Foundations of Computer Science Lecture 18

Random Variables

Measurable Outcomes
Probability Distribution Function
Bernoulli, Uniform, Binomial and Exponential Random Variables

Last Time

- Independence.
 - ▶ Using independence to estimate complex probabilities.
- Coincidence.
 - ► FOCS-twins.
 - ► The birthday paradox.
 - ► Application to hashing.
- Random walks and gambler's ruin.

Today: Random Variables

- What is a random variable?
- 2 Probability distribution function (PDF) and Cumulative distribution function (CDF).
- 3 Joint probability distribution and independent random variables
- 4 Important random variables
 - Bernoulli: indicator random variables.
 - Uniform: simple and powerful. An equalizing force.
 - Binomial: sum of independent indicator random variables.
 - Exponential: the waiting time to the first success.

Temperature: "measurable property" of random positions and velocities of molecules.

Temperature: "measurable property" of random positions and velocities of molecules.

Toss 3 coins.

number-of-heads(HTT) = 1; all-tosses-match(HTT) = 0.

Temperature: "measurable property" of random positions and velocities of molecules.

number-of-heads(HTT) = 1;
all-tosses-match(HTT) =
$$0$$
.

			SA	AMPLE	SPACE	Ω		
ω	ННН	HHT	HTH	HTT	THH	THT	TTH	TTT
$P(\omega)$	$\frac{1}{8}$							

Temperature: "measurable property" of random positions and velocities of molecules.

number-of-heads
$$(HTT) = 1$$
; all-tosses-match $(HTT) = 0$.

			Sample Space Ω											
	ω	ННН	HHT	HTH	HTT	THH	THT	TTH	TTT					
_	$P(\omega)$	$\frac{1}{8}$	$\frac{1}{8}$	$\frac{1}{8}$	$\frac{1}{8}$	$\frac{1}{8}$	$\frac{1}{8}$	$\frac{1}{8}$	$\frac{1}{8}$					
-	$\mathbf{X}(\omega)$	3	2	2	1	2	1	1	0	\leftarrow number of heads				

Temperature: "measurable property" of random positions and velocities of molecules.

number-of-heads
$$(HTT) = 1$$
; all-tosses-match $(HTT) = 0$.

			SA	AMPLE	SPACE	Ω			
ω	ННН	HHT	HTH	HTT	THH	THT	TTH	TTT	
$P(\omega)$	$\frac{1}{8}$								
$\mathbf{X}(\omega)$	3	2	2	1	2	1	1	0	\leftarrow number of heads
$\mathbf{Y}(\omega)$	1	0	0	0	0	0	0	1	\leftarrow matching tosses

Temperature: "measurable property" of random positions and velocities of molecules.

number-of-heads(HTT) = 1;
all-tosses-match(HTT) =
$$0$$
.

			SA	AMPLE	SPACE	Ω			
ω	ННН	HHT	HTH	HTT	THH	THT	TTH	TTT	
$P(\omega)$	$\frac{1}{8}$								
$\mathbf{X}(\omega)$	3	2	2	1	2	1	1	0	\leftarrow number of heads
$\mathbf{Y}(\omega)$	1	0	0	0	0	0	0	1	\leftarrow matching tosses
$\mathbf{Z}(\omega)$	8	2	2	$\frac{1}{2}$	2	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{8}$	$\leftarrow \begin{array}{c} \text{H: double your money} \\ \text{T: halve your money} \end{array}$

Temperature: "measurable property" of random positions and velocities of molecules.

Toss 3 coins.

number-of-heads(HTT) = 1;
all-tosses-match(HTT) =
$$0$$
.

			SA	AMPLE	SPACE	Ω			
ω	ННН	HHT	HTH	HTT	THH	THT	TTH	TTT	
$P(\omega)$	$\frac{1}{8}$								
$\mathbf{X}(\omega)$	3	2	2	1	2	1	1	0	\leftarrow number of heads
$\mathbf{Y}(\omega)$	1	0	0	0	0	0	0	1	\leftarrow matching tosses
$\mathbf{Z}(\omega)$	8	2	2	$\frac{1}{2}$	2	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{8}$	$\leftarrow \begin{array}{l} \text{H: double your money} \\ \text{T: halve your money} \end{array}$

$$\{\mathbf{X}=2\} = \{\mathsf{HHT}, \mathsf{HTH}, \mathsf{THH}\}$$

$$\mathbb{P}[\mathbf{X}=2] = \frac{3}{8}$$

Temperature: "measurable property" of random positions and velocities of molecules.

Toss 3 coins.

number-of-heads
$$(HTT) = 1$$
; all-tosses-match $(HTT) = 0$.

			SA	AMPLE	SPACE	Ω			
ω	ННН	HHT	HTH	HTT	THH	THT	TTH	TTT	
$P(\omega)$	$\frac{1}{8}$								
$\mathbf{X}(\omega)$	3	2	2	1	2	1	1	0	\leftarrow number of heads
$\mathbf{Y}(\omega)$	1	0	0	0	0	0	0	1	\leftarrow matching tosses
$\mathbf{Z}(\omega)$	8	2	2	$\frac{1}{2}$	2	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{8}$	$\leftarrow \begin{array}{l} \text{H: double your money} \\ \text{T: halve your money} \end{array}$

$${\bf X} = 2$$
 = {HHT, HTH, THH}
 ${\bf X} \ge 2$ = {HHH, HHT, HTH, THH}

$$\mathbb{P}[\mathbf{X} = 2] = \frac{3}{8}$$

$$\mathbb{P}[\mathbf{X} \ge 2] = \frac{1}{2}$$

Temperature: "measurable property" of random positions and velocities of molecules.

Toss 3 coins.

number-of-heads
$$(HTT) = 1$$
; all-tosses-match $(HTT) = 0$.

			SA	AMPLE	SPACE	Ω			
ω	ННН	HHT	HTH	HTT	THH	THT	TTH	TTT	
$P(\omega)$	$\frac{1}{8}$								
$\mathbf{X}(\omega)$	3	2	2	1	2	1	1	0	\leftarrow number of heads
$\mathbf{Y}(\omega)$	1	0	0	0	0	0	0	1	\leftarrow matching tosses
$\mathbf{Z}(\omega)$	8	2	2	$\frac{1}{2}$	2	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{8}$	$\leftarrow \begin{array}{l} \text{H: double your money} \\ \text{T: halve your money} \end{array}$

$$\{\mathbf{X} = 2\} = \{\text{HHT}, \text{HTH}, \text{THH}\}\$$
 $\{\mathbf{X} \ge 2\} = \{\text{HHH}, \text{HHT}, \text{HTH}, \text{THH}\}\$
 $\{\mathbf{Y} = 1\} = \{\text{HHH}, \text{TTT}\}\$
 $\mathbb{P}[\mathbf{X} = 2] = \frac{3}{8}$
 $\mathbb{P}[\mathbf{X} \ge 2] = \frac{1}{2}$

Temperature: "measurable property" of random positions and velocities of molecules.

Toss 3 coins.

number-of-heads
$$(HTT) = 1$$
; all-tosses-match $(HTT) = 0$.

			SA	AMPLE	SPACE	Ω			
ω	ННН	HHT	HTH	HTT	THH	THT	TTH	TTT	
$P(\omega)$	$\frac{1}{8}$								
$\mathbf{X}(\omega)$	3	2	2	1	2	1	1	0	\leftarrow number of heads
$\mathbf{Y}(\omega)$	1	0	0	0	0	0	0	1	\leftarrow matching tosses
$\mathbf{Z}(\omega)$	8	2	2	$\frac{1}{2}$	2	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{8}$	$\leftarrow \begin{array}{l} \text{H: double your money} \\ \text{T: halve your money} \end{array}$

$$\{ \mathbf{X} = 2 \} = \{ \text{HHT}, \text{HTH}, \text{THH} \}$$
 $\mathbb{P}[\mathbf{X} = 2] = \frac{3}{8}$ $\{ \mathbf{X} \ge 2 \} = \{ \text{HHH}, \text{HHT}, \text{HTH}, \text{THH} \}$ $\mathbb{P}[\mathbf{X} \ge 2] = \frac{1}{2}$ $\{ \mathbf{Y} = 1 \} = \{ \text{HHH}, \text{TTT} \}$ $\mathbb{P}[\mathbf{Y} = 1] = \frac{1}{4}$ $\{ \mathbf{X} \ge 2 \text{ AND } \mathbf{Y} = 1 \} = \{ \text{HHH} \}$ $\mathbb{P}[\mathbf{X} \ge 2 \text{ AND } \mathbf{Y} = 1] = \frac{1}{8}$

$$\{ \text{HHH}, \text{HHT}, \text{HTH}, \text{HTT}, \text{THH}, \text{THT}, \text{TTH}, \text{TTT} \} \xrightarrow{\mathbf{X}} \{ 3, 2, 1, 0 \}$$

$$\Omega \qquad \qquad \mathbf{X}(\Omega)$$

$$\{ \text{HHH}, \text{HHT}, \text{HTH}, \text{HTT}, \text{THH}, \text{THT}, \text{TTH}, \text{TTT} \} \xrightarrow{\mathbf{X}} \{ 3, 2, 1, 0 \}$$

$$\Omega \qquad \qquad \mathbf{X}(\Omega)$$

Each possible value x of the random variable \mathbf{X} corresponds to an event,

$$\begin{bmatrix} x & 0 & 1 & 2 \\ \text{Event} & \{\text{TTT}\} & \end{bmatrix}$$

3

$$\{ \text{HHH}, \text{HHT}, \text{HTH}, \text{HTT}, \text{THH}, \text{THT}, \text{TTH}, \text{TTT} \} \xrightarrow{\mathbf{X}} \{ 3, 2, 1, 0 \}$$

$$\Omega \qquad \qquad \mathbf{X}(\Omega)$$

Each possible value x of the random variable \mathbf{X} corresponds to an event,

$$\begin{bmatrix} x & 0 & 1 & 2 & 3 \\ \text{Event} & \{\text{TTT}\} & \{\text{HTT}, \text{THT}, \text{TTH}\} & \{\text{HHT}, \text{HTH}, \text{THH}\} & \{\text{HHH}\} \end{bmatrix}$$

$$\{ \text{HHH}, \text{HHT}, \text{HTH}, \text{HTT}, \text{THH}, \text{THT}, \text{TTH}, \text{TTT} \} \xrightarrow{\mathbf{X}} \{ 3, 2, 1, 0 \}$$

$$\Omega \qquad \qquad \mathbf{X}(\Omega)$$

Each possible value x of the random variable \mathbf{X} corresponds to an event,

For each $x \in \mathbf{X}(\Omega)$, compute $\mathbb{P}[\mathbf{X} = x]$ by adding the outcome-probabilities,

	pos	ssible valu	$es x \in \mathbf{X}$	(Ω)
x	0	1	2	3
$P_{\mathbf{X}}(x)$	<u>1</u> 8	<u>3</u> 8	<u>3</u> 8	<u>1</u> 8

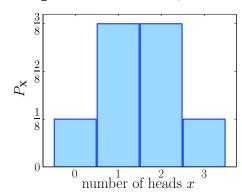
$$\{ \text{HHH}, \text{HHT}, \text{HTH}, \text{HTT}, \text{THH}, \text{THT}, \text{TTH}, \text{TTT} \} \xrightarrow{\mathbf{X}} \{ 3, 2, 1, 0 \}$$

$$\Omega \qquad \qquad \mathbf{X}(\Omega)$$

Each possible value x of the random variable \mathbf{X} corresponds to an event,

For each $x \in \mathbf{X}(\Omega)$, compute $\mathbb{P}[\mathbf{X} = x]$ by adding the outcome-probabilities,

	pos	ssible valu		(Ω)
x	0	1	2	3
$P_{\mathbf{X}}(x)$	<u>1</u> 8	3 8	3 8	<u>1</u> 8



$$\{ \text{HHH}, \text{HHT}, \text{HTH}, \text{HTT}, \text{THH}, \text{THT}, \text{TTH}, \text{TTT} \} \xrightarrow{\mathbf{X}} \{ 3, 2, 1, 0 \}$$

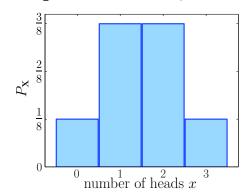
$$\Omega \qquad \qquad \mathbf{X}(\Omega)$$

Each possible value x of the random variable X corresponds to an event,

$$\begin{bmatrix} x & 0 & 1 & 2 & 3 \\ \text{Event} & \{\text{TTT}\} & \{\text{HTT}, \text{THT}, \text{TTH}\} & \{\text{HHT}, \text{HTH}, \text{THH}\} & \{\text{HHH}\} \end{bmatrix}$$

For each $x \in \mathbf{X}(\Omega)$, compute $\mathbb{P}[\mathbf{X} = x]$ by adding the outcome-probabilities,

	pos	ssible valu	es $x \in \mathbf{X}$	(Ω)
x	0	1	2	3
$P_{\mathbf{X}}(x)$	<u>1</u> 8	<u>3</u> 8	<u>3</u> 8	<u>1</u> 8



Probability Distribution Function (PDF). The probability distribution function $P_{\mathbf{X}}(x)$ is the probability for the random variable **X** to take value x,

$$P_{\mathbf{X}}(x) = \mathbb{P}[\mathbf{X} = x].$$

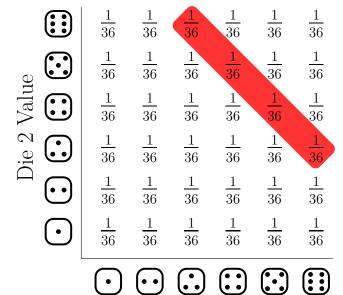
		$\frac{1}{36}$	$\frac{1}{36}$	$\frac{1}{36}$	$\frac{1}{36}$	$\frac{1}{36}$	$\frac{1}{36}$
		$\frac{1}{36}$	$\frac{1}{36}$	$\frac{1}{36}$	$\frac{1}{36}$	$\frac{1}{36}$	$\frac{1}{36}$
		$\frac{1}{36}$	$\frac{1}{36}$	$\frac{1}{36}$	$\frac{1}{36}$	$\frac{1}{36}$	$\frac{1}{36}$
		$\frac{1}{36}$	$\frac{1}{36}$	$\frac{1}{36}$	$\frac{1}{36}$	$\frac{1}{36}$	$\frac{1}{36}$
		$\frac{1}{36}$	$\frac{1}{36}$	$\frac{1}{36}$	$\frac{1}{36}$	$\frac{1}{36}$	$\frac{1}{36}$
lacksquare)	$\frac{1}{36}$	$\frac{1}{36}$	$\frac{1}{36}$	$\frac{1}{36}$	$\frac{1}{36}$	$\frac{1}{36}$

 \odot \odot \odot \odot

Die 1 Value

X = 9 has four outcomes,

$$\mathbb{P}[\mathbf{X} = 9] = 4 \times \frac{1}{36} = \frac{1}{9}.$$

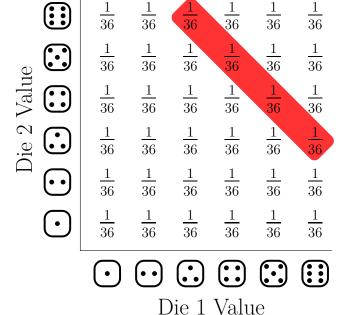


Die 1 Value

 $\mathbf{X} = 9$ has four outcomes,

$$\mathbb{P}[\mathbf{X} = 9] = 4 \times \frac{1}{36} = \frac{1}{9}.$$

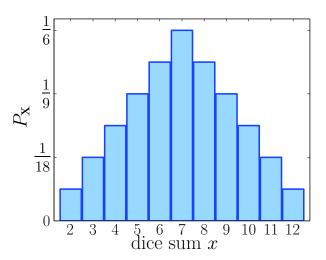
Possible sums are $\mathbf{X} \in \{2, 3, \dots, 12\}$ and the PDF is



X = 9 has four outcomes,

$$\mathbb{P}[\mathbf{X} = 9] = 4 \times \frac{1}{36} = \frac{1}{9}.$$

Possible sums are $\mathbf{X} \in \{2, 3, \dots, 12\}$ and the PDF is



			Sample Space Ω										
ω		ННН	HHT	HTH	HTT	THH	THT	TTH	TTT				
$P(\omega$)	$\frac{1}{8}$	$\frac{1}{8}$	$\frac{1}{8}$	$\frac{1}{8}$	$\frac{1}{8}$	$\frac{1}{8}$	$\frac{1}{8}$	$\frac{1}{8}$				
$\mathbf{X}(\omega)$	<i>J</i>)	3	2	2	1	2	1	1	0	\leftarrow number of heads			
$\mathbf{Y}(\omega)$	$_{\mathcal{O}})$	1	0	0	0	0	0	0	1	\leftarrow matching tosses			

$$\mathbb{P}[\mathbf{X} = 0, \mathbf{Y} = 0] = 0$$

 $\mathbb{P}[\mathbf{X} = 1, \mathbf{Y} = 0] = \frac{3}{8}.$

		Sample Space Ω										
ω	ННН	HHT	HTH	HTT	THH	THT	TTH	TTT				
$P(\omega)$	$\frac{1}{8}$	$\frac{1}{8}$	$\frac{1}{8}$	$\frac{1}{8}$	$\frac{1}{8}$	$\frac{1}{8}$	$\frac{1}{8}$	$\frac{1}{8}$				
$\mathbf{X}(\omega)$	3	2	2	1	2	1	1	0	\leftarrow number of heads			
$\mathbf{Y}(\omega)$	1	0	0	0	0	0	0	1	\leftarrow matching tosses			

$$\mathbb{P}[\mathbf{X} = 0, \mathbf{Y} = 0] = 0$$

$$\mathbb{P}[\mathbf{X} = 1, \mathbf{Y} = 0] = \frac{3}{8}.$$

$$P_{\mathbf{XY}}(x, y) = \mathbb{P}[\mathbf{X} = x, \mathbf{Y} = y].$$

column sums

$$\frac{1}{8}$$
 $\frac{3}{8}$ $\frac{3}{8}$ $\frac{1}{8}$

$$P_{\mathbf{X}}(x) = \sum_{y \in \mathbf{Y}(\Omega)} P_{\mathbf{XY}}(x, y)$$

row sums

 $\frac{\mathbf{3}}{\mathbf{4}}$ $P_{\mathbf{Y}}(y) = \sum_{x \in \mathbf{X}(\Omega)} P_{\mathbf{XY}}(x, y)$

		Sample Space Ω										
ω	ННН	HHT	HTH	HTT	THH	THT	TTH	TTT				
$P(\omega)$	$\frac{1}{8}$	$\frac{1}{8}$	$\frac{1}{8}$	$\frac{1}{8}$	$\frac{1}{8}$	$\frac{1}{8}$	$\frac{1}{8}$	$\frac{1}{8}$				
$\mathbf{X}(\omega)$	3	2	2	1	2	1	1	0	\leftarrow number of heads			
$\mathbf{Y}(\omega)$	1	0	0	0	0	0	0	1	\leftarrow matching tosses			

$$\mathbb{P}[\mathbf{X} = 0, \mathbf{Y} = 0] = 0$$

$$\mathbb{P}[\mathbf{X} = 1, \mathbf{Y} = 0] = \frac{3}{8}.$$

$$P_{\mathbf{XY}}(x,y) = \mathbb{P}[\mathbf{X} = x, \mathbf{Y} = y].$$

$$\mathbb{P}[\mathbf{X} + \mathbf{Y} \le 2] = 0 + \frac{3}{8} + \frac{3}{8} + \frac{1}{8} + 0 = \frac{7}{8}.$$

$$P_{\mathbf{XY}}(x,y)$$

 $P_{\mathbf{XY}}(x,y)$

column sums

$\frac{3}{8}$ 0	$0 \frac{1}{8}$
<u>3</u> 8	0
<u>3</u> 8	0
0	$\frac{1}{8}$

$$P_{\mathbf{X}}(x) = \sum_{y \in \mathbf{Y}(\Omega)} P_{\mathbf{XY}}(x, y)$$

row

		Sample Space Ω										
ω	ННН	HHT	HTH	HTT	THH	THT	TTH	TTT				
$P(\omega)$	$\frac{1}{8}$	$\frac{1}{8}$	$\frac{1}{8}$	$\frac{1}{8}$	$\frac{1}{8}$	$\frac{1}{8}$	$\frac{1}{8}$	$\frac{1}{8}$				
$\mathbf{X}(\omega)$	3	2	2	1	2	1	1	0	\leftarrow number of heads			
$\mathbf{Y}(\omega)$	1	0	0	0	0	0	0	1	\leftarrow matching tosses			

$$\mathbb{P}[\mathbf{X} = 0, \mathbf{Y} = 0] = 0$$

$$\mathbb{P}[\mathbf{X} = 1, \mathbf{Y} = 0] = \frac{3}{8}.$$

$$P_{\mathbf{XY}}(x, y) = \mathbb{P}[\mathbf{X} = x, \mathbf{Y} = y].$$

$$\mathbb{P}[\mathbf{X} + \mathbf{Y} \le 2] = 0 + \frac{3}{8} + \frac{3}{8} + \frac{1}{8} + 0 = \frac{7}{8}.$$

$$\mathbb{P}[\mathbf{Y} = 1 \text{ AND } \mathbf{X} + \mathbf{Y} \le 2] = \frac{1}{8} + 0 = \frac{1}{8}.$$

$$P_{\mathbf{XY}}(x,y)$$

0	$\frac{3}{8}$	$\frac{3}{8}$	0
$\frac{1}{8}$	0	0	$\frac{1}{8}$

column sums

$$\frac{1}{8}$$
 $\frac{3}{8}$ $\frac{3}{8}$ $\frac{1}{8}$

$$P_{\mathbf{X}}(x) = \sum_{y \in \mathbf{Y}(\Omega)} P_{\mathbf{XY}}(x, y)$$

row

$$\frac{\mathbf{3}}{\mathbf{4}} \qquad P_{\mathbf{Y}}(y) = \sum_{x \in \mathbf{X}(\Omega)} P_{\mathbf{X}\mathbf{Y}}(x, y)$$

		Sample Space Ω										
ω	ННН	HHT	HTH	HTT	THH	THT	TTH	TTT				
$P(\omega)$	$\frac{1}{8}$	$\frac{1}{8}$	$\frac{1}{8}$	$\frac{1}{8}$	$\frac{1}{8}$	$\frac{1}{8}$	$\frac{1}{8}$	$\frac{1}{8}$				
$\mathbf{X}(\omega)$	3	2	2	1	2	1	1	0	\leftarrow number of heads			
$\mathbf{Y}(\omega)$	1	0	0	0	0	0	0	1	\leftarrow matching tosses			

$$\mathbb{P}[\mathbf{X} = 0, \mathbf{Y} = 0] = 0$$

$$\mathbb{P}[\mathbf{X} = 1, \mathbf{Y} = 0] = \frac{3}{8}.$$

$$P_{\mathbf{XY}}(x, y) = \mathbb{P}[\mathbf{X} = x, \mathbf{Y} = y].$$

$$\mathbb{P}[\mathbf{X} + \mathbf{Y} \le 2] = 0 + \frac{3}{8} + \frac{3}{8} + \frac{1}{8} + 0 = \frac{7}{8}.$$

$$\mathbb{P}[\mathbf{Y} = 1 \text{ And } \mathbf{X} + \mathbf{Y} \le 2] = \frac{1}{8} + 0 = \frac{1}{8}.$$

$$\mathbb{P}[\mathbf{Y} = 1 \mid \mathbf{X} + \mathbf{Y} \le 2] = \frac{[\mathbf{Y} = 1 \text{ and } \mathbf{X} + \mathbf{Y} \le 2]}{\mathbb{P}[\mathbf{X} + \mathbf{Y} \le 2]}$$
$$= \frac{1}{8} / \frac{7}{8} = \frac{1}{7}$$

$$P_{\mathbf{XY}}(x,y)$$

 \mathbf{Y}

2

3

()0

 \mathbf{X}

column sums

0

 $\frac{3}{8}$

$$P_{\mathbf{X}}(x) = \sum_{y \in \mathbf{Y}(\Omega)} P_{\mathbf{XY}}(x, y)$$

row sums

 $P_{\mathbf{Y}}(y) = \sum_{x \in \mathbf{X}(\Omega)} P_{\mathbf{XY}}(x, y)$

Independent Random Variables

Independent Random Variables measure unrelated quantities.

The joint-PDF is *always* the product of the marginals.

$$P_{\mathbf{XY}}(x, y) = P_{\mathbf{X}}(x)P_{\mathbf{Y}}(y)$$
 for all $(x, y) \in \mathbf{X}(\Omega) \times \mathbf{Y}(\Omega)$.

Independent Random Variables

Independent Random Variables measure unrelated quantities.

The joint-PDF is *always* the product of the marginals.

$$P_{\mathbf{XY}}(x,y) = P_{\mathbf{X}}(x)P_{\mathbf{Y}}(y)$$
 for all $(x,y) \in \mathbf{X}(\Omega) \times \mathbf{Y}(\Omega)$.

Our \mathbf{X} and \mathbf{Y} are *not* independent,

$P_{\mathbf{XY}}(x$	<i>a</i> ,)	${f X}$						$P_{\mathbf{X}}(x)P_{\mathbf{Y}}($	${f X}$					
IXY(x)	$, g_{j}$	0	1	2	3			$\mathbf{I}(w)\mathbf{I}(y)$	0	1	2	3		
\mathbf{V}	0	0	<u>3</u> 8	<u>3</u> 8	0	$\frac{3}{4}$		\mathbf{V}	0	$\frac{3}{32}$	$\frac{9}{32}$	$\frac{9}{32}$	$\frac{9}{32}$	$\frac{3}{4}$
$\mathbf{Y} \qquad \begin{array}{c ccccccccccccccccccccccccccccccccccc$	•	1	$\frac{1}{32}$	$\frac{3}{32}$	$\frac{3}{32}$	$\frac{1}{32}$	$\frac{1}{4}$							
		$\frac{1}{8}$	$\frac{3}{8}$	$\frac{3}{8}$	$\frac{1}{8}$	_				$\frac{1}{8}$	$\frac{3}{8}$	$\frac{3}{8}$	$\frac{1}{8}$	

Practice: Exercise 18.4, Pop Quizzes 18.5, 18.6.

Cumulative Distribution Function (CDF)

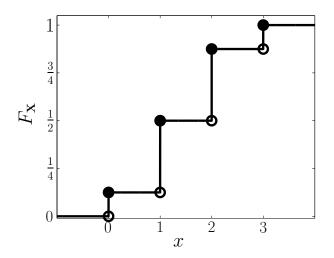
x	0	1	2	3
$P_{\mathbf{X}}(x)$	$\frac{1}{8}$	$\frac{3}{8}$	$\frac{3}{8}$	<u>1</u> 8

Cumulative Distribution Function (CDF)

x	0	1	2	3
$P_{\mathbf{X}}(x)$	$\frac{1}{8}$	$\frac{3}{8}$	$\frac{3}{8}$	<u>1</u> 8
$\mathbb{P}[\mathbf{X} \le x]$	$\frac{1}{8}$	$\frac{4}{8}$	$\frac{7}{8}$	<u>8</u> 8

Cumulative Distribution Function (CDF)

x	0	1	2	3
$P_{\mathbf{X}}(x)$	$\frac{1}{8}$	$\frac{3}{8}$	$\frac{3}{8}$	<u>1</u> 8
$\mathbb{P}[\mathbf{X} \le x]$	$\frac{1}{8}$	$\frac{4}{8}$	$\frac{7}{8}$	<u>8</u> 8



Cumulative Distribution Function (CDF). The cumulative distribution function $F_{\mathbf{X}}(x)$ is the probability for the random variable **X** to be at most x,

$$F_{\mathbf{X}}(x) = \mathbb{P}[\mathbf{X} \le x].$$

Bernoulli Random Variable: Binary Measurable (0, 1)

Two outcomes: coin toss, drunk steps left or right, etc. **X** indicates which outcome,

$$\mathbf{X} = \begin{cases} 1 & \text{with probability } p; \\ 0 & \text{with probability } 1 - p. \end{cases}$$

Bernoulli Random Variable: Binary Measurable (0, 1)

Two outcomes: coin toss, drunk steps left or right, etc. **X** indicates which outcome,

$$\mathbf{X} = \begin{cases} 1 & \text{with probability } p; \\ 0 & \text{with probability } 1 - p. \end{cases}$$

Can add Bernoullis. Toss n independent coins. \mathbf{X} is the number of \mathbf{H} .

$$\mathbf{X} = \mathbf{X}_1 + \mathbf{X}_2 + \cdots + \mathbf{X}_n.$$

 \mathbf{X} is a sum of Bernoullis, each \mathbf{X}_i is an independent Bernoulli.

Bernoulli Random Variable: Binary Measurable (0, 1)

Two outcomes: coin toss, drunk steps left or right, etc. **X** indicates which outcome,

$$\mathbf{X} = \begin{cases} 1 & \text{with probability } p; \\ 0 & \text{with probability } 1 - p. \end{cases}$$

Can add Bernoullis. Toss n independent coins. \mathbf{X} is the number of \mathbf{H} .

$$\mathbf{X} = \mathbf{X}_1 + \mathbf{X}_2 + \cdots + \mathbf{X}_n.$$

 \mathbf{X} is a sum of Bernoullis, each \mathbf{X}_i is an independent Bernoulli.

Drunk makes n steps. Let \mathbf{R} be the number of right steps

$$\mathbf{R} = \mathbf{X}_1 + \mathbf{X}_2 + \dots + \mathbf{X}_n.$$

R is a sum of Bernoullis.

Bernoulli Random Variable: Binary Measurable (0, 1)

Two outcomes: coin toss, drunk steps left or right, etc. **X** indicates which outcome,

$$\mathbf{X} = \begin{cases} 1 & \text{with probability } p; \\ 0 & \text{with probability } 1 - p. \end{cases}$$

Can add Bernoullis. Toss n independent coins. \mathbf{X} is the number of \mathbf{H} .

$$\mathbf{X} = \mathbf{X}_1 + \mathbf{X}_2 + \cdots + \mathbf{X}_n.$$

 \mathbf{X} is a sum of Bernoullis, each \mathbf{X}_i is an independent Bernoulli.

Drunk makes n steps. Let \mathbf{R} be the number of right steps

$$\mathbf{R} = \mathbf{X}_1 + \mathbf{X}_2 + \dots + \mathbf{X}_n.$$

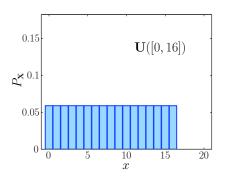
R is a sum of Bernoullis. $\mathbf{L} = n - \mathbf{R}$ and the final position **X** is:

$$\mathbf{X} = \mathbf{R} - \mathbf{L} = 2\mathbf{R} - n = 2(\mathbf{X}_1 + \mathbf{X}_2 + \dots + \mathbf{X}_n) - n.$$

n possible values $\{1, 2, \ldots, n\}$, each with probability $\frac{1}{n}$:

$$P_{\mathbf{X}}(k) = \frac{1}{n},$$
 for $k = 1, ..., n$.

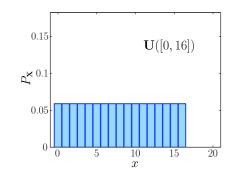
Roll of a 6-sided fair die $\sim \mathbf{U}[6]$. (Uniform on $\{1, \ldots, 6\}$)



n possible values $\{1, 2, \ldots, n\}$, each with probability $\frac{1}{n}$:

$$P_{\mathbf{X}}(k) = \frac{1}{n},$$
 for $k = 1, ..., n$.

Roll of a 6-sided fair die $\sim U[6]$. (Uniform on $\{1, \ldots, 6\}$)

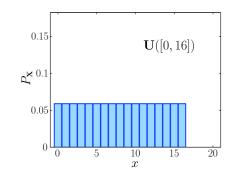


Example: Matching game (uniform is an equalizer in games of strategy). GR will pick a path to relieve you of your lunch money. If you pick your path uniformly, you win half the time.

n possible values $\{1, 2, \ldots, n\}$, each with probability $\frac{1}{n}$:

$$P_{\mathbf{X}}(k) = \frac{1}{n},$$
 for $k = 1, ..., n$.

Roll of a 6-sided fair die $\sim U[6]$. (Uniform on $\{1, \ldots, 6\}$)



Example: Matching game (uniform is an equalizer in games of strategy). GR will pick a path to relieve you of your lunch money.

If you pick your path uniformly, you win half the time.

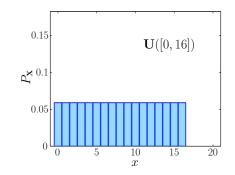
Example 18.2: Guessing Larger or Smaller

I pick two numbers from $\{1, \ldots, 5\}$, as I please. I randomly show you one of the two, x.

n possible values $\{1, 2, \ldots, n\}$, each with probability $\frac{1}{n}$:

$$P_{\mathbf{X}}(k) = \frac{1}{n},$$
 for $k = 1, ..., n$.

Roll of a 6-sided fair die $\sim \mathbf{U}[6]$. (Uniform on $\{1, \ldots, 6\}$)



Example: Matching game (uniform is an equalizer in games of strategy). GR will pick a path to relieve you of your lunch money.

If you pick your path uniformly, you win half the time.

Example 18.2: Guessing Larger or Smaller

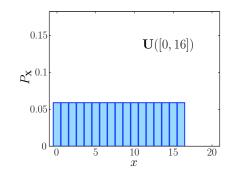
I pick two numbers from $\{1, \ldots, 5\}$, as I please. I randomly show you one of the two, x.

You must guess if x is the larger or smaller of my two numbers.

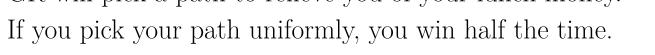
n possible values $\{1, 2, \ldots, n\}$, each with probability $\frac{1}{n}$:

$$P_{\mathbf{X}}(k) = \frac{1}{n},$$
 for $k = 1, ..., n$.

Roll of a 6-sided fair die $\sim \mathbf{U}[6]$. (Uniform on $\{1, \ldots, 6\}$)



Example: Matching game (uniform is an equalizer in games of strategy). GR will pick a path to relieve you of your lunch money.



Example 18.2: Guessing Larger or Smaller

I pick two numbers from $\{1,\ldots,5\}$, as I please. I randomly show you one of the two, x.

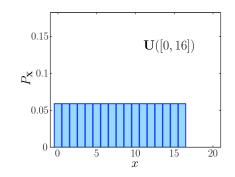
You must guess if x is the larger or smaller of my two numbers.

You always say smaller: you win $\frac{1}{2}$ the time.

n possible values $\{1, 2, \ldots, n\}$, each with probability $\frac{1}{n}$:

$$P_{\mathbf{X}}(k) = \frac{1}{n},$$
 for $k = 1, ..., n$.

Roll of a 6-sided fair die $\sim \mathbf{U}[6]$. (Uniform on $\{1, \ldots, 6\}$)



Example: Matching game (uniform is an equalizer in games of strategy). GR will pick a path to relieve you of your lunch money.

If you pick your path uniformly, you win half the time.

Example 18.2: Guessing Larger or Smaller

I pick two numbers from $\{1,\ldots,5\}$, as I please. I randomly show you one of the two, x.

You must guess if x is the larger or smaller of my two numbers.

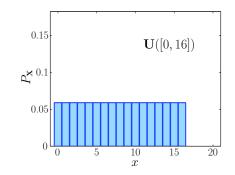
You always say smaller: you win $\frac{1}{2}$ the time.

You say smaller if $x \leq 3$ and larger if x > 3. I pick numbers 1,2: you win $\frac{1}{2}$ the time.

n possible values $\{1, 2, \ldots, n\}$, each with probability $\frac{1}{n}$:

$$P_{\mathbf{X}}(k) = \frac{1}{n},$$
 for $k = 1, ..., n$.

Roll of a 6-sided fair die $\sim \mathbf{U}[6]$. (Uniform on $\{1, \ldots, 6\}$)



Example: Matching game (uniform is an equalizer in games of strategy). GR will pick a path to relieve you of your lunch money.

If you pick your path uniformly, you win half the time.

Example 18.2: Guessing Larger or Smaller

I pick two numbers from $\{1,\ldots,5\}$, as I please. I randomly show you one of the two, x.

You must guess if x is the larger or smaller of my two numbers.

You always say smaller: you win $\frac{1}{2}$ the time.

You say smaller if $x \leq 3$ and larger if x > 3. I pick numbers 1,2: you win $\frac{1}{2}$ the time.

You have a strategy which wins more than $\frac{1}{2}$ the time, and I cannot prevent it!

 \mathbf{X} = number of heads in n independent coin tosses with probability p of heads,

$$\mathbf{X} = \mathbf{X}_1 + \cdots + \mathbf{X}_n.$$

 $\leftarrow \begin{array}{l} \text{sum of } n \text{ independent Bernoullis,} \\ \mathbf{X}_i \sim \text{Bernoulli}(p) \end{array}$

 \mathbf{X} = number of heads in n independent coin tosses with probability p of heads,

$$\mathbf{X} = \mathbf{X}_1 + \cdots + \mathbf{X}_n$$
.

 $\leftarrow \begin{array}{l} \text{sum of } n \text{ independent Bernoullis,} \\ \mathbf{X}_i \sim \text{Bernoulli}(p) \end{array}$

$$n=5, X=3:$$

HHHTT HHTTH HTTHH TTHHH HHTHT HTHTH THTHH HTHHT THHTH THHHT

 \mathbf{X} = number of heads in n independent coin tosses with probability p of heads,

$$\mathbf{X} = \mathbf{X}_1 + \cdots + \mathbf{X}_n.$$

sum of n independent Bernoullis, $\mathbf{X}_i \sim \mathrm{Bernoulli}(p)$

$$n=5, X=3:$$

HHTTH HTTHH THTHH HTHHT ТННТН ТНННТ each has probability $p^3(1-p)^2$ (independence)

 \mathbf{X} = number of heads in n independent coin tosses with probability p of heads,

$$\mathbf{X} = \mathbf{X}_1 + \cdots + \mathbf{X}_n.$$

n=5, X=3:THTHH HTHHT THHTH THHHT

$$\mathbb{P}[\mathbf{X} = 3 \mid n = 5] = 10p^3(1-p)^5$$

- sum of n independent Bernoullis, $\mathbf{X}_i \sim \mathrm{Bernoulli}(p)$
- each has probability $p^3(1-p)^2$ (independence)
- add outcome probabilities

 $\mathbf{X} = \text{number of heads in } n \text{ independent coin tosses with probability } p \text{ of heads,}$

$$\mathbf{X} = \mathbf{X}_1 + \cdots + \mathbf{X}_n.$$

n=5, X=3:HTHHT THHTH THHHT

$$\mathbb{P}[\mathbf{X} = 3 \mid n = 5] = 10p^3(1-p)^5$$

In general, $\binom{n}{k}$ sequences with k heads.

- sum of n independent Bernoullis, $\mathbf{X}_i \sim \text{Bernoulli}(p)$
- each has probability $p^3(1-p)^2$ (independence)
- add outcome probabilities

 $\mathbf{X} = \text{number of heads in } n \text{ independent coin tosses with probability } p \text{ of heads,}$

$$\mathbf{X} = \mathbf{X}_1 + \cdots + \mathbf{X}_n.$$

n=5, X=3:HTHHTTHHTH THHHT

$$\mathbb{P}[\mathbf{X} = 3 \mid n = 5] = 10p^3(1-p)^5$$

In general, $\binom{n}{k}$ sequences with k heads. Each has probability $p^k(1-p)^{n-k}$

- sum of n independent Bernoullis, $\mathbf{X}_i \sim \mathrm{Bernoulli}(p)$
- each has probability $p^3(1-p)^2$ (independence)
- add outcome probabilities

 $\mathbf{X} = \text{number of heads in } n \text{ independent coin tosses with probability } p \text{ of heads,}$

$$\mathbf{X} = \mathbf{X}_1 + \cdots + \mathbf{X}_n.$$

$$n=5, \mathbf{X}=3$$
:

HHHTT HHTTH HTTHH TTHHH HHTHT

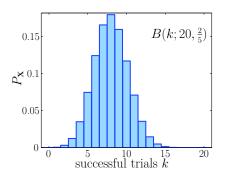
HTHTH THHHH HTHHT

$$\mathbb{P}[\mathbf{X} = 3 \mid n = 5] = 10p^3(1-p)^5$$

In general, $\binom{n}{k}$ sequences with k heads. Each has probability $p^k(1-p)^{n-k}$, so

$$\mathbb{P}[\mathbf{X} = k \mid n] = \binom{n}{k} p^k (1-p)^{n-k}.$$

- sum of n independent Bernoullis, $\mathbf{X}_i \sim \mathrm{Bernoulli}(p)$
- each has probability $p^3(1-p)^2$ (independence)
- add outcome probabilities



Binomial Distribution. X is the number of successes in n independent trials with success probability p on each trial: $\mathbf{X} = \mathbf{X}_1 + \cdots + \mathbf{X}_n$ where $\mathbf{X}_i \sim \text{Bernoulli}(p)$.

$$P_{\mathbf{X}}(k) = B(k; n, p) = \binom{n}{k} p^k (1 - p)^{n-k}.$$

 \mathbf{X} = number of heads in n independent coin tosses with probability p of heads,

$$\mathbf{X} = \mathbf{X}_1 + \cdots + \mathbf{X}_n.$$

$$n=5, \mathbf{X}=3$$
:

HHHTT HHTTH HTTHH TTHHH HHTHT

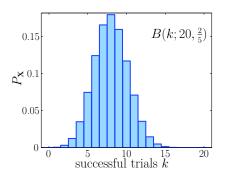
HTHTH THTHH HTHHT THHHH

$$\mathbb{P}[\mathbf{X} = 3 \mid n = 5] = 10p^3(1-p)^5$$

In general, $\binom{n}{k}$ sequences with k heads. Each has probability $p^k(1-p)^{n-k}$, so

$$\mathbb{P}[\mathbf{X} = k \mid n] = \binom{n}{k} p^k (1-p)^{n-k}.$$

- $\leftarrow \quad \text{sum of } n \text{ independent Bernoullis,} \\ \mathbf{X}_i \sim \text{Bernoulli}(p)$
- $\leftarrow \begin{array}{l} \text{each has probability } p^3(1-p)^2 \\ \text{(independence)} \end{array}$
- \leftarrow add outcome probabilities



Binomial Distribution. X is the number of successes in n independent trials with success probability p on each trial: $\mathbf{X} = \mathbf{X}_1 + \cdots + \mathbf{X}_n$ where $\mathbf{X}_i \sim \text{Bernoulli}(p)$.

$$P_{\mathbf{X}}(k) = B(k; n, p) = \binom{n}{k} p^k (1 - p)^{n-k}.$$

Example: guessing correctly on the multiple choice quiz: n = 15 questions, 5 choices $(p = \frac{1}{5})$.

 \mathbf{X} = number of heads in n independent coin tosses with probability p of heads,

$$\mathbf{X} = \mathbf{X}_1 + \cdots + \mathbf{X}_n.$$

$$n=5, \mathbf{X}=3$$
:

HHHTT HHTTH HTTHH TTHHH HHTHT

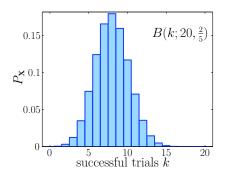
HTHTH THTHH HTHHT THHHH

$$\mathbb{P}[\mathbf{X} = 3 \mid n = 5] = 10p^3(1-p)^5$$

In general, $\binom{n}{k}$ sequences with k heads. Each has probability $p^k(1-p)^{n-k}$, so

$$\mathbb{P}[\mathbf{X} = k \mid n] = \binom{n}{k} p^k (1-p)^{n-k}.$$

- $\leftarrow \text{ sum of } n \text{ independent Bernoullis,} \\ \mathbf{X}_i \sim \text{Bernoulli}(p)$
- $\leftarrow \begin{array}{l} \text{each has probability } p^3(1-p)^2 \\ \text{(independence)} \end{array}$
- \leftarrow add outcome probabilities

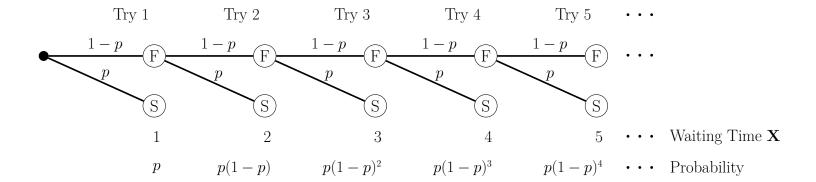


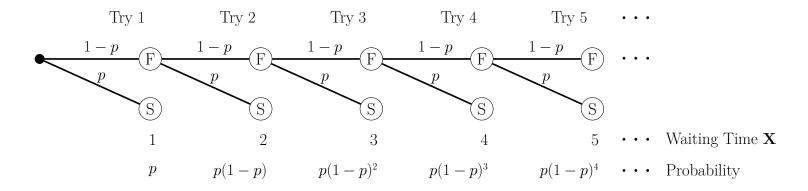
Binomial Distribution. X is the number of successes in n independent trials with success probability p on each trial: $\mathbf{X} = \mathbf{X}_1 + \cdots + \mathbf{X}_n$ where $\mathbf{X}_i \sim \text{Bernoulli}(p)$.

$$P_{\mathbf{X}}(k) = B(k; n, p) = \binom{n}{k} p^k (1 - p)^{n-k}.$$

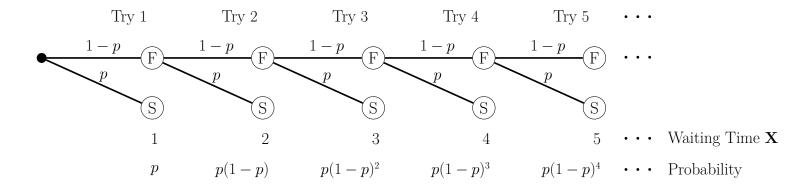
Example: guessing correctly on the multiple choice quiz: n = 15 questions, 5 choices $(p = \frac{1}{5})$.

number correct, k	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
probability	0.035	0.132	0.231	0.250	0.188	0.103	0.043	0.014	0.003	7×10^{-4}	10^{-4}	10^{-5}	10^{-6}	~ 0	~ 0	~ 0
		chances of passing are $\approx 0.4\%$														



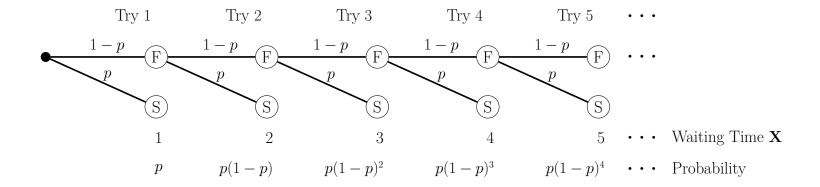


$$\mathbb{P}[t \text{ trials}] = \mathbb{P}[\mathbf{F}^{\bullet t-1}\mathbf{S}] = (1-p)^{t-1}p$$



$$\mathbb{P}[t \text{ trials}] = \mathbb{P}[\mathbf{F}^{\bullet t-1}\mathbf{S}] = (1-p)^{t-1}p$$

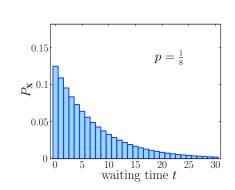
$$P_{\mathbf{X}}(t) = (1-p)^{t-1}p = \underbrace{\frac{p}{1-p}}_{\beta} \times (1-p)^{t}$$



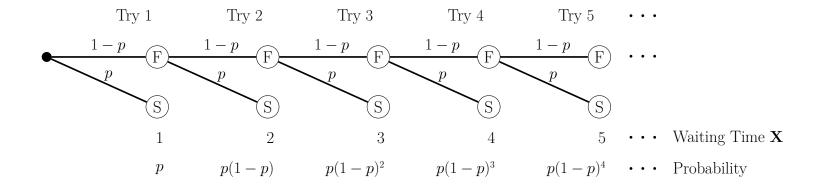
$$\mathbb{P}[t \text{ trials}] = \mathbb{P}[F^{\bullet t-1}S] = (1-p)^{t-1}p$$

$$P_{\mathbf{X}}(t) = (1-p)^{t-1}p = \underbrace{\frac{p}{1-p}}_{\beta} \times (1-p)^{t}$$

$$= \beta(1-p)^{t}.$$



Let p be the probability to succeed on a trial.



$$\mathbb{P}[t \text{ trials}] = \mathbb{P}[F^{\bullet t-1}S] = (1-p)^{t-1}p$$

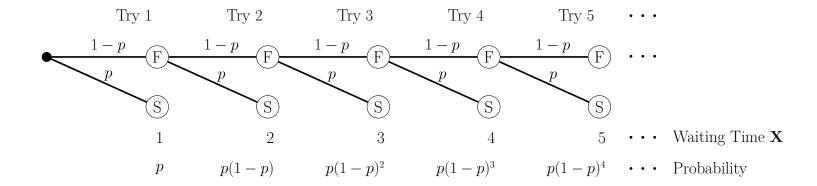
$$P_{\mathbf{X}}(t) = (1-p)^{t-1}p = \underbrace{\frac{p}{1-p}}_{\beta} \times (1-p)^{t}$$

$$= \beta(1-p)^{t}.$$



Example: 3 people randomly access the wireless channel. Success only if exactly one is attempting.

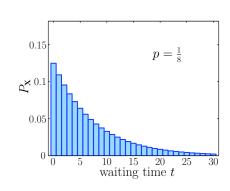
Let p be the probability to succeed on a trial.



$$\mathbb{P}[t \text{ trials}] = \mathbb{P}[F^{\bullet t-1}S] = (1-p)^{t-1}p$$

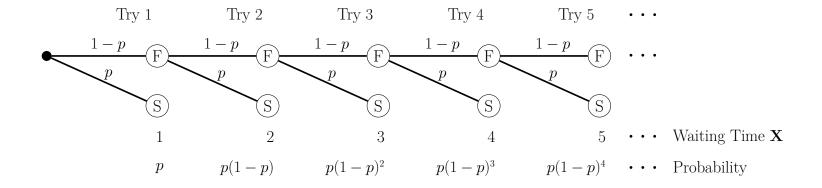
$$P_{\mathbf{X}}(t) = (1-p)^{t-1}p = \underbrace{\frac{p}{1-p}}_{\beta} \times (1-p)^{t}$$

$$= \beta(1-p)^{t}.$$



Example: 3 people randomly access the wireless channel. Success only if exactly one is attempting. Try every timestep

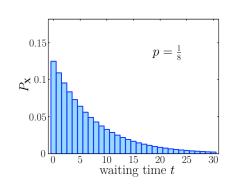
Let p be the probability to succeed on a trial.



$$\mathbb{P}[t \text{ trials}] = \mathbb{P}[F^{\bullet t-1}S] = (1-p)^{t-1}p$$

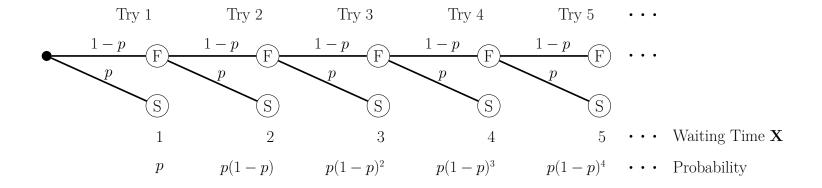
$$P_{\mathbf{X}}(t) = (1-p)^{t-1}p = \underbrace{\frac{p}{1-p}}_{\beta} \times (1-p)^{t}$$

$$= \beta(1-p)^{t}.$$



Example: 3 people randomly access the wireless channel. Success only if exactly one is attempting. Try every timestep \rightarrow no one succeeds.

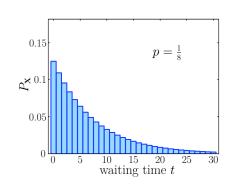
Let p be the probability to succeed on a trial.



$$\mathbb{P}[t \text{ trials}] = \mathbb{P}[F^{\bullet t-1}S] = (1-p)^{t-1}p$$

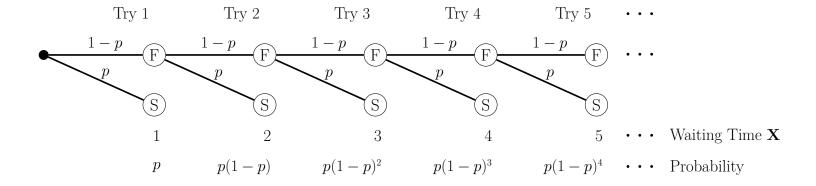
$$P_{\mathbf{X}}(t) = (1-p)^{t-1}p = \underbrace{\frac{p}{1-p}}_{\beta} \times (1-p)^{t}$$

$$= \beta(1-p)^{t}.$$



Example: 3 people randomly access the wireless channel. Success only if exactly one is attempting. Try every timestep \rightarrow no one succeeds. Everyone tries $\frac{1}{3}$ the time (randomly).

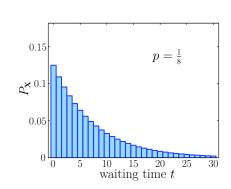
Let p be the probability to succeed on a trial.



$$\mathbb{P}[t \text{ trials}] = \mathbb{P}[F^{\bullet t-1}S] = (1-p)^{t-1}p$$

$$P_{\mathbf{X}}(t) = (1-p)^{t-1}p = \underbrace{\frac{p}{1-p}}_{\beta} \times (1-p)^{t}$$

$$= \beta(1-p)^{t}.$$

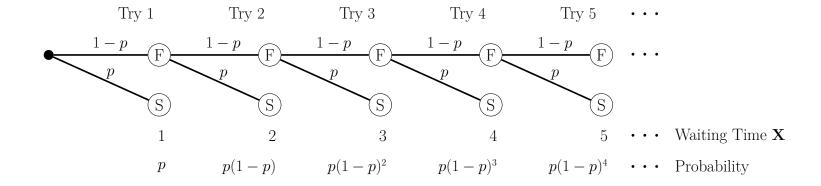


Example: 3 people randomly access the wireless channel. Success only if exactly one is attempting.

Try every timestep \rightarrow no one succeeds. Everyone tries $\frac{1}{3}$ the time (randomly).

Success probability for *someone* is $\frac{4}{9}$.

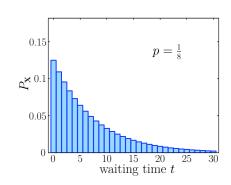
Let p be the probability to succeed on a trial.



$$\mathbb{P}[t \text{ trials}] = \mathbb{P}[F^{\bullet t-1}S] = (1-p)^{t-1}p$$

$$P_{\mathbf{X}}(t) = (1-p)^{t-1}p = \underbrace{\frac{p}{1-p}}_{\beta} \times (1-p)^{t}$$

$$= \beta(1-p)^{t}.$$

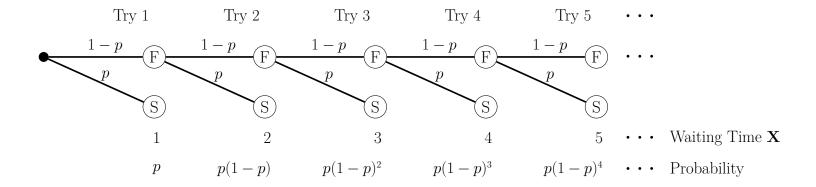


Example: 3 people randomly access the wireless channel. Success only if exactly one is attempting.

Try every timestep \rightarrow no one succeeds. Everyone tries $\frac{1}{3}$ the time (randomly).

Success probability for someone is $\frac{4}{9}$. Success probability for you is $\frac{4}{27}$.

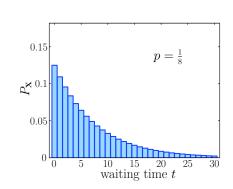
Let p be the probability to succeed on a trial.



$$\mathbb{P}[t \text{ trials}] = \mathbb{P}[F^{\bullet t-1}S] = (1-p)^{t-1}p$$

$$P_{\mathbf{X}}(t) = (1-p)^{t-1}p = \underbrace{\frac{p}{1-p}}_{\beta} \times (1-p)^{t}$$

$$= \beta(1-p)^{t}.$$



Example: 3 people randomly access the wireless channel. Success only if exactly one is attempting.

Try every timestep \rightarrow no one succeeds. Everyone tries $\frac{1}{3}$ the time (randomly).

Success probability for someone is $\frac{4}{9}$. Success probability for you is $\frac{4}{27}$.

wait, t	1	2	3	4	5	6	7	8	9	10	11	
$\mathbb{P}[\text{someone succeeds}]$	0.444	0.247	0.137	0.076	0.042	0.024	0.013	0.007	0.004	0.002	0.001	• • •
$\mathbb{P}[\text{you succeed}]$	0.148	0.126	0.108	0.092	0.078	0.066	0.057	0.048	0.051	0.035	0.030	