f I will go to the gym, then I have time and I am not too tired.	
E None of the above.	
(b) Which type of proof is most appropriate to establish that the product of an irrational number and a rational number is irrational?	
A Direct. het x be intational and y rational	•
B Contraposition. Assume p = xy is rational, then	
C Induction X= D is rational. This is a	
Dontradiction. E None of the above.	a
E None of the above.	
(c) Which of the following claims are true? correct way of $(1) \neg (\forall x : P(x)) \stackrel{eqv}{\equiv} \exists x : \neg P(x)$ regarding a qualifier	
$(1) \neg (\forall x : P(x)) \stackrel{eqv}{\equiv} \exists x : \neg P(x)$ $P(x) \lor Q(x) \lor \neg P(x) \stackrel{eqv}{\equiv} Q(x)$	
$P(x) \lor Q(x) \lor \neg P(x) = Q(x)$ $P(x) \lor \neg P(x) \text{ is } T \text{ so the}$	
$P(x) \lor Q(x) \lor \neg P(x) \stackrel{\text{eq}v}{=} Q(x)$ $P(x) \lor \neg P(x) \text{ is } T \text{ so the } Q(x) \lor \neg P(x) \text{ is } T \text{ so the } Q(x) = T$	
(A).	
B (1) and (2). C (1) and (3). Recall P > q = 7 P V q is the	
C (1) and (3). Recall $P \rightarrow q \equiv q p$	
D (2).	H
E (2) and (3). Recall romect equivalence, Correct equivalence, Correct equivalence, Correct equivalence,	
0 VOT 1 70 1 70 VD	
PIPSOFT	
F F T T F F T T T T T T T T T T T T T T	
FFTFT FTTT	
T F F T	
$T \mid T \mid T \mid F \mid T$	
we see pro is not equiv to	

1 Circle one answer per question. 20 points for each correct answer.

(d) Which method of proof is most appropriate for establishing that for all positive integers $n \geq 2$, $1+2^n<3^n?$ ase case when n=2, $1+2^n=5<3^2=9$ A | Contradiction. PIN B Contraposition. so daim is true. Induction Step Assume 1+2"<3" for an 172] C Direct. D Induction. 1+ 2.2° < 3.2° < 3.(1+2°) E | None of the above. because 1 < 2 < 2" > By the induction (e) What is the contrapositive of the statement "If I drive without first warming up the car, the engine hypothy doesn't start or it shakes"? A If the engine doesn't start or it shakes, then I drove without first warming up the car. B If the engine starts and doesn't shake, then I drove without first warming up the car. C If the engine starts and doesn't shake, then I drove after first warming up the car. D If the engine doesn't start or it shakes, then I drove after first warming up the car. $\mid \mathbf{E} \mid$ None of the above. contrapositive of p->9 is By induction, (n) is tree when N>2.

$$\frac{x+a}{y+a} \ge \frac{x}{y}.$$

Prf

We use contradiction. Assume that instead

 $\frac{x+q}{y+a} < \frac{x}{y}$. Then we see that

(x+a) y < x(y+a), (because the denominators) are both positive

so xy + ay < xy + xq, so ay < xq and (because a is positive)This contradicts the fact that $x \leq q$.

Therefore it is the case that

We use a direct proof. Denote an arbitrary five consecutive natural numbers by n,..., n+4.

Their sum is n+(n+i)+(n+d)+(n+3)+(n+4)= 5n+10=5(n+d),

and is therefore divisible by 5, as claimed.

SCRATCH

SCRATCH