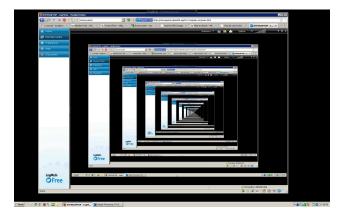
Foundations of Computer Science Lecture 7

Recursion

Powerful but Dangerous Recursion and Induction Recursive Sets and Structures



Today: Recursion

- Recursive functions
 - Analysis using induction
 - Recurrences
 - Recursive programs
- 2 Recursive sets
 - \bullet Formal Definition of $\mathbb N$
 - \bullet The Finite Binary Strings Σ^*
- Recursive structures
 - Rooted binary trees (RBT)

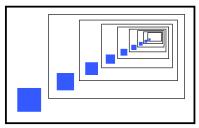
Last Time

- With induction, it may be easier to prove a stronger claim.
- Leaping induction.
 - $n^3 < 2^n \text{ for } n \ge 10.$
 - Postage.
- Strong induction.
 - \blacktriangleright Representation theorems: $\mathbf{FTA},$ binary expansion.
 - ► Games: Nim with 2 equal piles.

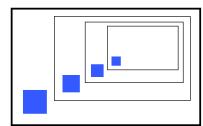
A Fantastic Recursion

Online lecture tool "Demo": allows lecturer to see screen of remote student.

PROFESSOR



STUDENT



HANG!, CRASH!, BANG!, reboot required

*/?%&# 20\$#!

Examples of Recursion: Self Reference

The tool shows the student's screen, i.e my previous screen, which is what the tool showed,

The tool *shows* what the tool *showed*.

- self reference

look-up (word): Get definition; if a word x in the definition is unknown, look-up (x).

$$f(n) = f(n-1) + 2n - 1.$$

What is f(2)?

$$f(2) = f(1) + 3 = f(0) + 4 = f(-1) + 3 = \cdots$$
 */?%&# $2@\$#!$</p>

Recursion and Induction

$$f(n) = \begin{cases} 0 & n \le 0; \\ f(n-1) + 2n - 1 & n > 0. \end{cases} \qquad \boxed{\underline{\mathbf{f}(0)}} \to f(1) \to f(2) \to f(3) \to f(4) \to \cdots$$

$$\boxed{\mathbf{f}(0)} \rightarrow f(1) \rightarrow f(2) \rightarrow f(3) \rightarrow f(4) \rightarrow \cdots$$

Induction

P(0) is T; $P(n) \rightarrow P(n+1)$ (you can conclude P(n+1) if P(n) is T)

$$P(0) \rightarrow P(1) \rightarrow P(2) \rightarrow P(3) \rightarrow P(4) \rightarrow \cdots$$

P(n) is T for all n > 0.

Recursion

f(0) = 0; $f(\mathbf{n} + \mathbf{1}) = f(n) + 2n + 1$ (we can *compute* f(n+1) if f(n) is known)

$$f(0) \rightarrow f(1) \rightarrow f(2) \rightarrow f(3) \rightarrow f(4) \rightarrow \cdots$$

We can compute f(n) for all n > 0.

Example: More Base Cases

$$f(n) = \begin{cases} 1 & n = 0; \\ f(n-2) + 2 & n > 0. \end{cases}$$

$$f(n) = \begin{cases} 1 & n = 0; \\ f(n-2) + 2 & n > 0. \end{cases} \qquad \frac{n \quad 0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \quad 8}{f(n) \quad 1 \quad \mathbf{X} \quad 3 \quad \mathbf{X} \quad 5 \quad \mathbf{X} \quad 7 \quad \mathbf{X} \quad 9}$$

How to fix f(n)? Hint: leaping induction.

$$f(0)$$
 $f(1)$ $f(2)$ $f(3)$ $f(4)$ $f(5)$ $f(6)$ $f(7)$ $f(8)$...

Practice. Exercise 7.4

Recursion Must Have Base Cases: Partial Self Reference.

look-up (word) works if there are some known words to which everything reduces.

Similarly with recursive functions,

$$f(n) = \begin{cases} 0 & n \le 0; \\ f(n-1) + 2n - 1 & n > 0. \end{cases}$$

$$f(2) = f(1) + 3 = f(0) + 4 = 0 + 4 = 4.$$
 (ends at a base case)

Must have base cases:

In this case f(0).

Must make recursive progress:

To compute f(n) you must move *closer* to the base case f(0).

Using Induction to Analyze a Recursion

$$f(n) = \begin{cases} 0 & n \le 0; \\ f(n-1) + 2n - 1 & n > 0. \end{cases}$$

$$f(n) = \begin{cases} 0 & n \le 0; \\ f(n-1) + 2n - 1 & n > 0. \end{cases} \qquad \frac{n \quad 0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \quad 8 \quad \cdots}{f(n) \quad 0 \quad 1 \quad 4 \quad 9 \quad 16 \quad 25 \quad 36 \quad 49 \quad 64 \quad \cdots}$$

Unfolding the Recursion

$$f(n) = f(n-1) + 2n - 1$$

$$f(n-1) = f(n-2) + 2n - 3$$

$$f(n-2) = f(n-3) + 2n - 5$$

$$\vdots$$

$$f(2) = f(1) + 3$$

$$f(1) = f(0)^{-0} + 1$$

$$+ f(n) = 1 + 3 + \dots + 2n - 1$$

Proof by induction that $f(n) = n^2$.

$$\overline{P(n):f(n)=n^2}$$

[Base case] $P(0) : f(0) = 0^2$ (clearly T).

[Induction] Show $P(n) \to P(n+1)$ for $n \ge 0$.

Assume P(n): $f(n) = n^2$.

$$f(n+1) = f(n) + 2(n+1) - 1$$
 (recursion)
= $n^2 + 2n + 1$ ($f(n) = n^2$)
= $(n+1)^2$ ($P(n+1)$ is T)
So, $P(n+1)$ is T.

Hard Example: A halving recursion (see text)

(Looks esoteric? Often, you halve a $f(n) = \left\{ f(\frac{n}{2}) + 1 \quad n > 1, \text{ even}; \right\}$ problem (if it is even) or pad it by one to make it even, and then halve it.) f(n+1) n>1, odd;

Prove $f(n) = 1 + \lceil \log_2 n \rceil$

Practice. Exercise 7.5

Checklist for Analyzing Recursion

- Tinker. Draw the implication arrows. Is the function well defined?
- \bullet Tinker. Compute f(n) for small values of n.
- lacktriangle Make a guess for f(n). "Unfolding" the recursion can be helpful here.
- lacktriangle Prove your conjecture for f(n) by induction.
 - The type of induction to use will often be related to the type of recursion.
 - In the induction step, use the recursion to relate the claim for n+1 to lower values.

Practice. Exercise 7.6

Recursion: 9/1

Recurrences: Fibonacci Number

Recursive Programs

Proving correctness: let's prove $Big(n) = 2^n$ for $n \ge 1$

Induction.

When
$$n = 0$$
, $Big(0) = 1 = 2^0$

Assume $Big(n) = 2^n$ for $n \ge 0$

$$\mathrm{Big}(n+1)=2\times\mathrm{Big}(n)=2\times 2^n=2^{n+1}.$$

out=Big(n)
if(n==0) out=1;
else out=2*Big(n-1);

Does this function compute 2^n ?

What is the runtime?

Let $T_n = \text{ runtime of Big for input } n$.

$$T_0 = 2$$

 $T_0 = T_0 + (\operatorname{check} \mathbf{n} = \mathbf{0}) + (\operatorname{min} \mathbf{0})$

$$T_n = T_{n-1} + (\text{check n==0}) + (\text{multiply by 2}) + (\text{assign to out})$$

= $T_{n-1} + 3$

Exercise. Prove by induction that $T_n = 3n + 2$.

Recurrences: Fibonacci Numbers

Growth rate of rabbits, Sanskrit poetry, family trees of bees,

$$F_1 = 1; F_2 = 1; F_n = F_{n-1} + F_{n-2} \text{for } n > 2.$$

Let us prove $P(n): F_n < 2^n$ by **strong induction**.

Base Cases: $F_1 = 1 < 2^1 \checkmark$ and $F_2 = 1 < 2^2 \checkmark$

(why 2 base cases?)

Strong Induction: Prove $P(1) \wedge P(2) \wedge \cdots \wedge P(n) \rightarrow P(n+1)$ for $n \geq 2$.

Assume: $P(1) \wedge P(2) \wedge \cdots \wedge P(n)$: $F_i \leq 2^i$ for $1 \leq i \leq n$.

$$F_{n+1} = F_n + F_{n-1}$$
 (needs $n \ge 2$)
 $\le 2^n + 2^{n-1}$ (strong indction hypothesis)
 $\le 2 \times 2^n = 2^{n+1}$

So, $F_{n+1} \leq 2^{n+1}$, concluding the proof.

Practice. Prove $F_n \geq (\frac{3}{2})^n$ for $n \geq 11$.

Recursion: 10 /

Recursive Sets: N

Recursive definition of the natural numbers \mathbb{N} .

 $\mathbf{0}$ $1 \in \mathbb{N}$.

- $\mathbf{2} \quad x \in \mathbb{N} \to x + 1 \in \mathbb{N}.$

 $[{\bf constructor}]$

[basis]

 \odot Nothing else is in \mathbb{N} .

[minimality]

 $\mathbb{N} = \{1, 2, 3, 4, \ldots\}$

Technically, by bullet 3, we mean that \mathbb{N} is the *smallest* set satisfying bullets 1 and 2.

Pop Quiz. Is \mathbb{R} a set that satisfies bullets 1 and 2 alone? Is it the smallest?

Recursive Sets: Finite Binary Strings, Σ^*

Let ε be the *empty string* (similar to the empty set).

Recursive definition of Σ^* (finite binary strings).

[basis]

[constructor]

Minimality is there by default: nothing else is in Σ^* .

$$\varepsilon \to 0, 1 \to 00, 01, 10, 11 \to 000, 001, 010, 011, 100, 101, 110, 111 \to \cdots$$

$$\Sigma^* = \{\varepsilon, 0, 1, 00, 01, 10, 11, 000, 001, 010, 011, 100, 101, 110, 111, \ldots\}$$

Practice. Exercise 7.12

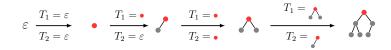
Recursion: 13 / 16

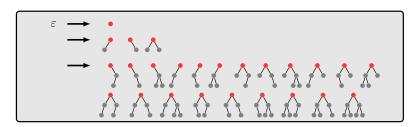
Recursive Structures: Trees -

Rooted Binary Trees (RBT)

Recursive definition of Rooted Binary Trees (RBT).

- The empty tree ε is an RBT.
- ② If T_1, T_2 are disjoint RBTs with roots r_1 and r_2 , then linking r_1 and r_2 to a *new* root r gives a new RBT with root r.





Recursive Structures: Trees

Sir Aurthur Cayley discovered trees when modeling chemical hydrocarbons,

Trees have many uses in computer science

- Search trees.
- Game trees.
- Decision trees.
- Compression trees.
- Multi-processor trees.
- Parse trees.
- Expression trees.
- Ancestry trees.
- Organizational trees.
-

Tree.

Not a tree.

n-Ismail Recursion

Rooted Binary Trees (RBT)

Trees Are Important: Food for Thought

Tree.

Not a tree.

Do we *know* the right structure is not a tree?

Are we *sure* it can't be derived?

- Is there only one way to derive a tree?
- Trees are more general than just RBT and have many interesting properties.
 - \triangleright A tree is a connected graph with n nodes and n-1 edges.
 - ▶ A tree is a connected graph with no cycles.
 - ▶ A tree is a graph in which any two nodes are connected by exactly one path.

Can we be sure *every* RBT has these properties?