Foundations of Computer Science Lecture 27

Unsolvable Problems

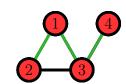
No Automatic Program Verifier for Hello-World No Ultimate Debugger or Algorithm for PCP The Complexity Zoo

Last Time: Turing Machines

Intuitive notion of algorithm
$$\equiv$$
 Turing Machine Solvable problem \equiv Turing-decidable

$$\mathcal{L} = \{\langle G \rangle \mid G \text{ is connected}\}$$

 $\langle G \rangle = 2; 1; 3; 4 \# 1,2; 2,3; 1,3; 3,4$



 $\langle G \rangle$ is the encoding of graph G as a string.)

M =Turing Machine that solves graph connectivity

input: $\langle G \rangle$, the encoding of a graph G.

- 1: Check that $\langle G \rangle$ is a valid encoding of a graph and mark the first vertex in G.
- 2: REPEAT: Find an edge in G between a marked and an unmarked vertex. Mark the unmarked node or GOTO step 3 if there is no such edge.
- 3: REJECT if there is an unmarked vertex remaining in G; otherwise ACCEPT.

To tell your friend on the other coast about this fancy Turing Machine M, encode its description into the bit-string $\langle M \rangle$ and send over the telegraph.

You want to solve a different problem? Build another Turing Machine!

Today: Unsolvable Problems

- Programmable Turing Machines.
- Examples of unsolvable problems.
 - Post's Correspondence Problem (PCP)?
 - HalfSum?
 - AUTO-GRADE?
 - Ultimate-Debugger?
- $\mathcal{L}_{\text{\tiny TM}}$: The language recognized by a Universal Turing Machine.
 - \mathcal{L}_{TM} is undecidable cannot be solved!
- AUTO-GRADE and ULTIMATE-DEBUGGER do not exist.
- What about HalfSum?

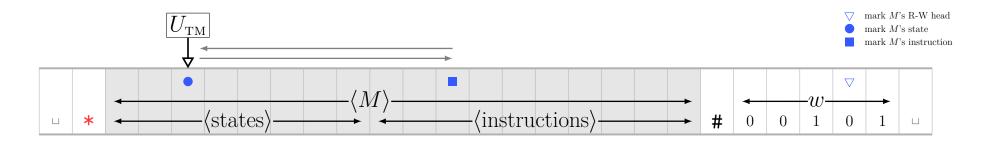
Programmable Turing Machine: Universal Turing Machine

A Turing Machine M has a binary encoding $\langle M \rangle$. Its input w is a binary string. $\langle M \rangle \# w$ can be the input to another Turing Machine $U_{\text{\tiny TM}}$.

$$U_{\text{TM}}(\langle M \rangle \# w) = \begin{cases} \text{halt with ACCEPT} & \text{if } M(w) = \text{halt with ACCEPT}; \\ \text{halt with REJECT} & \text{if } M(w) = \text{halt with REJECT}; \\ \text{loop forever} & \text{if } M(w) = \text{loop forever}; \end{cases}$$

 $U_{\text{\tiny TM}}$ outputs on $\langle M \rangle \# w$ whatever M outputs on w. $U_{\text{\tiny TM}}$ simulates M

Challenge: $U_{\text{\tiny TM}}$ is fixed but can simulate any M, even one with a million states.



Entire simulation is done on the tape.

Post's Correspondence Problem (PCP) and HALFSUM

PCP: Consider 3 dominos:

$$\begin{array}{c|c}
 & 0 & 01 & 110 \\
\hline
 & 100 & 00 & 11
\end{array}$$

$$d_3 d_2 d_3 d_1 = \begin{bmatrix} 110 & 01 & 110 & 0 \\ 11 & 00 & 11 & 100 \end{bmatrix} = \begin{bmatrix} 110011100 \\ 1100111100 \end{bmatrix}$$

 $\leftarrow \frac{\text{Top and bottom strings match.}}{\text{That's the goal.}}$

INPUT: Dominos $\{d_1, d_2, \dots, d_n\}$. For example $\{10, 011, 101, 101\}$.

TASK: Can one line up finitely many dominos so that the top and bottom strings match?

HalfSum: Consider the multiset $S = \{1, 1, 1, 3, 4, 4, 5, 6, 9\}$, and subset $A = \{1, 3, 4, 9\}$.

$$sum(A) = 17 = \frac{1}{2} \times sum(S).$$

INPUT: Multiset $S = \{x_1, x_2, \dots, x_n\}$. For example, $S = \{1, 1, 1, 3, 4, 4, 5, 6, 9\}$.

TASK: Is there a subset whose sum is $\frac{1}{2} \times \text{sum}(S) = \frac{1}{2} \times (x_1 + x_2 + \cdots + x_n)$?

AUTO-GRADE

Your first CS assignment: Write a program to print "Hello World!" and halt.

CS1: 700+ submissions!

Naturally, we do not grade these by hand.

What does Auto-Grade say for this program:

```
print("Hello World!") and exit;
```

Ultimate-Debugger

Wouldn't it be nice to have the Ultimate-Debugger.

 \leftarrow solves the Halting Problem

$$\text{HALTS}\left(\begin{array}{c} n=4; \\ \text{while}(n>0) \{ \\ \text{if (n is not a sum of two primes)} \{ \\ \text{print("Hello World!") and exit;} \\ \} \\ n \leftarrow n+2; \\ \} \end{array} \right) = \left\{ \begin{array}{c} \text{YES} & \text{if program halts} \\ \hline \text{NO} & \text{if program infinitely loops} \end{array} \right.$$

- We can grade the students program correctly.
- We can solve Goldbach's conjecture.
- Just think what you could do with Ultimate-Debugger.
 - ▶ No more infinite looping programs.

Verification: Does A Program Successfully Terminate?

 $\mathcal{L}_{\text{\tiny TM}} = \{ \langle M \rangle \# w \mid M \text{ is a Turing Machine and } M \text{ accepts } w \}.$

 $U_{\scriptscriptstyle \mathrm{TM}}$ is a recognizer for $\mathcal{L}_{\scriptscriptstyle \mathrm{TM}}$.

Is there a Turing Machine $A_{\text{\tiny TM}}$ which <u>decides</u> $\mathcal{L}_{\text{\tiny TM}}$?

- A decider must *always* halt with an answer.
- $U_{\text{\tiny TM}}$ may loop forever if M loops forever on w.
- Question: What do these mean: $M(\langle M \rangle)$ and $A_{\text{\tiny TM}}(\langle M \rangle \# \langle M \rangle)$?

A diabolical Turing Machine D built from $A_{\text{\tiny TM}}$:

```
D= "Diagonal" Turing Machine derived from A_{	ext{	iny TM}} (the decider for \mathcal{L}_{	ext{	iny TM}})
input: \langle M \rangle where M is a Turing Machine.
```

- 1: Run $A_{\rm TM}$ with input $\langle M \rangle \# \langle M \rangle$.
- 2: If $A_{\rm TM}$ accepts then REJECT; otherwise ($A_{\rm TM}$ rejects) ACCEPT

D does the *opposite* of $A_{\text{\tiny TM}}$. Is D a decider?

Theorem. A_{TM} does not exist (\mathcal{L}_{TM} Cannot be Solved)

 $A_{\scriptscriptstyle \mathrm{TM}}$ exists $\to D$ exists.

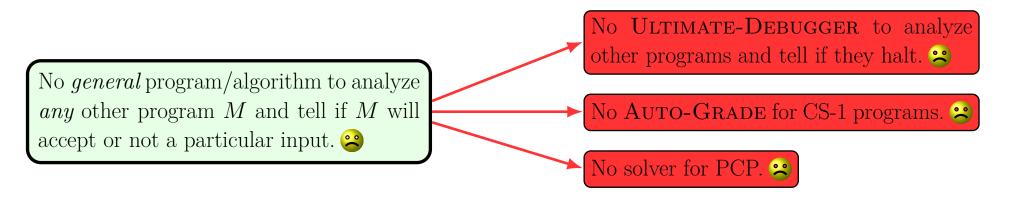
D exists means it will appear on the list of all Turing Machines, $\langle M_1 \rangle, \langle M_2 \rangle, \langle M_3 \rangle, \langle M_4 \rangle, \langle D \rangle, \dots$

Consider what happens when M_i runs on $\langle M_j \rangle$, that is $A_{\text{\tiny TM}}(\langle M_i \rangle \# \langle M_j \rangle)$.

$A_{\scriptscriptstyle ext{TM}}(\langle M_i angle \# \langle M_j angle)$	$\langle M_1 angle$	$\langle M_2 angle$	$\langle M_3 angle$	$\langle M_4 angle$	$\langle D angle$	• • •
$\langle M_1 angle$	ACCEPT	ACCEPT	REJECT	ACCEPT	ACCEPT	• • •
$\langle M_2 angle$	REJECT	REJECT	REJECT	ACCEPT	ACCEPT	• • •
$\langle M_3 angle$	ACCEPT	ACCEPT	REJECT	REJECT	ACCEPT	• • •
$\langle M_4 angle$	ACCEPT	REJECT	REJECT	REJECT	ACCEPT	• • •
$\langle D \rangle$	REJECT	ACCEPT	ACCEPT	ACCEPT	ACCEPREJECT?	• • •
:	:	:	:	ŧ	:	٠

 $D(\langle M_i \rangle)$ does the *opposite* of $A_{\text{\tiny TM}}(\langle M_i \rangle \# \langle M_i \rangle)$.

Ultimate-Debugger and Auto-Grade Don't Exist



Suppose Ultimate-Debugger $H_{\text{\tiny TM}}$ exists and decides if any other program halts.

We can use $H_{\text{\tiny TM}}$ to construct a solver $A_{\text{\tiny TM}}$ for $\mathcal{L}_{\text{\tiny TM}}$.

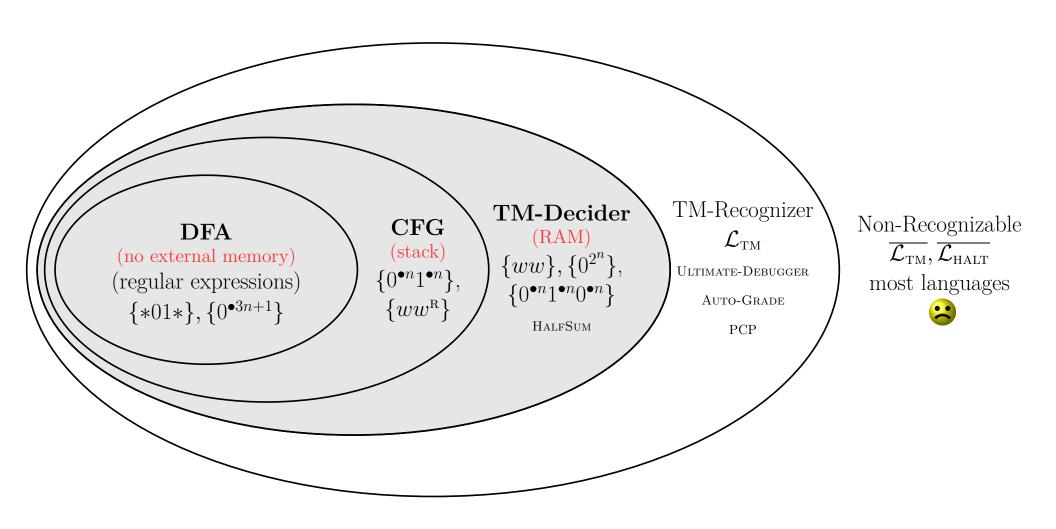
 $A_{\scriptscriptstyle
m TM} =$ Turing Machine derived from $H_{\scriptscriptstyle
m TM}$ (the decider for $\mathcal{L}_{\scriptscriptstyle
m HALT}$)

input: $\langle M \rangle \# w$ where M is a Turing Machine and w an input to M.

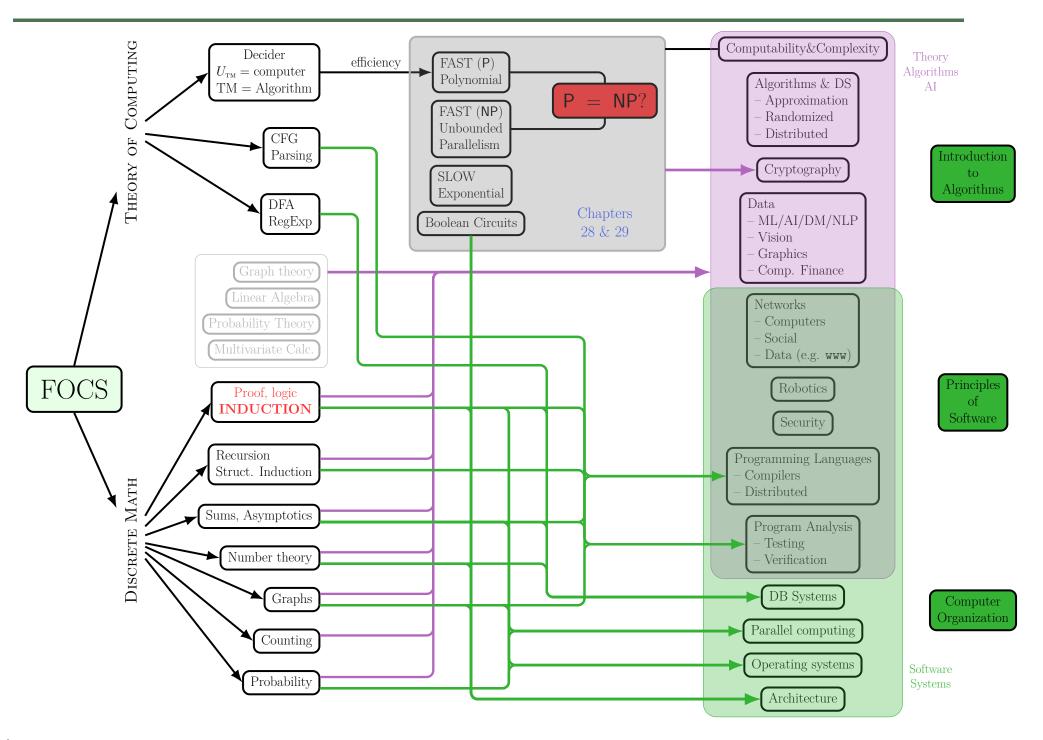
- 1: Run $H_{\rm TM}$ on input $\langle M \rangle \# w$. If $H_{\rm TM}$ rejects, then REJECT.
- 2: Run $U_{\text{\tiny TM}}$ on input $\langle M \rangle \# w$ and output the decision $U_{\text{\tiny TM}}$ gives.

Exercise. Show that Auto-Grade does not exist.

Exercise. Show that HalfSum is solvable by giving a decider.



The Path Forward: Focus on Decidable Problems



... the high technology so celebrated today is essentially a mathematical technology.

"To err is human, but to really foul things up you need a computer." - Paul Ehrlich

- Mariner rocket explodes (1962). Formula into code bug resulted in no smoothing of deviations.
- WWWIII (1983)? Soviet EWS detects 5 US-missiles (bug detected sunlight reflections).
 - ▶ Luckily Stanislav "funny feeling in my qut" Petrov thought: "surely they'd use more missiles?"
- Therac 25 (1985). Concurrent programming bug killed patients through massive 100× radiation overdose.
- AT&T Lines Go Dead (1990). 75 million calls dropped (one line of buggy code in software upgrade).
- Patriot missile defense fails (1991). 28 soldiers dead, 100 injured (rounding error in scud-detection).
- Pentium floating point long-division bug (1993). Cost: \$475 million flawed division table.
- Ariane rocket explosion (1996). Cost: \$500 million overflow in 64-bit to 16-bit conversion.
- Y2K (1999). Cost: \$500 billion spent because year was stored as 2 digits to save space.
- Mars Climate Orbiter Crash (1998). Cost: \$125 million lost due to metric to imperial units bug.
- Tesla Self-Driving Car (2016). 1 dead. Auto-pilot didn't "see" tractor-trailer.
- Financial Disasters: London Stock Exchange down due to single server bug (2009; billions of pounds of trading); Knight Capital computer glitch trigers stock sale (2012; 500 million lost and Knight's value drops by 75%).
- Airline Disasters:
- AirFrance 447 2009, **228 dead**: pitot-tube failure feeds inconsistent data to programs which then panic pilot.
- ► Spanair 5022, 2008, **154 dead**: malware virus.
- AdamAir 574, 2007, **102 dead**: navigation system errors (and pilot errors).
- ► KoreanAir 801, 1997, **228 dead**: ground proximity warning system bug.
- AeroPerú 603, 1996, **70 dead**: altimeter failures.
- Scottish RAF Chinook, 1994, **29 dead**: faulty test program
- ► AirFrance 296, 1988, **3 dead**: altimeter bug.
- ► IranAir 655, 1988, **290 dead**: shot down by US Aegis combat system (misidentified as attacking military plane).
- ► KoreanAir 007, 1983, **269 dead**: autopilot took plane into Soviet airspace where it got shot down.
- ▶ Boeing 737 Max, 2018,2019, **346 dead**: attack sensor + algorithm errors.
- Software errors cost the U.S. \$60 billion annually in rework, lost productivity and actual damages.

Put effort to make *sure* your program works **fully** correctly **all** the time.