Foundations of Computer Science Lecture 8

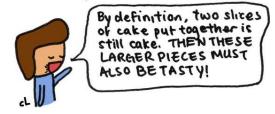
Proofs with Recursive Objects

Structural Induction: Induction on Recursively Defined Objects

Proving an object is *not* in a recursive set

Examples: sets, sequences, trees

Step 3. Use the recursive definition of the set to prove that all slices are tasty.



Step 4. Conclude all slices of cake are tasty.

Last Time

- Recursion.
- Recurrences are recursive functions on \mathbb{N} .
- Recursive programs.
- Recursive sets.
- Rooted binary trees (RBT).

Today: Proofs with Recursive Objects

- Two Types of Questions About Recursive Sets
- Matched Parentheses
- Structural Induction
 - N
 - Palindromes
 - Arithmetic Expressions
- Rooted Binary Trees (RBT)

Two Types of Questions About a Recursive Set

$$\mathcal{A} = \{0, 4, 8, 12, 16, \ldots\}.$$

Recursive definition of A.

- $0 \in \mathcal{A}.$ $x \in \mathcal{A} \to x + 4 \in \mathcal{A}.$
- (i) What is in \mathcal{A} ? Is some feature common to every element of \mathcal{A} ? Is everything in \mathcal{A} even?

$$x \in \mathcal{A} \to x \text{ is even}$$
 (T)

(ii) Is everything with some property in \mathcal{A} ? Is every even number in \mathcal{A} ?

$$x \text{ is even } \to x \in \mathcal{A}$$
 (F)

Very very different statements!

Every leopard has 4 legs. Everything with 4 legs is a leopard?

Structural induction shows every member of a recursive set has a property, question (i).

Orks and blue Eyes

- The first two Orks had blue eyes.
- When two Orks mate, if they both have blue eyes, then the child has blue eyes.

Do all Orks have blue eyes?

When could a green-eyed ork have arisen?

Structural Induction

- The ancestors have a trait.
- The trait is passed on from parents to children.

Conclusion: Everyone today has that trait.

Matched Parentheses \mathcal{M}

Recursive definition of \mathcal{M} .

- $\varepsilon \in \mathcal{M}$. $x, y \in \mathcal{M} \to [x] \bullet y \in \mathcal{M}$.

[basis]

[constructor]

The strings in \mathcal{M} are the matched (in the arithmetic sense) parentheses. For example:

```
[] (\text{set } x = \varepsilon, y = \varepsilon \text{ to get } [\varepsilon]\varepsilon = [])
[[\ ]] \qquad (\text{set } x = [\ ], y = \varepsilon)
[][] \qquad (\text{set } x = \varepsilon, y = [])
```

Let's list the strings in \mathcal{M} as they are created,

$$\mathcal{M} = \{ \varepsilon, [], [[]], [][], [[]][], \ldots, s_n, \ldots \}$$

$$\uparrow \uparrow \uparrow \uparrow \uparrow \uparrow$$

$$s_1 s_2 s_3 s_4 s_5$$

To get s_n , we apply the constructor to two prior (not necessarily distinct) strings.

Strings in \mathcal{M} are Balanced

Balanced means the number of opening and closing parentheses are equal

The constructor,

$$x, y \in \mathcal{M} \to [x] \bullet y \in \mathcal{M}$$

adds one opening and closing parenthesis.

If the "parent" strings x and y are balanced, then the child $[x] \cdot y$ is balanced. (Orks inherit blue eyes. Here, parents pass along balance to the children.)

Just as all Orks will have blue eyes, all strings in \mathcal{M} will be balanced.

Proof: Strings in \mathcal{M} are Balanced

$$\mathcal{M} = \{s_1, s_2, s_3, s_4, s_5, \dots, s_n, \dots, \}$$

P(n): string s_n is balanced, i.e., the number of '[' equals the number of ']'

Proof. Strong induction on n.

- 1: [Base case] The base case is $s_1 = \varepsilon$ which is clearly balanced, so P(1) is T.
- 2: [Induction step] Show $P(1) \wedge \cdots \wedge P(n) \rightarrow P(n+1)$ (direct proof).

Assume $P(1) \wedge P(2) \wedge \cdots \wedge P(n)$: s_1, \ldots, s_n are all balanced.

Show P(n+1): s_{n+1} is balanced.

 s_{n+1} is the child of two earlier strings: $s_{n+1} = [s_k] \bullet s_\ell$ (constructor rule)

 s_k, s_ℓ appeared earlier than s_{n+1} , so s_k and s_ℓ are balanced (induction hypothesis).

Therefore s_{n+1} is balanced (because you add one opening and closing parenthesis).

3: By induction, P(n) is $\forall n \geq 1$.

Question. Is every balanced string in \mathcal{M} ?

Exercise. Prove that $[[] \notin \mathcal{M}]$.

Structural Induction

Strong induction with recursively defined sets is called *structural induction*.

Let \mathcal{S} be a recursive set. This means you have:

- Bases cases s_1, \ldots, s_k that are in \mathcal{S} .
- Constructor rules that use elements in \mathcal{S} to create a new element of \mathcal{S} .

Let P(s) be a property defined for any element $s \in \mathcal{S}$. To show P(s) for every element in S, you must show:

- 1: [Base cases] $P(s_1), P(s_2), \ldots, P(s_k)$ are T.
- 2: [Induction step] For every constructor rule, show: IF P is T for the parents, THEN P is T for children
- 3: By structural induction, conclude that P(s) is T for all $s \in \mathcal{S}$.

- **MUST** show for *every* base case.
- **MUST** show for *every* constructor rule.
- Structural induction can be used with any recursive set.

Every String in \mathcal{M} is Matched

opening:3 closing:3

Going from left to right:

Opening is always at least closing: parentheses are arithmetically matched.

Important Exercise. Prove this by structural induction.

Key step is to show that constructor preserves "matchedness".

Question. Is every string of matched parentheses in \mathcal{M} ?

Hard Exercise. Prove this. (see Exercise 8.3).

Structural Induction on N

 $\mathbb{N} = \{1, 2, 3, \ldots\}$ is a recursively defined set,

- $\mathbf{0} \ 1 \in \mathbb{N}.$
- $x \in \mathbb{N} \to x + 1 \in \mathbb{N}.$

Consider any property of the natural numbers, for example

 $P(n): 5^n - 1$ is divisible by 4.

Structural induction to prove P(n) holds for every $n \in \mathbb{N}$:

- 1: [Prove for all base cases] Only one base case P(1).
- 2: [Prove every constructor rule preserves P(n)] Only one constructor: IF P is T for x (the parent), THEN P is T for x + 1 (the child).
- 3: By structural induction, P(n) is $\forall n \in \mathbb{N}$.

That's just ordinary induction!

Palindromes \mathcal{P}

"Was it a rat I saw"

$$(01100)^{R} = 00110$$
 not a palindrome $(0110)^{R} = 0110$ palindrome

Recursive definition of palindromes \mathcal{P}

- There are three base cases: $\varepsilon \in \mathcal{P}$, $0 \in \mathcal{P}$, $1 \in \mathcal{P}$.
- There are two constructor rules: (i) $x \in \mathcal{P} \to 0 \bullet x \bullet 0 \in \mathcal{P}$; (ii) $x \in \mathcal{P} \to 1 \bullet x \bullet 1 \in \mathcal{P}$.

Constructor *rules* preserves palindromicity:

$$(0 \bullet \underbrace{0110}_{x} \bullet 0)^{R} = 001100$$

$$(1 \bullet 0110 \bullet 1)^{R} = 101101$$

Therefore, we can prove by structural induction that all strings in \mathcal{P} are palindromes.

Hard Exercise. Prove that all palindromes are in \mathcal{P} (Exercise 8.7).

Arithmetic Expressions

Fact known to all kindergartners:
$$((1+1+1)\times(1+1+1+1+1))=15$$
, $value(((1+1+1)\times(1+1+1+1+1)))=15$,

A recursive set of well formed arithmetic expression strings \mathcal{A}_{odd} :

- One base case: $1 \in A_{\text{odd}}$.
- There are two constructor rules: (i) $x \in \mathcal{A}_{\text{ODD}} \to (x+1+1) \in \mathcal{A}_{\text{ODD}}$; (ii) $x, y \in \mathcal{A}_{\text{odd}} \to (x \times y) \in \mathcal{A}_{\text{odd}}$.

$$1 \to (1+1+1) \to ((1+1+1)+1+1) (1 \times 1) \to ((1 \times 1)+1+1) \vdots$$

The constructors add 2 to the parent or multiply the parents.

If the parents have odd value, then so does the child.

Constructors preserve "oddness" \rightarrow all strings in \mathcal{A}_{opp} have odd value.

Rooted Binary Tree with $n \geq 1$ Vertices Have n-1 Edges

- The empty tree ε is an RBT.
- Disjoint RBTs T_1, T_2 give a new RBT by linking their roots to a new root.

P(T): If T is a rooted binary tree with $n \geq 1$ vertices, THEN T has n-1 links.

- [Base case] $P(\varepsilon)$ is vacuously T because ε is not a tree with $n \ge 1$ vertices.
- [Induction step] Consider the constructors with parent RBTs T_1 and T_2 . Parents: T_1 with n_1 vertices and ℓ_1 edges and T_2 with n_2 vertices and ℓ_2 edges. Child: T with n vertices and ℓ edges.

Case 1: $T_1 = T_2 = \varepsilon$. Child is a single node with n = 1, $\ell = 0$, and $\ell = n - 1$.

Case 2: $T_1 = \varepsilon$; $T_2 \neq \varepsilon$. The child one more node and one more link, $n = n_2 + 1$ and

$$\ell = \ell_2 + 1 \stackrel{\text{IH}}{=} n_2 - 1 + 1 = n_2 = n - 1.$$

Case 3: $T_1 \neq \varepsilon$; $T_2 = \varepsilon$. (Similar to case 2.) $n = n_1 + 1$ and $\ell = \ell_1 + 1 \stackrel{\text{IH}}{=} n_1 - 1 + 1 = n_1 = n - 1$.

Case 4: $T_1 \neq \varepsilon$; $T_2 \neq \varepsilon$. Now, $n = n_1 + n_2 + 1$ and there are two new links, so

$$\ell = \ell_1 + \ell_2 + 2 \stackrel{\text{IH}}{=} n_1 - 1 + n_2 - 1 + 2 = n_1 + n_2 = n - 1.$$

Constructor always preserves property P.

3: By structural induction, P(T) is true $\forall T \in RBT$.

Checklist for Structural Induction

Analogy: if the first ancestors had blue eyes, and blue eyes are inherited from one generation to the next, then all of society will have blue eyes.

- You have a recursively defined set S.
- You want to prove a property P for all members of S.
- Does the property P hold for the base cases?
- Is the property *P preserved* by all the constructor rules?
- Structural induction is not how to prove all objects with property P are in S.