QUIZ 1: <u>110 Minutes</u>

Answer **ALL** questions.

NO COLLABORATION or electronic devices. Any violations result in an F. NO questions allowed during the test. Interpret and do the best you can.

GOOD LUCK!

You **MUST** show **CORRECT** work to get full credit.

When in doubt, TINKER.

1	2	3	Total	
150	25	25	200	

-1						
	Circle one answer	non and	oction 15	nointa	for oach	connect engreen
_	Circle one answer	per qui	estion, 10	pomis.	ioi eacii	correct answer.

(a) Let S(x) = x is a science major and F(x) = x is a fan of Cosmos. Which of the following translates

to "all fans of Cosmos are science majors"? $A \rightarrow (\exists x : F(x) \land (\neg S(x))) \xrightarrow{\text{eqV}} \forall x : \neg F(x) \lor S(x) \xrightarrow{\text{eqV}} \forall x : F(x) \rightarrow S(x)$

 $|C| \forall x : (\neg S(x)) \to F(x)$

D All of the above.

| E | None of the above.

(b) Let p be prime. Which most accurately describes the number \sqrt{p} ?

A A natural number.

B A rational number.

see recitation 4.22(b) C n irrational number.

D It depends on the value of p.

E None of the above.

(c) If x and y denote integers, which of the following propositions are true?

(1) $\forall x: (\exists y: 2x-y=0)$ take y=2x

 $(1) \forall x : (\exists y : 2x - y = 0)$ $(2) \exists y : (\forall x : 2x - y = 0)$ $(3) \exists y : (\forall x : xy = 0)$ $(4) \forall x : (\exists y : 2x - y = 0)$ $(5) \forall x : (\exists y : 2x - y = 0)$ $(6) \forall x : (\exists y : 2x - y = 0)$ $(7) \forall x : (\exists y : 2x - y = 0)$ $(8) \forall x : (\exists y : 2x - y = 0)$ $(9) \forall x : (\exists y : 2x - y = 0)$

- |A|(1) and (2).
- |B|(2) and (3).
- C(3) and (3).
 - D All of the above.
 - E | None of the above.
- (d) Let $S = \{(a, b) : a, b \in \mathbb{Q} \text{ and } a < b\}$. Give the negation of the following claim:

 $\forall (a, b) \in S : (\exists t \in \mathbb{Q} : (a < t) \land (t < b)).$

 $\begin{array}{ll} \boxed{\textbf{A}} \ \exists (a,b) \in S : (\exists t \in \mathbb{Q} : (a < t) \land (t < b)) \\ \hline \textbf{B} \ \forall (a,b) \in S : (\forall t \in \mathbb{Q} : (a \geq t) \lor (t \geq b)) \end{array}$

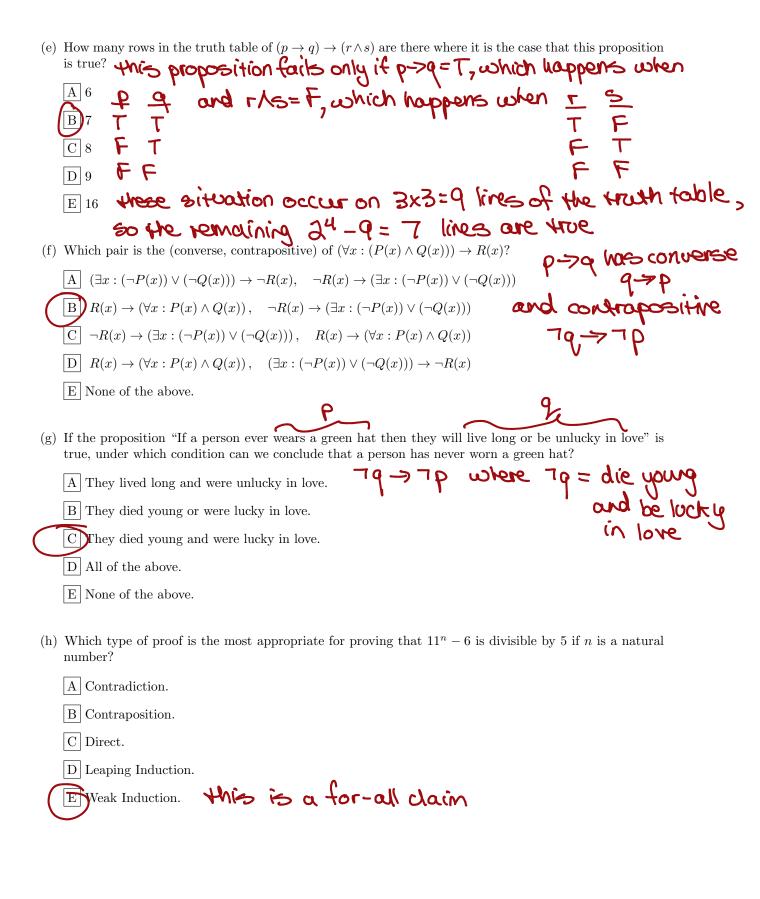
all fans of Cosmos are science majors

 $\boxed{\mathbb{C}} \exists (a,b) \in S : (\exists t \in \mathbb{Q} : (a \ge t) \lor (t \ge b))$

J(a,b) +5: Y+E Q: 67 +) Y (+>b)

 $|D| \forall (a,b) \in S : (\exists t \in \mathbb{Q} : (a < t) \land (t < b))$

E Nove of the above.



(i) You observe the following hand of cards:

S 5 PT 34.

Each card has a number on one side and a letter on the other. Consider the following rule: if a card has P on it, then the other side must be a 5. To verify that the rule has not been broken in the hand you have seen, which is the fewest number of cards that you must turn over?

- The rule has the form "Pon one side" > "Son the other"

 A 1 the rule has the form "Pon one side" > "Son the other"

 B 2 so is violated only if there are conds that have Pon one side and a number other than 5 on the other. The three circled cords could neet this criterion, so need to be checked.
- (j) Let a, b be natural numbers. Which of the following propositions is most appropriately proven using direct proof?
 - A There is an even number greater than ab.
 - B $(a+b)^n \ge a^n + b^n$, when n is a natural number. \angle induction
 - There is a prime number greater than ab. _ contradiction
 - D All of the above are equally appropriately proven using direct proof.
 - E Direct proof is inappropriate for all the above propositions.

Prove that $2^{1/p}$, the p-th root of 2, is irrational for any integer p > 2. You may use Fermat's Last Theorem, which states that if a, b, c, n are natural numbers with n > 2, then $a^n + b^n \neq c^n$.

Frt. we construct a contradiction. Assume 21 is radional, so there exist C, Q E N so that

$$2^{1/p} = \frac{c}{a}$$
.

Then $2 = \frac{CP}{qP}$, so 2aP = CP. Let b = q, then we have found $a,b,p \in \mathbb{N}$ with p > 2

This contradicts Fermat's Last Theorem, so we conclude that 2 1/p is irrational.

3 Prove that if n and q are natural numbers then there exist unique integers d and r satisfying n = dq + r, with $d \in \{0\} \cup \mathbb{N}$ and $0 \le r < q$.

Prf

De use a direct proof. There are two coses:

(i) n is a multiple of g

(ii) n is not divisible by 9.

In the first case, r=0 by definition and $d=\frac{n}{q}$ is unique by the rules of arithmetic.

In the second case, note that the set of multiples of q that are larger than n is nonempty (it contains ng, for instance). By the well ordering, principle it contains a minimal element we denote by $m \cdot q$, where $m \in \mathbb{N}$. Take d = m - 1 and p = n - 1 and p = n - 1 and p = n - 1 and p = 1 and

and subtracting out dq from fall quantities,

Thus we have found integers d and r satisfying n = dq + r with $d \in H$ and O < r < q.

To show uniqueness in this case, assume there exist d'e 9030 H and O < r'< 9 such that n = d'9 + r' with $d' \neq d$ or $r' \neq r$

SCRATCH

Notice that because n is not a multiple of 9> the remainder r' satisfies 0< r'< 9.

Since n = dq + r and n = dq + r', in fact (*) (d-d')q + r - r' = 0.

We must consider the following cases:

(i) d=d' and $r\neq r'$. In this case, equation (*) states r=r'. This is a contradiction.

(ii) d+d'ard r=r. In this case, equation

(*) states d=d. This is a contradiction.

Livi) d=d' and r=r. In this case, we note that

1(d-d')q = 1d-d'|q = qand r-r' < q. This contradicts (d-d')q + r-r' = 0.

(d-d') q + r-r'=0.

In all cases we see that assuming d and r

are not unique leads to a contradiction, therefore

d and r are unique.

SCRATCH