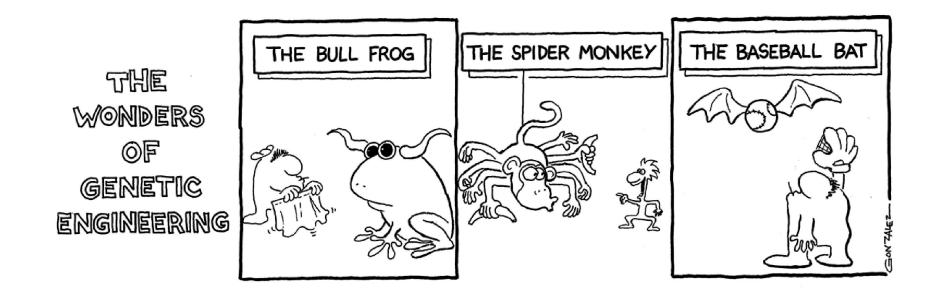
Foundations of Computer Science Lecture 14

Advanced Counting

Sequences with Repetition

Union of Overlapping Sets: Inclusion-Exclusion

Pigeonhole Principle



Last Time

To count complex objects, construct a sequence of "instructions" that can be used to construct the object uniquely. The number of possible sequences of instructions equals the number of possible complex objects.

- Sum and product Rules.
- Build-up counting: $\binom{n}{k}$, n-bit sequences with k 1's; goody-bags.
- Counting one set by counting another: bijection.
- Permutations and combinations.
- Binomial Theorem.

Today: Advanced Counting

- Sequences with repetition.
 - Anagrams.

- Inclusion-exclusion: extending the sum-rule to overlapping sets.
 - Derangements.
- Pigeonhole principle.
 - Social twins.
 - Subset sums.

	no repetition	with repetition
k-sequence		
k-subset		

	no repetition	with repetition
k-sequence	$\frac{n!}{(n-k)!}$	
k-subset		

	no repetition	with repetition
k-sequence	$\frac{n!}{(n-k)!}$	n^k
k-subset		

no repetition	with repetition
$\frac{n!}{(n-k)!}$	n^k
$\binom{n}{k} = \frac{n!}{k!(n-k)!}$	
	$\frac{n!}{(n-k)!}$ $\binom{n}{2} = n!$

	no repetition	with repetition
k-sequence	$\frac{n!}{(n-k)!}$	n^k
k-subset	$\binom{n}{k} = \frac{n!}{k!(n-k)!}$	$\binom{k+n-1}{n-1}$

	no repetition	with repetition
k-sequence	$\frac{n!}{(n-k)!}$	n^k
k-subset	$\binom{n}{k} = \frac{n!}{k!(n-k)!}$	$\binom{k+n-1}{n-1}$
(k_1,k_2,\cdots,k_r) -sequence		

(5,4,3)-sequence of $5 \bullet$, $4 \bullet$, $3 \bullet$

	no repetition	with repetition
k-sequence	$\frac{n!}{(n-k)!}$	n^k
k-subset	$\binom{n}{k} = \frac{n!}{k!(n-k)!}$	$\binom{k+n-1}{n-1}$
(k_1,k_2,\cdots,k_r) -sequence		

(5,4,3)-sequence of $5 \bullet$, $4 \bullet$, $3 \bullet$

	no repetition	with repetition
k-sequence	$\frac{n!}{(n-k)!}$	n^k
k-subset	$\binom{n}{k} = \frac{n!}{k!(n-k)!}$	$\binom{k+n-1}{n-1}$
(k_1, k_2, \cdots, k_r) -sequence		

(5, 4, 3)-sequence of 5 \bullet , 4 \bullet , 3 \bullet

Choose slots for \bullet : $\binom{12}{5}$ ways

subset of slots used for each type

no repetition

with repetition

k-sequence

$$\frac{n!}{(n-k)!}$$

 n^k

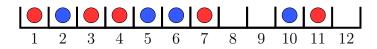
k-subset

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$

$$\binom{k+n-1}{n-1}$$

 (k_1, k_2, \cdots, k_r) -sequence

(5, 4, 3)-sequence of 5 \bullet , 4 \bullet , 3 \bullet



Choose slots for \bullet : $\binom{12}{5}$ ways

Then choose slots for \bullet : $\binom{7}{4}$ ways

subset of slots used for each type

no repetition

with repetition

k-sequence

$$\frac{n!}{(n-k)!}$$

 n^k

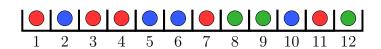
k-subset

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$

 $\binom{k+n-1}{n-1}$

 (k_1, k_2, \cdots, k_r) -sequence

(5, 4, 3)-sequence of 5 \bullet , 4 \bullet , 3 \bullet



Choose slots for \bullet : $\binom{12}{5}$ ways

Then choose slots for \bullet : $\binom{7}{4}$ ways

Then choose slots for \bullet : $\binom{3}{3}$ ways

subset of slots used for each type

type - • type - • type - •
$$\{1, 3, 4, 7, 11\}$$
 $\{2, 5, 6, 10\}$ $\{8, 9, 12\}$

no repetition

with repetition

k-sequence

$$\frac{n!}{(n-k)!}$$

 n^k

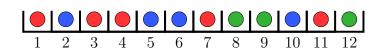
k-subset

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$

 $\binom{k+n-1}{n-1}$

 (k_1, k_2, \cdots, k_r) -sequence

(5, 4, 3)-sequence of 5 \bullet , 4 \bullet , 3 \bullet



subset of slots used for each type

type - • type - • type - •
$$\{1, 3, 4, 7, 11\}$$
 $\{2, 5, 6, 10\}$ $\{8, 9, 12\}$

Choose slots for \bullet : $\binom{12}{5}$ ways

Then choose slots for \bullet : $\binom{7}{4}$ ways

Then choose slots for \bullet : $\binom{3}{3}$ ways

no repetition

with repetition

k-sequence

$$\frac{n!}{(n-k)!}$$

 n^k

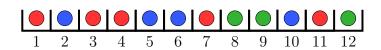
k-subset

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$

$$\binom{k+n-1}{n-1}$$

 (k_1, k_2, \cdots, k_r) -sequence

(5, 4, 3)-sequence of 5 \bullet , 4 \bullet , 3 \bullet



subset of slots used for each type

type - • type - • type - •
$$\{1, 3, 4, 7, 11\}$$
 $\{2, 5, 6, 10\}$ $\{8, 9, 12\}$

Choose slots for \bullet : $\binom{12}{5}$ ways

Then choose slots for \bullet : $\binom{7}{4}$ ways

Then choose slots for \bullet : $\binom{3}{3}$ ways

no repetition

with repetition

k-sequence

$$\frac{n!}{(n-k)!}$$

 n^k

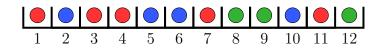
k-subset

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$

$$\binom{k+n-1}{n-1}$$

 (k_1, k_2, \cdots, k_r) -sequence

(5, 4, 3)-sequence of 5 \bullet , 4 \bullet , 3 \bullet



subset of slots used for each type

type - • type - • type - •
$$\{1, 3, 4, 7, 11\}$$
 $\{2, 5, 6, 10\}$ $\{8, 9, 12\}$

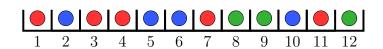
Choose slots for \bullet : $\binom{12}{5}$ ways

Then choose slots for \bullet : $\binom{7}{4}$ ways

Then choose slots for \bullet : $\binom{3}{3}$ ways

	no repetition	with repetition
k-sequence	$\frac{n!}{(n-k)!}$	n^k
k-subset	$\binom{n}{k} = \frac{n!}{k!(n-k)!}$	$\binom{k+n-1}{n-1}$
(k_1,k_2,\cdots,k_r) -sequence		$\binom{k_1+\cdots+k_r}{k_1,k_2,\ldots,k_r} = \frac{k!}{k_1!\cdot k_2!\cdots k_r!}$

(5, 4, 3)-sequence of 5 \bullet , 4 \bullet , 3 \bullet



subset of slots used for each type

type - • type - • type - •
$$\{1, 3, 4, 7, 11\}$$
 $\{2, 5, 6, 10\}$ $\{8, 9, 12\}$

Choose slots for \bullet : $\binom{12}{5}$ ways

Then choose slots for \bullet : $\binom{7}{4}$ ways

Then choose slots for \bullet : $\binom{3}{3}$ ways

Anagrams for AARDVARK

A sequence of 8 letters: 3A's, 2R's, 1D, 1V, 1K.

Anagrams for AARDVARK

A sequence of 8 letters: 3A's, 2R's, 1D, 1V, 1K.

Number of such sequences is

$$\binom{8}{3,2,1,1,1} = \frac{8!}{3! \cdot 2! \cdot 1! \cdot 1! \cdot 1!} = 3360.$$

Anagrams for AARDVARK

A sequence of 8 letters: 3A's, 2R's, 1D, 1V, 1K.

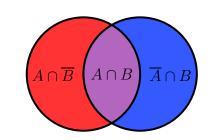
Number of such sequences is

$$\binom{8}{3,2,1,1,1} = \frac{8!}{3! \cdot 2! \cdot 1! \cdot 1! \cdot 1!} = 3360.$$

Exercise. What is the coefficient of $x^2y^3z^4$ in the expansion of $(x+y+z)^9$?

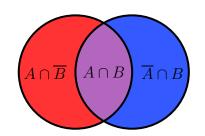
[Hint: Sequences of length 9 (why?) with 2 x's, 3 y's and 4 z's.]

$$|A \cup B| = |A| + |B| - |A \cap B|.$$



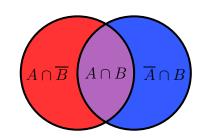
(Breaks $A \cup B$ into smaller sets.)

$$|A \cup B| = |A| + |B| - |A \cap B|.$$



(Breaks $A \cup B$ into smaller sets.)

$$|A \cup B| = |A| + |B| - |A \cap B|.$$



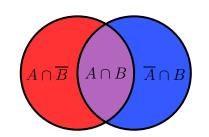
(Breaks $A \cup B$ into smaller sets.)

$$A = \{\text{numbers divisible by 2}\}.$$

$$|A| = 5.$$

$$|A| = 5. \qquad (|A| = \lfloor 10/2 \rfloor)$$

$$|A \cup B| = |A| + |B| - |A \cap B|.$$



(Breaks $A \cup B$ into smaller sets.)

$$A = \{\text{numbers divisible by 2}\}.$$

$$|A| = 5.$$

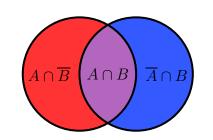
$$|A| = 5. \qquad (|A| = \lfloor 10/2 \rfloor)$$

$$B = \{\text{numbers divisible by 5}\}.$$

$$|B| = 2$$

$$|B| = 2. \qquad (|B| = \lfloor 10/5 \rfloor)$$

$$|A \cup B| = |A| + |B| - |A \cap B|.$$



(Breaks $A \cup B$ into smaller sets.)

$$A = \{\text{numbers divisible by } 2\}.$$

$$|A| = 5.$$

$$|A| = 5. \qquad (|A| = \lfloor 10/2 \rfloor)$$

$$B = \{\text{numbers divisible by 5}\}.$$

$$|B|=2$$

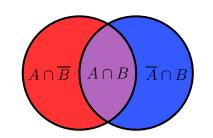
$$|B| = 2. \qquad (|B| = \lfloor 10/5 \rfloor)$$

$$A \cap B = \{\text{numbers divisible by 2 and 5}\}.$$

$$|A \cap B| = 1.$$

$$|A \cap B| = 1.$$
 $(|A \cap B| = \lfloor 10/\text{lcm}(2, 5) \rfloor)$

$$|A \cup B| = |A| + |B| - |A \cap B|.$$



(Breaks $A \cup B$ into smaller sets.)

Example. How many numbers in $1, \ldots, 10$ are divisible by 2 or 5.

$$A = \{\text{numbers divisible by } 2\}.$$

$$|A| = 5.$$

$$|A| = 5. \qquad (|A| = \lfloor 10/2 \rfloor)$$

$$B = \{\text{numbers divisible by 5}\}.$$

$$|B|=2$$

$$|B| = 2. \qquad (|B| = \lfloor 10/5 \rfloor)$$

$$A \cap B = \{\text{numbers divisible by 2 and 5}\}.$$

$$|A \cap B| = 1$$

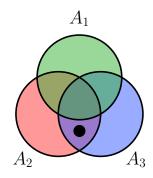
$$|A \cap B| = 1.$$
 $(|A \cap B| = \lfloor 10/\text{lcm}(2,5) \rfloor)$

 $A \cup B = \{\text{numbers divisible by 2 or 5}\}.$

$$|A \cup B| = |A| + |B| - |A \cap B| = 5 + 2 - 1 = 6.$$

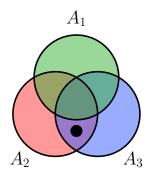
$$|A_1 \cup A_2 \cup A_3| = |A_1| + |A_2| + |A_3| - |A_1 \cap A_2| - |A_1 \cap A_3| - |A_2 \cap A_3| + |A_1 \cap A_2 \cap A_3|.$$

Proof.



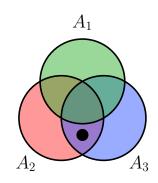
$$|A_1 \cup A_2 \cup A_3| = |A_1| + |A_2| + |A_3| - |A_1 \cap A_2| - |A_1 \cap A_3| - |A_2 \cap A_3| + |A_1 \cap A_2 \cap A_3|.$$

Proof. Consider $x \in A_2 \cap A_3$. How many times is x counted?



$$|A_1 \cup A_2 \cup A_3| = |A_1| + |A_2| + |A_3| - |A_1 \cap A_2| - |A_1 \cap A_3| - |A_2 \cap A_3| + |A_1 \cap A_2 \cap A_3|.$$

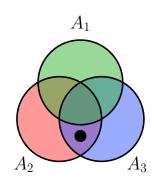
Consider $x \in A_2 \cap A_3$. How many times is x counted? Proof.



$$|A_1 \cup A_2 \cup A_3| = |A_1| + |A_2| + |A_3| - |A_1 \cap A_2| - |A_1 \cap A_3| - |A_2 \cap A_3| + |A_1 \cap A_2 \cap A_3|.$$

Consider $x \in A_2 \cap A_3$. How many times is x counted? Proof.

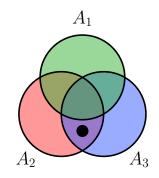
Contribution of x to sum is +1. Repeat for each region.



$$|A_1 \cup A_2 \cup A_3| = |A_1| + |A_2| + |A_3| - |A_1 \cap A_2| - |A_1 \cap A_3| - |A_2 \cap A_3| + |A_1 \cap A_2 \cap A_3|.$$

Consider $x \in A_2 \cap A_3$. How many times is x counted? Proof.

Contribution of x to sum is +1. Repeat for each region.

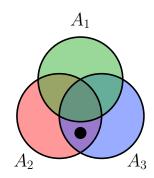


Example (Derangements). Give 3 coats to 3 girls so that noone gets their coat. How many ways?

$$|A_1 \cup A_2 \cup A_3| = |A_1| + |A_2| + |A_3| - |A_1 \cap A_2| - |A_1 \cap A_3| - |A_2 \cap A_3| + |A_1 \cap A_2 \cap A_3|.$$

Proof. Consider $x \in A_2 \cap A_3$. How many times is x counted?

Contribution of x to sum is +1. Repeat for each region.



Example (Derangements). Give 3 coats to 3 girls so that noone gets their coat. How many ways?

$$A_i = \{ girl \ i \ gets \ her \ coat \}. \ |A_i| = 2!.$$

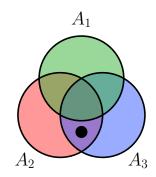
$$A_{ij} = \{\text{girls } i \text{ and } j \text{ get their coats}\}. |A_{ij}| = 1!.$$

$$A_{123} = \{\text{girls } 1, 2 \text{ and } 3 \text{ get their coats}\}. |A_{123}| = 1.$$

$$|A_1 \cup A_2 \cup A_3| = |A_1| + |A_2| + |A_3| - |A_1 \cap A_2| - |A_1 \cap A_3| - |A_2 \cap A_3| + |A_1 \cap A_2 \cap A_3|.$$

Proof. Consider $x \in A_2 \cap A_3$. How many times is x counted?

Contribution of x to sum is +1. Repeat for each region.



Example (Derangements). Give 3 coats to 3 girls so that noone gets their coat. How many ways?

 $A_i = \{ girl \ i \ gets \ her \ coat \}. \ |A_i| = 2!.$

 $A_{ij} = \{\text{girls } i \text{ and } j \text{ get their coats}\}. |A_{ij}| = 1!.$

 $A_{123} = \{\text{girls } 1, 2 \text{ and } 3 \text{ get their coats}\}. |A_{123}| = 1.$

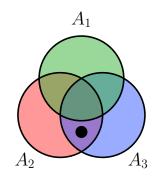
$$|A_1 \cup A_2 \cup A_3| = |A_1| + |A_2| + |A_3| - |A_{12}| - |A_{13}| - |A_{23}| + |A_{123}|$$

= 2 + 2 + 2 - 1 - 1 - 1 + 1 = 4.

$$|A_1 \cup A_2 \cup A_3| = |A_1| + |A_2| + |A_3| - |A_1 \cap A_2| - |A_1 \cap A_3| - |A_2 \cap A_3| + |A_1 \cap A_2 \cap A_3|.$$

Consider $x \in A_2 \cap A_3$. How many times is x counted? Proof.

Contribution of x to sum is +1. Repeat for each region.



Example (Derangements). Give 3 coats to 3 girls so that noone gets their coat. How many ways?

$$A_i = \{ girl \ i \ gets \ her \ coat \}. \ |A_i| = 2!.$$

$$A_{ij} = \{\text{girls } i \text{ and } j \text{ get their coats}\}. |A_{ij}| = 1!.$$

$$A_{123} = \{\text{girls } 1, 2 \text{ and } 3 \text{ get their coats}\}. |A_{123}| = 1.$$

$$|A_1 \cup A_2 \cup A_3| = |A_1| + |A_2| + |A_3| - |A_{12}| - |A_{13}| - |A_{23}| + |A_{123}|$$

= 2 + 2 + 2 - 1 - 1 - 1 + 1 = 4.

The answer we seek is 3! - 4 = 2.

(why?)

Exercise. How many numbers in $1, \ldots, 100$ are divisible by 2,3 or 5?

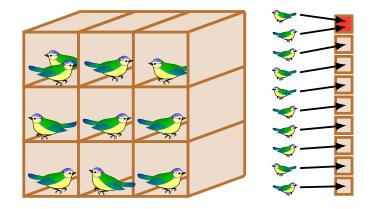
Pigeonhole Principle

If you have more guests than spare rooms, then some guests will have to share.

Pigeonhole Principle

If you have more guests than spare rooms, then some guests will have to share.

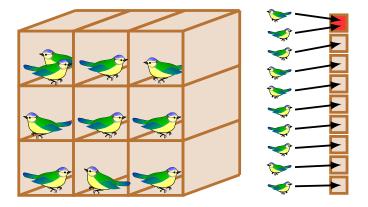
- More pigeons than pigeonholes.
- A pigeonhole has two or more pigeons.



Pigeonhole Principle

If you have more guests than spare rooms, then some guests will have to share.

- More pigeons than pigeonholes.
- A pigeonhole has two or more pigeons.



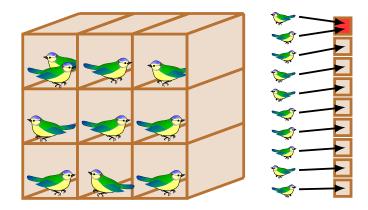
Proof. (By contraposition). Suppose no pigeonhole has 2 or more pigeons. Let x_i be the number of pigeons in hole $i, x_i \leq 1$.

number of pigeons = $\sum_{i} x_i \leq \sum_{i} 1$ = number of pigeonholes.

Pigeonhole Principle

If you have more guests than spare rooms, then some guests will have to share.

- More pigeons than pigeonholes.
- A pigeonhole has two or more pigeons.



Proof. (By contraposition). Suppose no pigeonhole has 2 or more pigeons. Let x_i be the number of pigeons in hole $i, x_i \leq 1$.

number of pigeons = $\sum_{i} x_i \leq \sum_{i} 1$ = number of pigeonholes.

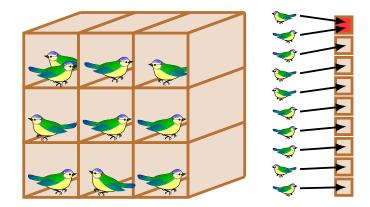
Example. If you have 8 people, at least two are born on the same day of the week.

We have 8 pigeons (the people) and 7 pigeonholes (the days of the week).

Pigeonhole Principle

If you have more guests than spare rooms, then some guests will have to share.

- More pigeons than pigeonholes.
- A pigeonhole has two or more pigeons.



Proof. (By contraposition). Suppose no pigeonhole has 2 or more pigeons. Let x_i be the number of pigeons in hole $i, x_i \leq 1$.

number of pigeons = $\sum_{i} x_i \leq \sum_{i} 1$ = number of pigeonholes.

Example. If you have 8 people, at least two are born on the same day of the week.

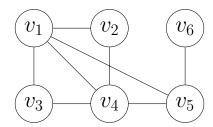
We have 8 pigeons (the people) and 7 pigeonholes (the days of the week).

How many people do you need to ensure two are born on a Monday?

Two nodes are *social twins* if they have the same degree.

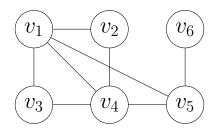
Two nodes are *social twins* if they have the same degree.

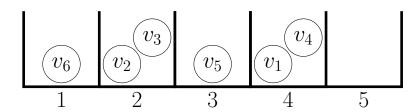
Assume the graph is connected.



Two nodes are *social twins* if they have the same degree.

Assume the graph is connected.





Degrees $1, 2, \ldots, (n-1)$, the pigeonholes.

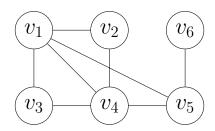
(Why no degree 0?)

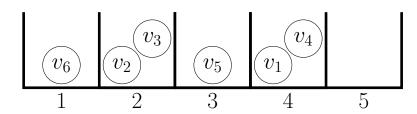
Vertices v_1, v_2, \ldots, v_n , the pigeons.

n pigeons and (n-1) pigeonholes, so at least two vertices are in the same degree-bin.

Two nodes are *social twins* if they have the same degree.

Assume the graph is connected.





Degrees $1, 2, \ldots, (n-1)$, the pigeonholes.

(Why no degree 0?)

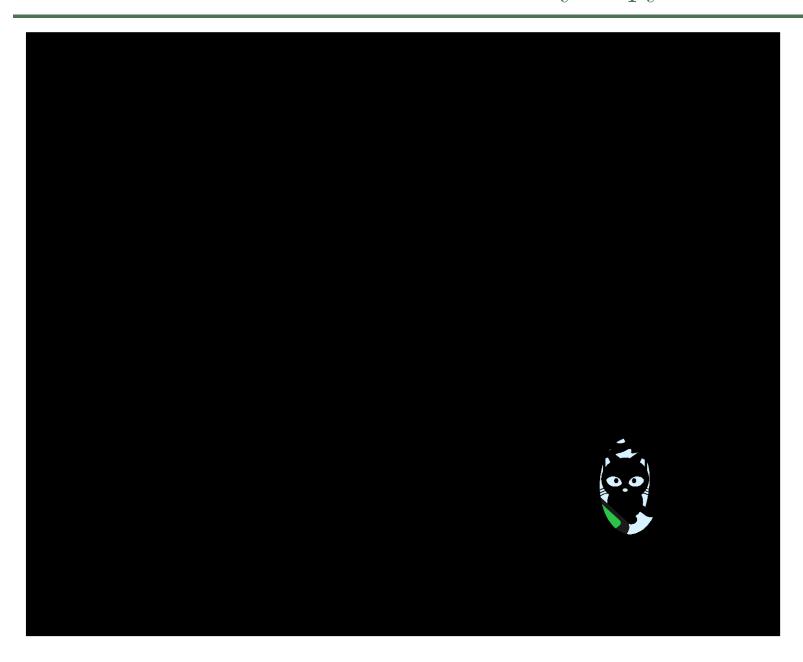
Vertices v_1, v_2, \ldots, v_n , the pigeons.

n pigeons and (n-1) pigeonholes, so at least two vertices are in the same degree-bin.

If the graph is not connected, no one has degree n-1.

Non-constructive proof: Who are those social twins? What are their degrees?

Prove to the 4 year old that the target exists in the picture



Prove to the 4 year old that the target exists in the picture

Prove to the 4 year old that the target exists in the picture

Given 100 twenty-seven digit numbers, find two subsets with the same subset-sum.

Prove that the professor is not sending the student on a wild-goose chase.

Given 100 twenty-seven digit numbers, find two subsets with the same subset-sum.

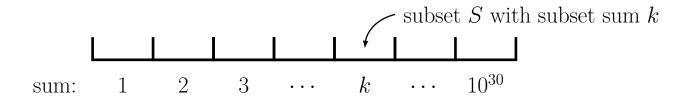
Prove that the professor is not sending the student on a wild-goose chase.

Any 27-digit number is at most 10^{28} . So, a subset-sum is at most $100 \times 10^{28} = 10^{30}$.

Given 100 twenty-seven digit numbers, find two subsets with the same subset-sum.

Prove that the professor is not sending the student on a wild-goose chase.

Any 27-digit number is at most 10^{28} . So, a subset-sum is at most $100 \times 10^{28} = 10^{30}$.



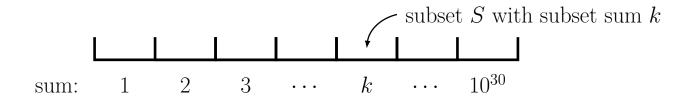
Pigeonholes: bins corresponding to each possible subset-sum, $1, 2, \ldots, 10^{30}$.

Pigeons: the non-empty subsets of a 100-element set: $2^{100} - 1 \approx 1.26 \times 10^{30}$ of them.

Given 100 twenty-seven digit numbers, find two subsets with the same subset-sum.

Prove that the professor is not sending the student on a wild-goose chase.

Any 27-digit number is at most 10^{28} . So, a subset-sum is at most $100 \times 10^{28} = 10^{30}$.



Pigeonholes: bins corresponding to each possible subset-sum, $1, 2, \ldots, 10^{30}$.

Pigeons: the non-empty subsets of a 100-element set: $2^{100} - 1 \approx 1.26 \times 10^{30}$ of them.

At least two subsets must be in the same subset-sum-bin.

Practice. Exercise 14.6.