Foundations of Computer Science Lecture 22

Infinity

Size versus Cardinality: Comparing "Sizes"

Countable: Sets Which Are Not "Larger" Than N

Is There A Set "Larger" Than N? Cantor's Diagonal Argument

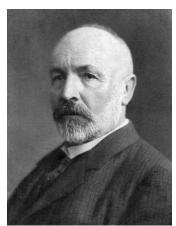
Infinity and Computing

Our Short Stroll Through Discrete Math

- Precise statements, proofs and logic.
- **INDUCTION**.
- Recursively defined structures and Induction. (Data structures; PL)
- Sums and asymptotics. (Algorithm analysis)
- Number theory. (Cryptography; probability; fun)
- Graphs. (Relationships/conflicts; resource allocation; routing; scheduling,...)
- O Counting. (Enumeration and brute force algorithms)
- Probability. (Real world algorithms involve randomness/uncertainty)
 - ► Inputs arrive in a random order;
 - ▶ Randomized algorithms (primality testing, machine learning, routing, conflict resolution . . .)
 - ► Expected value is a summary of what happens. Variance tells you how good the summary is.

Today: Infinity

- 1 Comparing "sizes" of sets: countable.
 - Rationals are countable.



Georg Cantor

- 2 Uncountable
 - Infinite binary strings.
- 3 What does Infinity have to do with computing?

You have **5** fingers on each hand.

You must know how to count.

You have **5** fingers on each hand.

You must know how to count.

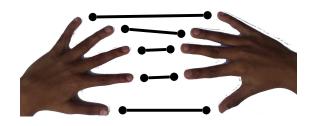
You have an equal number of fingers on each hand.

You have **5** fingers on each hand.

You must know how to count.

You have an equal number of fingers on each hand.

All you need is a correspondence.

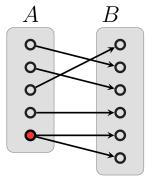


You have **5** fingers on each hand.

You must know how to count.

You have an equal number of fingers on each hand.

All you need is a correspondence.



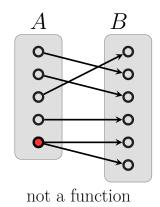
not a function

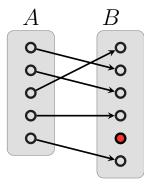
You have **5** fingers on each hand.

You must know how to count.

You have an *equal* number of fingers on each hand.

All you need is a correspondence.





1-to-1; (injection, $A \stackrel{\text{INJ}}{\mapsto} B$) implies $|A| \leq |B|$

Cardinality |A| ("size"), read "cardinality of A," is the number of elements for finite sets

 $|A| \leq |B|$ iff there is an injection (1-to-1) from A to B, i.e., $f: A \stackrel{\text{INJ}}{\mapsto} B$.

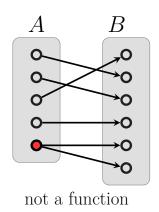
|A| > |B| iff there is no injection from A to B.

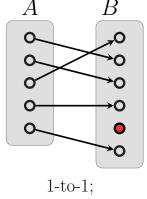
You have **5** fingers on each hand.

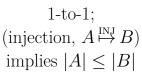
You must know how to count.

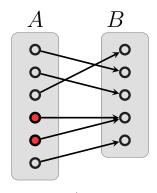
You have an *equal* number of fingers on each hand.

All you need is a correspondence.









onto; (surjection, $A \stackrel{\text{SUR}}{\mapsto} B$) implies $|A| \ge |B|$

Cardinality |A| ("size"), read "cardinality of A," is the number of elements for finite sets

 $|A| \leq |B|$ iff there is an injection (1-to-1) from A to B, i.e., $f: A \stackrel{\text{INJ}}{\mapsto} B$.

|A| > |B| iff there is no injection from A to B.

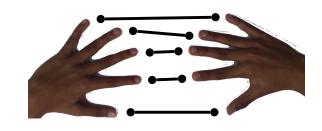
 $|A| \ge |B|$ iff there is an surjection (onto) from A to B, i.e., $f: A \stackrel{\text{SUR}}{\mapsto} B$.

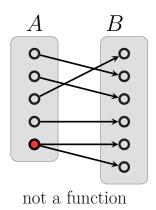
You have **5** fingers on each hand.

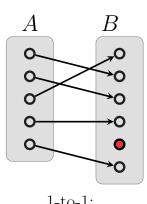
You must know how to count.

You have an *equal* number of fingers on each hand.

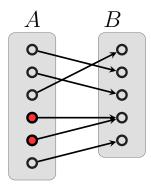
All you need is a correspondence.



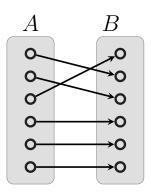




 $\begin{array}{c} \text{1-to-1;} \\ \text{(injection, } A \overset{\text{INJ}}{\mapsto} B) \\ \text{implies } |A| \leq |B| \end{array}$



onto; (surjection, $A \stackrel{\text{sur}}{\mapsto} B$) implies $|A| \ge |B|$



1-to-1 **and** onto (bijection, $A \stackrel{\text{BIJ}}{\mapsto} B$) implies |A| = |B|

Cardinality |A| ("size"), read "cardinality of A," is the number of elements for finite sets

 $|A| \leq |B|$ iff there is an injection (1-to-1) from A to B, i.e., $f: A \stackrel{\text{INJ}}{\mapsto} B$.

|A| > |B| iff there is no injection from A to B.

 $|A| \ge |B|$ iff there is an surjection (onto) from A to B, i.e., $f: A \stackrel{\text{SUR}}{\mapsto} B$.

|A| = |B| iff there is an bijection (1-to-1 and onto) from A to B, i.e., $f: A \stackrel{\text{BIJ}}{\mapsto} B$.

 $|A| \le |B|$ AND $|B| \le |A| \to |A| = |B|$. (Cantor-Bernstein Theorem)

Finite sets: |A| = n if and only if there is a bijection from A to $\{1, \ldots, n\}$.

Infinity: 5/14

Finite sets: |A| = n if and only if there is a bijection from A to $\{1, \ldots, n\}$.

Infinity: 5/14

Infinite sets: The set A is countable if $|A| \leq |\mathbb{N}|$. A is "smaller than" \mathbb{N} .

Finite sets: |A| = n if and only if there is a bijection from A to $\{1, \ldots, n\}$.

Infinite sets: The set A is countable if $|A| \leq |\mathbb{N}|$. A is "smaller than" \mathbb{N} .

To show that A is countable you must find a 1-to-1 mapping from A to \mathbb{N} .

Finite sets: |A| = n if and only if there is a bijection from A to $\{1, \ldots, n\}$.

Infinite sets: The set A is countable if $|A| \leq |\mathbb{N}|$. A is "smaller than" \mathbb{N} .

To show that A is countable you must find a 1-to-1 mapping from A to \mathbb{N} .

 $A: \quad \supset \quad • \quad \diamond \quad \bullet \quad + \quad \times \quad \diamond \quad \div \quad * \quad \blacktriangle \quad \Box \quad \triangleright \quad \bigcirc \quad \cdots$

 $\mathbb{N}:$ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 · · ·

Finite sets: |A| = n if and only if there is a bijection from A to $\{1, \ldots, n\}$.

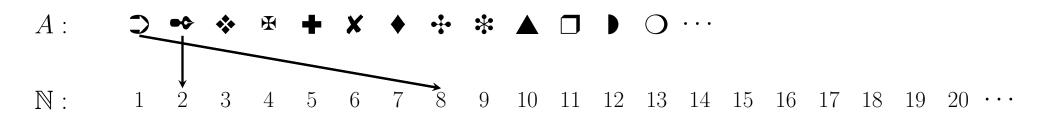
Infinite sets: The set A is countable if $|A| \leq |\mathbb{N}|$. A is "smaller than" \mathbb{N} .

To show that A is countable you must find a 1-to-1 mapping from A to \mathbb{N} .

Finite sets: |A| = n if and only if there is a bijection from A to $\{1, \ldots, n\}$.

Infinite sets: The set A is countable if $|A| \leq |\mathbb{N}|$. A is "smaller than" \mathbb{N} .

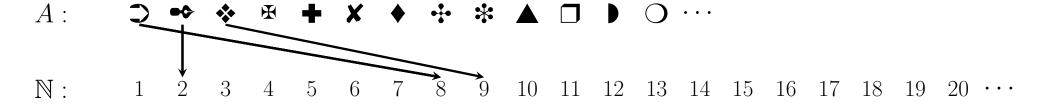
To show that A is countable you must find a 1-to-1 mapping from A to \mathbb{N} .



Finite sets: |A| = n if and only if there is a bijection from A to $\{1, \ldots, n\}$.

Infinite sets: The set A is countable if $|A| \leq |\mathbb{N}|$. A is "smaller than" \mathbb{N} .

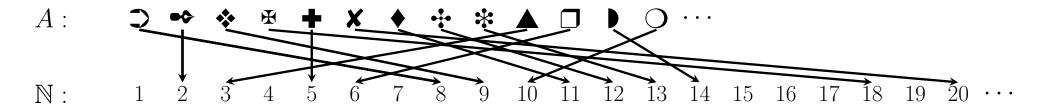
To show that A is countable you must find a 1-to-1 mapping from A to \mathbb{N} .



Finite sets: |A| = n if and only if there is a bijection from A to $\{1, \ldots, n\}$.

Infinite sets: The set A is countable if $|A| \leq |\mathbb{N}|$. A is "smaller than" \mathbb{N} .

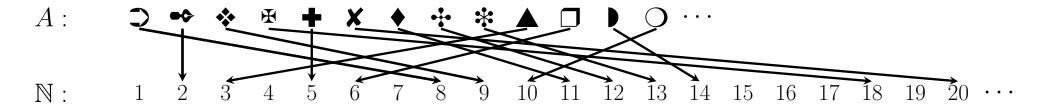
To show that A is countable you must find a 1-to-1 mapping from A to \mathbb{N} .



Finite sets: |A| = n if and only if there is a bijection from A to $\{1, \ldots, n\}$.

Infinite sets: The set A is countable if $|A| \leq |\mathbb{N}|$. A is "smaller than" \mathbb{N} .

To show that A is countable you must find a 1-to-1 mapping from A to \mathbb{N} .



You cannot skip over any elements of A, but you might not use every element of \mathbb{N} .

To prove that a function $f: A \mapsto \mathbb{N}$ is an injection:

- 1: Assume f is not an injection. (Proof by contradiction.)
- 2: This means there is a pair $x, y \in A$ for which $x \neq y$ and f(x) = f(y).
- 3: Use f(x) = f(y) to prove that x = y, a contradiction. Hence, f is an injection.

All Finite Sets are Countable

 $A = \{3, 6, 8\}$. To show $|A| \leq \mathbb{N}$, we give an injection from A to \mathbb{N} ,

All Finite Sets are Countable

$$A = \{3, 6, 8\}$$
. To show $|A| \leq \mathbb{N}$, we give an injection from A to \mathbb{N} , $3 \mapsto 1$ $6 \mapsto 2$ $8 \mapsto 3$.

For an arbitrary finite set $A = \{a_1, a_2, \dots, a_n\}, \mathbb{N},$ $a_1 \mapsto 1$ $a_2 \mapsto 2$ $a_3 \mapsto 3$ \cdots $a_n \mapsto n$.

How can this be? \mathbb{N}_0 contains every element in \mathbb{N} plus 0?

How can this be? \mathbb{N}_0 contains every element in \mathbb{N} plus 0?

To prove $|\mathbb{N}_0| \leq |\mathbb{N}|$, we give an injection $f: \mathbb{N}_0 \stackrel{\text{INJ}}{\mapsto} \mathbb{N}$, f(x) = x + 1, for $x \in \mathbb{N}_0$.

How can this be? \mathbb{N}_0 contains every element in \mathbb{N} plus 0?

To prove $|\mathbb{N}_0| \leq |\mathbb{N}|$, we give an injection $f : \mathbb{N}_0 \stackrel{\text{inj}}{\mapsto} \mathbb{N}$, f(x) = x + 1, for $x \in \mathbb{N}_0$.

Proof. Assume f is not an injection. So, there are $x \neq y$ in \mathbb{N}_0 with f(x) = f(y):

How can this be? \mathbb{N}_0 contains every element in \mathbb{N} plus 0?

To prove $|\mathbb{N}_0| \leq |\mathbb{N}|$, we give an injection $f : \mathbb{N}_0 \stackrel{\text{inj}}{\mapsto} \mathbb{N}$,

$$f(x) = x + 1,$$
 for $x \in \mathbb{N}_0$.

Proof. Assume f is not an injection. So, there are $x \neq y$ in \mathbb{N}_0 with f(x) = f(y):

$$x+1 = f(x) = f(y) = y+1.$$

That is x + 1 = y + 1 or x = y, which contradicts $x \neq y$.

How can this be? \mathbb{N}_0 contains every element in \mathbb{N} plus 0?

To prove $|\mathbb{N}_0| \leq |\mathbb{N}|$, we give an injection $f : \mathbb{N}_0 \stackrel{\text{inj}}{\mapsto} \mathbb{N}$, f(x) = x + 1, for $x \in \mathbb{N}_0$.

Proof. Assume f is not an injection. So, there are $x \neq y$ in \mathbb{N}_0 with f(x) = f(y):

$$x+1 = f(x) = f(y) = y+1.$$

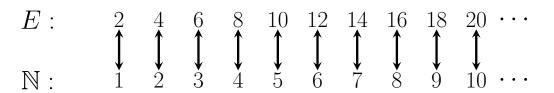
That is x + 1 = y + 1 or x = y, which contradicts $x \neq y$.

Also, $|\mathbb{N}| \leq |\mathbb{N}_0|$ because $\mathbb{N} \subseteq \mathbb{N}_0 \to |\mathbb{N}_0| = |\mathbb{N}|$. (Cantor-Bernstein)

Bijection:

$$E = \{2, 4, 6, \ldots\}$$
. Surely $|E| = \frac{1}{2} |\mathbb{N}|$?

$$E = \{2, 4, 6, \ldots\}$$
. Surely $|E| = \frac{1}{2} |\mathbb{N}|$?



$$E = \{2, 4, 6, \ldots\}$$
. Surely $|E| = \frac{1}{2} |\mathbb{N}|$?

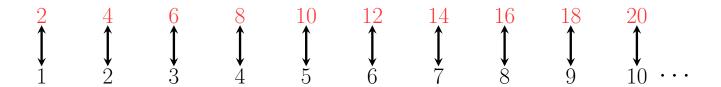
$$\mathbb{Z} = \{0, \pm 1, \pm 2, \ldots\}. \mid \mathbb{Z} \mid = \mid \mathbb{N} \mid.$$

$$E = \{2, 4, 6, \ldots\}$$
. Surely $|E| = \frac{1}{2} |\mathbb{N}|$?

$$\mathbb{Z} = \{0, \pm 1, \pm 2, \ldots\}. \mid \mathbb{Z} \mid = \mid \mathbb{N} \mid.$$

$$E = \{2, 4, 6, \ldots\}$$
. Surely $|E| = \frac{1}{2} |\mathbb{N}|$?

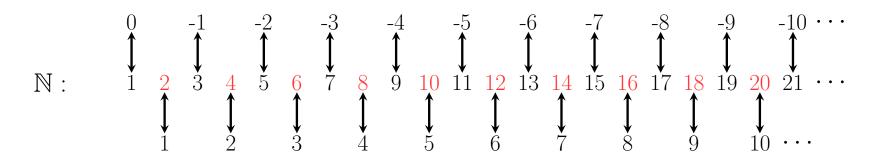
$$\mathbb{Z} = \{0, \pm 1, \pm 2, \ldots\}. \mid \mathbb{Z} \mid = \mid \mathbb{N} \mid.$$



$$E = \{2, 4, 6, \ldots\}$$
. Surely $|E| = \frac{1}{2} |\mathbb{N}|$?

The bijection $f(x) = \frac{1}{2}x$ proves $|E| = |\mathbb{N}|$

$$\mathbb{Z} = \{0, \pm 1, \pm 2, \ldots\}. \mid \mathbb{Z} \mid = \mid \mathbb{N} \mid.$$



Exercise. What is a mathematical formula for the bijection?

 ${3,6,8}$ is a list.

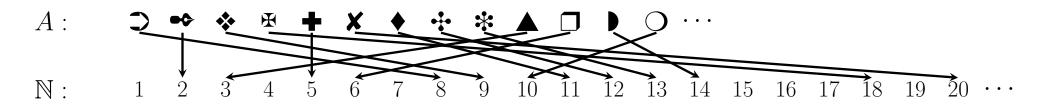
 $\{3, 6, 8\}$ is a list. $E = \{2, 4, 6, \ldots\}$ is a list.

 $\{3,6,8\}$ is a list. $E=\{2,4,6,\ldots\}$ is a list. What about \mathbb{Z} ?

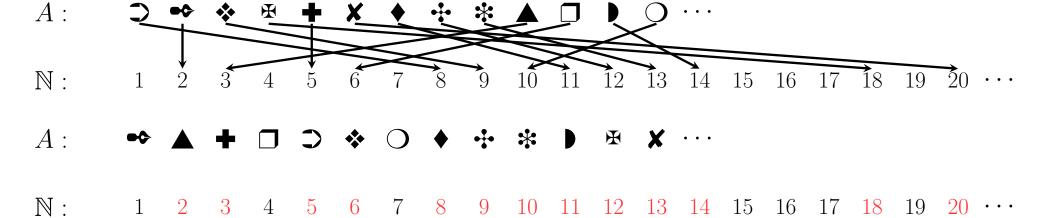
 $\{3,6,8\}$ is a list. $E=\{2,4,6,\ldots\}$ is a list. What about \mathbb{Z} ? $\cdots, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, \cdots$ \leftarrow not a list

$$\{3,6,8\}$$
 is a list. $E = \{2,4,6,\ldots\}$ is a list. What about \mathbb{Z} ?
$$\cdots, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, \cdots \leftarrow \text{not a list}$$
 $0, \pm 1, \pm 2, \pm 3, \pm 4, \pm 5, \cdots \leftarrow \text{list}$

 $\{3,6,8\}$ is a list. $E = \{2,4,6,\ldots\}$ is a list. What about \mathbb{Z} ? $\cdots, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, \cdots \leftarrow \text{not a list}$ $0, \pm 1, \pm 2, \pm 3, \pm 4, \pm 5, \cdots \leftarrow \text{list}$



 $\{3,6,8\}$ is a list. $E = \{2,4,6,\ldots\}$ is a list. What about \mathbb{Z} ? $\cdots, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, \cdots \qquad \leftarrow \text{not a list}$ $0, \pm 1, \pm 2, \pm 3, \pm 4, \pm 5, \cdots \qquad \leftarrow \text{list}$



 \mathbb{N} :

10

11 12 13 14 15 16

 $17 \quad 18 \quad 19 \quad 20 \quad \cdots$

 \mathbb{N} :

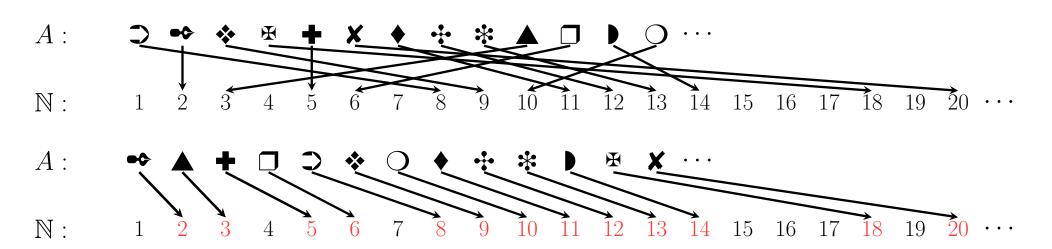
9 10 11 12 13 14 15 16 17 18 19 20 ...

 \mathbb{N} :

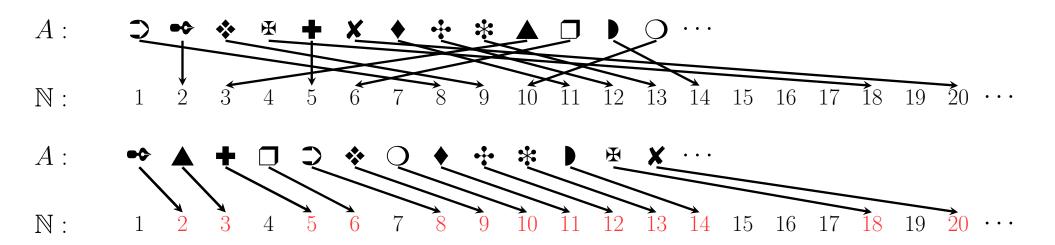
9 10 11 12 13 14 15 16

17 18 19 20 ···

 $\{3,6,8\}$ is a list. $E = \{2,4,6,\ldots\}$ is a list. What about \mathbb{Z} ? $\cdots, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, \cdots \leftarrow \text{not a list}$ $0, \pm 1, \pm 2, \pm 3, \pm 4, \pm 5, \cdots \leftarrow \text{list}$

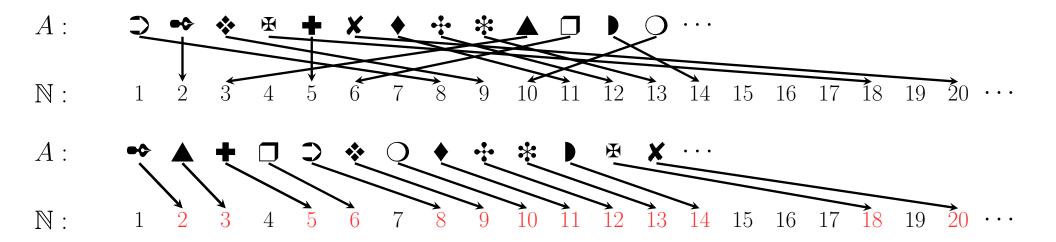


 $\{3,6,8\}$ is a list. $E = \{2,4,6,\ldots\}$ is a list. What about \mathbb{Z} ? \cdots , -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, \cdots \leftarrow not a list $0, \pm 1, \pm 2, \pm 3, \pm 4, \pm 5, \cdots$ \leftarrow list



 $\mathbb{N}_0: \{0,1,2,3,4,5,\ldots\} \quad E: \{2,4,6,8,10,\ldots\} \quad \mathbb{Z}: \{0,+1,-1,+2,-2,+3,-3,+4,-4,\ldots\}$

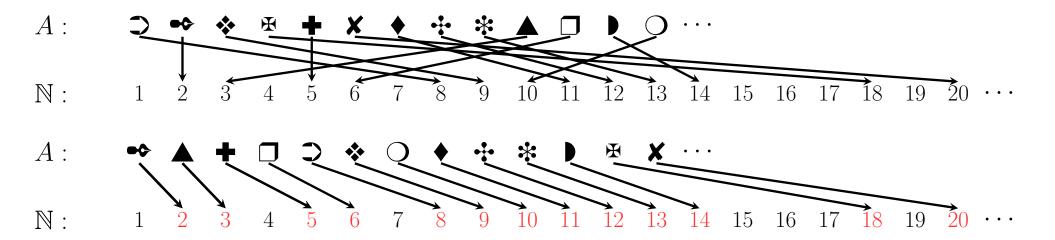
$$\{3,6,8\}$$
 is a list. $E = \{2,4,6,\ldots\}$ is a list. What about \mathbb{Z} ?
$$\cdots, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, \cdots \qquad \leftarrow \text{not a list}$$
$$0, \pm 1, \pm 2, \pm 3, \pm 4, \pm 5, \cdots \qquad \leftarrow \text{list}$$



$$\mathbb{N}_0: \{0,1,2,3,4,5,\ldots\} \quad E: \{2,4,6,8,10,\ldots\} \quad \mathbb{Z}: \{0,+1,-1,+2,-2,+3,-3,+4,-4,\ldots\}$$

Different elements are assigned to different list-positions.

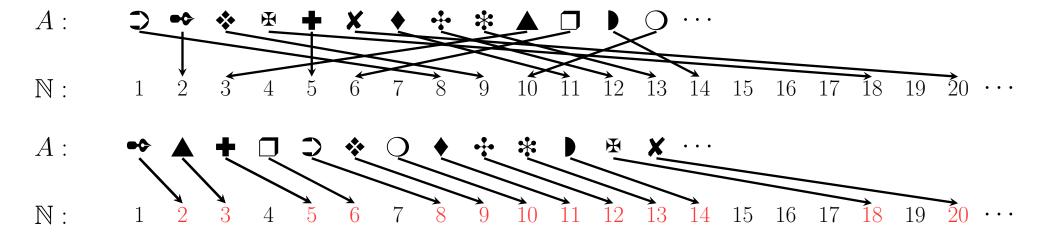
 $\{3, 6, 8\}$ is a list. $E = \{2, 4, 6, \ldots\}$ is a list. What about \mathbb{Z} ? \cdots , -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, \cdots \leftarrow not a list $0, \pm 1, \pm 2, \pm 3, \pm 4, \pm 5, \cdots$ \leftarrow list



$$\mathbb{N}_0: \{0,1,2,3,4,5,\ldots\} \quad E: \{2,4,6,8,10,\ldots\} \quad \mathbb{Z}: \{0,+1,-1,+2,-2,+3,-3,+4,-4,\ldots\}$$

- Different elements are assigned to different list-positions.
- Can determine the list-position of any element in the set.

$$\{3,6,8\}$$
 is a list. $E = \{2,4,6,\ldots\}$ is a list. What about \mathbb{Z} ?
$$\cdots, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, \cdots \qquad \leftarrow \text{not a list}$$
$$0, \pm 1, \pm 2, \pm 3, \pm 4, \pm 5, \cdots \qquad \leftarrow \text{list}$$



$$\mathbb{N}_0: \{0,1,2,3,4,5,\ldots\}$$
 $E: \{2,4,6,8,10,\ldots\}$ $\mathbb{Z}: \{0,+1,-1,+2,-2,+3,-3,+4,-4,\ldots\}$

- Different elements are assigned to different list-positions.
- Can determine the list-position of any element in the set. For \mathbb{Z} ,

list position of
$$z = \begin{cases} 2z & z > 0; \\ 2|z| + 1 & z \le 0; \end{cases}$$

A and B are countable, so they can be listed.

$$A = \{a_1, a_2, a_3, a_4, a_5, \ldots\}$$

$$B = \{b_1, b_2, b_3, b_4, b_5, \ldots\}.$$

A and B are countable, so they can be listed.

$$A = \{a_1, a_2, a_3, a_4, a_5, \ldots\} \qquad B = \{b_1, b_2, b_3, b_4, b_5, \ldots\}.$$

Here is a list for $A \cup B$

$$A \cup B = \{a_1, a_2, a_3, a_4, a_5, \dots, b_1, b_2, b_3, b_4, b_5, \dots\}.$$

A and B are countable, so they can be listed.

$$A = \{a_1, a_2, a_3, a_4, a_5, \ldots\} \qquad B = \{b_1, b_2, b_3, b_4, b_5, \ldots\}.$$

Here is a list for $A \cup B$

$$A \cup B = \{a_1, a_2, a_3, a_4, a_5, \dots, b_1, b_2, b_3, b_4, b_5, \dots\}.$$

What is the list-position of b_1 ? Cannot use "..." twice.

A and B are countable, so they can be listed.

$$A = \{a_1, a_2, a_3, a_4, a_5, \ldots\}$$

$$B = \{b_1, b_2, b_3, b_4, b_5, \ldots\}.$$

Here is a list for $A \cup B$

$$A \cup B = \{a_1, a_2, a_3, a_4, a_5, \dots, b_1, b_2, b_3, b_4, b_5, \dots\}.$$

What is the list-position of b_1 ? Cannot use "..." twice.

$$A \cup B = \{a_1, b_1, a_2, b_2, a_3, b_3, a_4, b_4, a_5, b_5, \ldots\}.$$

A and B are countable, so they can be listed.

$$A = \{a_1, a_2, a_3, a_4, a_5, \ldots\} \qquad B = \{b_1, b_2, b_3, b_4, b_5, \ldots\}.$$

Here is a list for $A \cup B$

$$A \cup B = \{a_1, a_2, a_3, a_4, a_5, \dots, b_1, b_2, b_3, b_4, b_5, \dots\}.$$

What is the list-position of b_1 ? Cannot use "..." twice.

$$A \cup B = \{a_1, b_1, a_2, b_2, a_3, b_3, a_4, b_4, a_5, b_5, \ldots\}.$$

list-position of a_i is 2i-1; list-position of b_i is 2i.

Pop Quiz. Get a list of \mathbb{Z} with $A = \{0, -1, -2, -3, \ldots\}$ and $B = \{1, 2, 3, \ldots\}$ using union.

This is surprising because between any two rationals there is another (not true for \mathbb{N}).

This is surprising because between any two rationals there is another (not true for \mathbb{N}).

\mathbb{Q}	0	+1	-1	+2	\mathbb{Z} -2	+3	-3	+4	- 4	
1		<u>+1</u> 1								
2	$\frac{0}{2}$	$\frac{+1}{2}$	$\frac{-1}{2}$	$\frac{+2}{2}$	$\frac{-2}{2}$	$\frac{+3}{2}$	$\frac{-3}{2}$	$\frac{+4}{2}$	$\frac{-4}{2}$	• • •
\mathbb{N} 3	$\frac{0}{3}$	$\frac{+1}{3}$	$\frac{-1}{3}$	$\frac{+2}{3}$	$\frac{-2}{3}$	$\frac{+3}{3}$	$\frac{-3}{3}$	$\frac{+4}{3}$	$\frac{-4}{3}$	• • •
4	$\frac{0}{4}$	$\frac{+1}{4}$	$\frac{-1}{4}$	$\frac{+2}{4}$	$\frac{-2}{4}$	$\frac{+3}{4}$	$\frac{-3}{4}$	$\frac{+4}{4}$	$\frac{-4}{4}$	• • •
5	Э		$\frac{-1}{5}$							• • •
:	:	:	:	:	:	:	:	:	:	٠

$$|\mathbb{Q}| = |\mathbb{N}| \times |\mathbb{Z}| \gg |\mathbb{N}|.$$
 *\implies

This is surprising because between any two rationals there is another (not true for \mathbb{N}).

\bigcirc		+1			\mathbb{Z}					
	0	+1	-1	+2	-2	+3	-3	+4	-4	• • •
1		$\rightarrow \frac{+1}{1}$		$\frac{+2}{1}$	$\frac{-2}{1}$	<u>+3</u>	$\frac{-3}{1}$	$\frac{+4}{1}$	$\frac{-4}{1}$	
2	$\frac{0}{2}$	$\frac{+1}{2}$	$\frac{-1}{2}$	$\frac{+2}{2}$	$\frac{-2}{2}$	$\frac{+3}{2}$	$\frac{-3}{2}$	$\frac{+4}{2}$	$\frac{-4}{2}$	
№ 3	$\frac{0}{3}$	$\frac{+1}{3}$	$\frac{-1}{3}$	$\frac{+2}{3}$	$\frac{-2}{3}$	$\frac{+3}{3}$	$\frac{-3}{3}$	$\frac{+4}{3}$	$\frac{-4}{3}$	
4	$\frac{0}{4}$	$\frac{+1}{4}$	$\frac{-1}{4}$		$\frac{-2}{4}$		$\frac{-3}{4}$	$\frac{+4}{4}$	$\frac{-4}{4}$	
5	Э	$\frac{+1}{5}$								• • •
:	:	÷	÷	÷	÷	÷	:	÷	÷	٠

$$|\mathbb{Q}| = |\mathbb{N}| \times |\mathbb{Z}| \gg |\mathbb{N}|.$$
 X

This is surprising because between any two rationals there is another (not true for \mathbb{N}).

\mathbb{Q}	0	+1	-1	+2	\mathbb{Z} -2	+3	-3	+4	- 4	• • •
1	<u>0</u>	$\rightarrow \frac{+1}{1}$	<u>-1</u> 1	<u>+2</u> 1	$\frac{-2}{1}$	<u>+3</u> 1	$\frac{-3}{1}$	<u>+4</u> 1	$\frac{-4}{1}$	
2	$\frac{0}{2}$	$\xrightarrow{+1} \frac{1}{1}$ $\xrightarrow{+1} \frac{2}{2}$	$\frac{-1}{2}$	$\frac{+2}{1}$ $\frac{+2}{2}$	$\frac{-2}{2}$	$\frac{+3}{2}$	$\frac{-3}{2}$	$\frac{+4}{2}$	$\frac{-4}{2}$	
\mathbb{N} 3	$\frac{0}{3}$	$\frac{+1}{3}$	$\frac{-1}{3}$	$\frac{+2}{3}$	$\frac{-2}{3}$	$\frac{+3}{3}$	$\frac{-3}{3}$	$\frac{+4}{3}$	$\frac{-4}{3}$	• • •
4	$\frac{0}{4}$	$\frac{+1}{4}$	$\frac{-1}{4}$	$\frac{+2}{4}$	$\frac{-2}{4}$	$\frac{+3}{4}$	$\frac{-3}{4}$	$\frac{+4}{4}$	$\frac{-4}{4}$	
5	$\frac{0}{5}$	$\frac{+1}{5}$	$\frac{-1}{5}$	$\frac{+2}{5}$	$\frac{-2}{5}$	$\frac{+3}{5}$	$\frac{-3}{5}$	$\frac{+4}{5}$	$\frac{-4}{5}$	• • •
:	:	:	÷	÷	:	:	:	:	÷	٠

$$|\mathbb{Q}| = |\mathbb{N}| \times |\mathbb{Z}| \gg |\mathbb{N}|.$$
 *\implies

This is surprising because between any two rationals there is another (not true for \mathbb{N}).

\mathbb{Q}	0	+1	– 1	+2	\mathbb{Z} -2	+3	-3	+4	- 4	
1	$\frac{0}{1}$	$\rightarrow \frac{+1}{1}$	$\frac{-1}{1}$	$\frac{+2}{1}$	$\frac{-2}{1}$	$\frac{+3}{1}$	$\frac{-3}{1}$	$\frac{+4}{1}$	$\frac{-4}{1}$	• • •
2	$\frac{0}{2}$	$\frac{1}{2}$			$\frac{-2}{2}$	$\frac{+3}{2}$	$\frac{-3}{2}$	$\frac{+4}{2}$	$\frac{-4}{2}$	• • •
\mathbb{N} 3	$\frac{0}{3}$	$\frac{+1}{3}$	$\frac{-1}{3}$	$\frac{+2}{3}$	$\frac{-2}{3}$	$\frac{+3}{3}$	$\frac{-3}{3}$	$\frac{+4}{3}$	$\frac{-4}{3}$	
4	$\frac{0}{4}$	$\frac{+1}{4}$	$\frac{-1}{4}$	$\frac{+2}{4}$	$\frac{-2}{4}$	$\frac{+3}{4}$	$\frac{-3}{4}$	$\frac{+4}{4}$	$\frac{-4}{4}$	
5	<u>0</u> 5	$\frac{+1}{5}$	$\frac{-1}{5}$		$\frac{-2}{5}$	$\frac{+3}{5}$	$\frac{-3}{5}$		$\frac{-4}{5}$	• • •
:	:	:	:	÷	÷	÷	÷	÷	÷	٠

$$|\mathbb{Q}| = |\mathbb{N}| \times |\mathbb{Z}| \gg |\mathbb{N}|.$$
 *\implies

This is surprising because between any two rationals there is another (not true for \mathbb{N}).

\bigcirc		. 1	-1	. 0	\mathbb{Z} -2	. 0	0	. 4	4	
	0	+1	<u>-1</u>					+4	-4	
1	$\frac{0}{1}$	$\rightarrow \frac{+1}{1}$	<u>-1</u> 1	$\frac{+2}{1}$	$\frac{-2}{1}$ $\frac{-2}{2}$ $\frac{-2}{3}$	<u>+3</u> 1	$\frac{-3}{1}$	<u>+4</u> 1	$\frac{-4}{1}$	
2	$\frac{0}{2}$	$\begin{array}{c} +1 \\ \downarrow \\ +1 \\ \hline \\ 2 \end{array}$ $\begin{array}{c} +1 \\ \hline \\ 3 \end{array}$	$\frac{-1}{2}$	$\frac{+2}{2}$	$\frac{-2}{2}$	$\frac{+3}{2}$	$\frac{-3}{2}$	$\frac{+4}{2}$	$\frac{-4}{2}$	
№ 3	$\frac{\checkmark}{0}$	$\frac{+1}{3}$	$\frac{-1}{3}$	$\frac{+2}{3}$	$\frac{-2}{3}$	$\frac{+3}{3}$	$\frac{-3}{3}$	$\frac{+4}{3}$	$\frac{-4}{3}$	
4	$\frac{0}{4}$	$\frac{+1}{4}$	$\frac{-1}{4}$	$\frac{+2}{4}$	$\frac{-2}{4}$	$\frac{+3}{4}$	$\frac{-3}{4}$	$\frac{+4}{4}$	$\frac{-4}{4}$	
5	<u>0</u> 5	$\frac{+1}{5}$		$\frac{+2}{5}$	$\frac{-2}{5}$	$\frac{+3}{5}$	$\frac{-3}{5}$	$\frac{+4}{5}$	$\frac{-4}{5}$	• • •
:	:	:	:	:	:	:	:	:	:	٠

$$|\mathbb{Q}| = |\mathbb{N}| \times |\mathbb{Z}| \gg |\mathbb{N}|.$$
 X

This is surprising because between any two rationals there is another (not true for \mathbb{N}).

\mathbb{Q}	0	+1	-1	+2	\mathbb{Z} -2	+3	-3	+4	-4	• • •
1										
1 2 $\mathbb{N} \ 3$	$\frac{0}{2}$	$\frac{+1}{2}$	$\frac{-1}{2}$	$\frac{+2}{2}$	$\frac{-2}{2}$	$\frac{+3}{2}$	$\frac{-3}{2}$	$\frac{+4}{2}$	$\frac{-4}{2}$	• • •
\mathbb{N} 3	$\frac{1}{0}$	$\rightarrow \frac{+1}{3}$	$\frac{-1}{3}$	$\frac{+2}{3}$	$\frac{-2}{3}$	$\frac{+3}{3}$	$\frac{-3}{3}$	$\frac{+4}{3}$	$\frac{-4}{3}$	• • •
4	$\frac{0}{4}$	$\frac{+1}{4}$	$\frac{-1}{4}$	$\frac{+2}{4}$	$\frac{-2}{4}$	$\frac{+3}{4}$	$\frac{-3}{4}$	$\frac{+4}{4}$	$\frac{-4}{4}$	• • •
5	$\frac{0}{5}$		$\frac{-1}{5}$			$\frac{+3}{5}$			$\frac{-4}{5}$	
:	:	:	:	:	:	:	:	:	:	٠

$$|\mathbb{Q}| = |\mathbb{N}| \times |\mathbb{Z}| \gg |\mathbb{N}|.$$
 *\implies

This is surprising because between any two rationals there is another (not true for \mathbb{N}).

\mathbb{Q}	0	+1	- 1	+2	\mathbb{Z} -2	+3	-3	+4	-4	
1									$\frac{-4}{1}$	
2	$\frac{0}{2}$	$-\frac{+1}{2}$	$\frac{-1}{2}$	$\frac{+2}{2}$	$\frac{-2}{2}$	$\frac{+3}{2}$	$\frac{-3}{2}$	$\frac{+4}{2}$		
\mathbb{N} 3	$\frac{0}{3}$	$ \begin{array}{c} +\frac{1}{1} \\ \downarrow \\ +\frac{1}{2} \end{array} $ $ \begin{array}{c} +\frac{1}{3} \end{array} $	$\rightarrow \frac{-1}{3}$	$\frac{+2}{3}$	$\frac{-2}{3}$	<u>+3</u> 3	$ \begin{array}{r} -3 \\ \hline 1 \\ -3 \\ \hline 2 \\ -3 \\ \hline 3 \end{array} $	$\frac{+4}{3}$		
4	$\frac{0}{4}$		$\frac{-1}{4}$		$\frac{-2}{4}$		$\frac{-3}{4}$		$\frac{-4}{4}$	
5	$\frac{0}{5}$	$\frac{+1}{5}$	$\frac{-1}{5}$	<u>+2</u> 5	$\frac{-2}{5}$	<u>+3</u> 5	$\frac{-3}{5}$	$\frac{+4}{5}$	$\frac{-4}{5}$	
:	:				:	÷	÷	÷	÷	٠

$$|\mathbb{Q}| = |\mathbb{N}| \times |\mathbb{Z}| \gg |\mathbb{N}|.$$
 *\implies

This is surprising because between any two rationals there is another (not true for \mathbb{N}).

\mathbb{Q}	0	+1	-1	+2	\mathbb{Z} -2	+3	-3	+4	- 4	
1	$\frac{0}{1}$	$\rightarrow \frac{+1}{1}$	$\frac{-1}{1}$	$\frac{+2}{1}$	$\frac{-2}{1}$	<u>+3</u> 1	$\frac{-3}{1}$	$\frac{+4}{1}$	$\frac{-4}{1}$	
2	$\frac{0}{2}$	$\begin{array}{c} \downarrow \\ +1 \\ \hline 2 \\ \\ \rightarrow \\ +1 \\ \hline 3 \\ \hline \end{array}$	$\frac{-1}{2}$	$\frac{+2}{2}$	$\frac{-2}{2}$	$\frac{+3}{2}$	$\frac{-3}{2}$	$\frac{+4}{2}$	$\frac{-4}{2}$	• • •
\mathbb{N} 3	$\frac{0}{3}$	$\rightarrow \frac{+1}{3}$	$\rightarrow \frac{1}{3}$	$\frac{+2}{3}$	$\frac{-2}{3}$	$\frac{+3}{3}$	$\frac{-3}{3}$	$\frac{+4}{3}$	$\frac{-4}{3}$	• • •
4	$\frac{0}{4}$	$\frac{+1}{4}$	$\frac{-1}{4}$	$\frac{+2}{4}$	$\frac{-2}{4}$	$\frac{+3}{4}$	$\frac{-3}{4}$	$\frac{+4}{4}$	$\frac{-4}{4}$	• • •
5	$\frac{0}{5}$	$\frac{+1}{5}$	$\frac{-1}{5}$	$\frac{+2}{5}$	$\frac{-2}{5}$	$\frac{+3}{5}$	$\frac{-3}{5}$	$\frac{+4}{5}$	$\frac{-4}{5}$	• • •
:	:	:	:	:	:	:	:	:	:	٠

$$|\mathbb{Q}| = |\mathbb{N}| \times |\mathbb{Z}| \gg |\mathbb{N}|.$$
 *\implies

This is surprising because between any two rationals there is another (not true for \mathbb{N}).

\mathbb{Q}	0	+1	-1	+2	\mathbb{Z} -2	+3	- 3	+4	- 4	
1	<u>0</u>				$\frac{-2}{1}$		$\frac{-3}{1}$	<u>+4</u> 1		
2	$\frac{0}{2}$	$\begin{array}{c} +1 \\ \downarrow \\ +1 \\ \hline 2 \end{array}$ $\begin{array}{c} +1 \\ \hline 3 \end{array}$	$\frac{\uparrow}{\frac{-1}{2}}$	$\frac{+2}{2}$	$\frac{-2}{2}$	$\frac{+3}{2}$	$\frac{-3}{2}$	$\frac{+4}{2}$	$\frac{-4}{2}$	• • •
\mathbb{N} 3	$\frac{0}{3}$	$\rightarrow \frac{+1}{3}$	$\begin{array}{c} \uparrow \\ -\frac{1}{3} \end{array}$	$\frac{+2}{3}$	$\frac{-2}{3}$	$\frac{+3}{3}$	$\frac{-3}{3}$	<u>+4</u> 3	$\frac{-4}{3}$	
4	$\frac{0}{4}$	$\frac{+1}{4}$	$\frac{-1}{4}$	$\frac{+2}{4}$	$\frac{-2}{4}$	$\frac{+3}{4}$	$\frac{-3}{4}$	$\frac{+4}{4}$	$\frac{-4}{4}$	
5	$\frac{0}{5}$	$\frac{+1}{5}$	$\frac{-1}{5}$	$\frac{+2}{5}$	$\frac{-2}{5}$	$\frac{+3}{5}$	$\frac{-3}{5}$	$\frac{+4}{5}$	$\frac{-4}{5}$	• • •
:	:	:	÷	÷	:	:	:	:	÷	٠

$$|\mathbb{Q}| = |\mathbb{N}| \times |\mathbb{Z}| \gg |\mathbb{N}|.$$
 *\implies

This is surprising because between any two rationals there is another (not true for \mathbb{N}).

\mathbb{Q}	0	+1	-1	+2	\mathbb{Z} -2	+3	-3	+4	- 4	
1	<u>0</u>	$\rightarrow \frac{+1}{1}$	<u>-1</u> 1	$\rightarrow \frac{+2}{1}$	$\frac{-2}{1}$	<u>+3</u> 1	$\frac{-3}{1}$	<u>+4</u> 1	$\frac{-4}{1}$	
2	$\frac{0}{2}$	$ \begin{array}{c} \rightarrow \frac{+1}{1} \\ \downarrow \\ -\frac{+1}{2} \end{array} $ $ \rightarrow \frac{+1}{3}$	$\frac{1}{\frac{-1}{2}}$	$\frac{+2}{2}$	$\frac{-2}{2}$	$\frac{+3}{2}$	$\frac{-3}{2}$	$\frac{+4}{2}$	$\frac{-4}{2}$	• • •
\mathbb{N} 3	$\frac{1}{0}$	$\rightarrow \frac{+1}{3}$	$\rightarrow \frac{1}{3}$	$\frac{+2}{3}$	$\frac{-2}{3}$	$\frac{+3}{3}$	$\frac{-3}{3}$	$\frac{+4}{3}$	$\frac{-4}{3}$	• • •
4	$\frac{0}{4}$				$\frac{-2}{4}$	$\frac{+3}{4}$	$\frac{-3}{4}$	$\frac{+4}{4}$	$\frac{-4}{4}$	• • •
5	<u>0</u> 5		$\frac{-1}{5}$		$\frac{-2}{5}$		$\frac{-3}{5}$		$\frac{-4}{5}$	• • •
:	:	:	÷	÷	:	÷	÷	÷	:	٠

$$|\mathbb{Q}| = |\mathbb{N}| \times |\mathbb{Z}| \gg |\mathbb{N}|.$$
 **

This is surprising because between any two rationals there is another (not true for \mathbb{N}).

\mathbb{Q}	0	+1	-1	+2	\mathbb{Z} -2	+3	-3	+4	- 4	
1	<u>0</u> 1	$\rightarrow \frac{+1}{1}$	<u>-1</u> 1	$\rightarrow \frac{+2}{1}$	<u>-2</u> 1	<u>+3</u> 1	<u>-3</u> 1		<u>-4</u> 1	• • •
2	$\frac{0}{2}$	$\begin{array}{c} +1 \\ \downarrow \\ +1 \\ 2 \end{array}$ $\begin{array}{c} +1 \\ 3 \end{array}$	$\frac{1}{2}$	$\begin{array}{c} +2 \\ \downarrow \\ +2 \\ \hline 2 \end{array}$	$\frac{-2}{2}$		$\frac{-3}{2}$	$\frac{+4}{2}$	$\frac{-4}{2}$	
\mathbb{N} 3	$\frac{1}{2}$	$\rightarrow \frac{+1}{3}$	$\rightarrow \frac{-1}{3}$	$\frac{+2}{3}$	$\frac{-2}{3}$	$\frac{+3}{3}$	$\frac{-3}{3}$	$\frac{+4}{3}$	$\frac{-4}{3}$	
4	$\frac{0}{4}$	$\frac{+1}{4}$	$\frac{-1}{4}$	$\frac{+2}{4}$	$\frac{-2}{4}$	$\frac{+3}{4}$	$\frac{-3}{4}$	$\frac{+4}{4}$	$\frac{-4}{4}$	
5	$\frac{0}{5}$	$\frac{+1}{5}$	$\frac{-1}{5}$	$\frac{+2}{5}$	$\frac{-2}{5}$	$\frac{+3}{5}$	$\frac{-3}{5}$	$\frac{+4}{5}$	$\frac{-4}{5}$	
:	:	:	:	:	:	:	:	÷	÷	٠

$$|\mathbb{Q}| = |\mathbb{N}| \times |\mathbb{Z}| \gg |\mathbb{N}|.$$

This is surprising because between any two rationals there is another (not true for \mathbb{N}).

\mathbb{Q}	0	+1	-1	+2	\mathbb{Z} -2	+3	-3	+4	- 4	
1	<u>0</u> 1	$\rightarrow \frac{+1}{1}$	$\frac{-1}{1}$	$\rightarrow \frac{+2}{1}$	$\frac{-2}{1}$	<u>+3</u> 1			$\frac{-4}{1}$	
2	$\frac{0}{2}$	$\begin{array}{c} 1 \\ +1 \\ \hline 2 \end{array}$ $\begin{array}{c} +1 \\ \hline 3 \end{array}$	$ \begin{array}{c} -1 \\ \uparrow \\ -1 \\ \hline 2 \\ \uparrow \\ -1 \\ 3 \end{array} $	$\frac{+2}{2}$	$\frac{-2}{2}$	$\frac{+3}{2}$	$\frac{-3}{2}$		$\frac{-4}{2}$	• • •
\mathbb{N} 3	$\frac{1}{0}$	$\rightarrow \frac{+1}{3}$	$\rightarrow \frac{1}{3}$	$\frac{+2}{3}$	$\frac{-2}{3}$	+3 3	$\frac{-3}{3}$	$\frac{+4}{3}$	$\frac{-4}{3}$	• • •
4	$\frac{0}{4}$	$\frac{+1}{4}$	$\frac{-1}{4}$	$\frac{+2}{4}$	$\frac{-2}{4}$	$\frac{+3}{4}$	$\frac{-3}{4}$	$\frac{+4}{4}$	$\frac{-4}{4}$	• • •
5	<u>0</u> 5		$\frac{-1}{5}$	$\frac{+2}{5}$	$\frac{-2}{5}$	$\frac{+3}{5}$	$\frac{-3}{5}$	$\frac{+4}{5}$	$\frac{-4}{5}$	• • •
:	:	:	÷	÷	÷	÷	÷	÷	÷	٠

$$|\mathbb{Q}| = |\mathbb{N}| \times |\mathbb{Z}| \gg |\mathbb{N}|.$$

This is surprising because between any two rationals there is another (not true for \mathbb{N}).

\mathbb{Q}	0	+1	-1	+2	\mathbb{Z} -2	+3	-3	+4	-4	
1	$\frac{0}{1}$	$\rightarrow \frac{+1}{1}$	<u>-1</u>	$\rightarrow \frac{+2}{1}$	$\frac{-2}{1}$				$\frac{-4}{1}$	
2	$\frac{0}{2}$	$\frac{\downarrow}{2}$	$\begin{array}{c} \uparrow \\ -1 \\ \hline 2 \\ \uparrow \\ \hline \rightarrow \\ \hline 3 \end{array}$	$\begin{array}{c} +2 \\ \downarrow \\ +2 \\ \hline 2 \\ +2 \\ \hline 3 \end{array}$	$\frac{-2}{2}$	$\frac{+3}{2}$	$\frac{-3}{2}$	$\frac{+4}{2}$	$\frac{-4}{2}$	• • •
\mathbb{N} 3	$\frac{1}{0}$			<u>+2</u> 3	$\frac{-2}{3}$		$\frac{-3}{3}$		$\frac{-4}{3}$	• • •
4	$\frac{0}{4}$	$\frac{+1}{4}$	$\frac{-1}{4}$	$\frac{+2}{4}$	$\frac{-2}{4}$	$\frac{+3}{4}$	$\frac{-3}{4}$	$\frac{+4}{4}$	$\frac{-4}{4}$	• • •
5	<u>0</u> 5	$\frac{+1}{5}$	$\frac{-1}{5}$	$\frac{+2}{5}$	$\frac{-2}{5}$	$\frac{+3}{5}$	$\frac{-3}{5}$	$\frac{+4}{5}$	$\frac{-4}{5}$	• • •
:	:	:	÷	÷	÷	÷	÷	÷	÷	٠

$$|\mathbb{Q}| = |\mathbb{N}| \times |\mathbb{Z}| \gg |\mathbb{N}|.$$

This is surprising because between any two rationals there is another (not true for \mathbb{N}).

\mathbb{Q}	0	+1	-1	+2	\mathbb{Z} -2	+3	-3	+4	- 4	•••
1	$\frac{0}{1}$	$\rightarrow \frac{+1}{1}$	<u>-1</u> 1	$\rightarrow \frac{+2}{1}$	$\frac{-2}{1}$		$\frac{-3}{1}$		$\frac{-4}{1}$	
2	$\frac{0}{2}$	$\frac{1}{2}$	$\frac{1}{-1}$	$\begin{array}{c} +2 \\ \downarrow \\ +2 \\ \hline 2 \\ +2 \\ \hline 3 \end{array}$	$\frac{-2}{2}$	$\frac{+3}{2}$	$\frac{-3}{2}$	$\frac{+4}{2}$	$\frac{-4}{2}$	• • •
\mathbb{N} 3	$\frac{0}{3}$	$\rightarrow \frac{+1}{3}$	$\begin{array}{c} -\frac{1}{2} \\ \uparrow \\ -\frac{1}{3} \end{array}$	$\frac{+2}{3}$	$\frac{-2}{3}$		$\frac{-3}{3}$		$\frac{-4}{3}$	
4	$\frac{0}{4}$	$\frac{+1}{4}$	$\frac{-1}{4}$	$-\frac{1}{4}$	$\frac{-2}{4}$	$\frac{+3}{4}$	$\frac{-3}{4}$	$\frac{+4}{4}$	$\frac{-4}{4}$	
5	$\frac{0}{5}$	$\frac{+1}{5}$	$\frac{-1}{5}$	$\frac{+2}{5}$	$\frac{-2}{5}$	$\frac{+3}{5}$	$\frac{-3}{5}$	$\frac{+4}{5}$	$\frac{-4}{5}$	• • •
÷	:	:	÷	÷	:	÷	÷	÷	÷	٠

$$|\mathbb{Q}| = |\mathbb{N}| \times |\mathbb{Z}| \gg |\mathbb{N}|.$$
 \times

This is surprising because between any two rationals there is another (not true for \mathbb{N}).

\mathbb{Q}	0	+1	-1	+2	\mathbb{Z} -2	+3	-3	+4	- 4	
1		$\rightarrow \frac{+1}{1}$	$\frac{-1}{1}$	$\rightarrow \frac{+2}{1}$	$\frac{-2}{1}$		$\frac{-3}{1}$			
2	$\frac{0}{2}$	$\begin{array}{c} \rightarrow \frac{1}{1} \\ \downarrow \\ -\frac{1}{2} \end{array}$	$ \begin{array}{c} -1 \\ \uparrow \\ -1 \\ \hline 2 \\ \uparrow \\ -1 \\ 3 \end{array} $	$\frac{+2}{2}$	$\frac{-2}{2}$	$\frac{+3}{2}$	$\frac{-3}{2}$	$\frac{+4}{2}$	$\frac{-4}{2}$	• • •
\mathbb{N} 3	$\frac{\checkmark}{0}$	$\rightarrow \frac{+1}{3}$	$\rightarrow \frac{1}{3}$	$\frac{+2}{3}$		$\frac{+3}{3}$	$\frac{-3}{3}$		$\frac{-4}{3}$	
4	$\frac{0}{4}$	$\frac{+1}{4}$	$-\frac{-1}{4}$	$\frac{+2}{4}$	$\frac{-2}{4}$	$\frac{+3}{4}$	$\frac{-3}{4}$	$\frac{+4}{4}$	$\frac{-4}{4}$	• • •
5	$\frac{0}{5}$	$\frac{+1}{5}$	$\frac{-1}{5}$	$\frac{+2}{5}$	$\frac{-2}{5}$	$\frac{+3}{5}$	$\frac{-3}{5}$	$\frac{+4}{5}$	$\frac{-4}{5}$	• • •
:	:	:	÷	÷	:	:	:	:	÷	٠

$$|\mathbb{Q}| = |\mathbb{N}| \times |\mathbb{Z}| \gg |\mathbb{N}|.$$
 *\implies

This is surprising because between any two rationals there is another (not true for \mathbb{N}).

			-1		\mathbb{Z}					
	0	+1	-1	+2	-2	+3	-3	+4	-4	•••
1	<u>0</u>	$\rightarrow \frac{+1}{1}$	$\frac{-1}{1}$	$\rightarrow \frac{+2}{1}$	$\frac{-2}{1}$	<u>+3</u> 1	$\frac{-3}{1}$	<u>+4</u> 1	$\frac{-4}{1}$	
2	$\frac{0}{2}$	$\begin{array}{c} +1 \\ \downarrow \\ +1 \\ \hline 2 \end{array}$ $\begin{array}{c} +1 \\ \hline 3 \end{array}$	$\frac{-1}{2}$	$\frac{+2}{2}$	$\frac{-2}{2}$	$\frac{+3}{2}$	$\frac{-3}{2}$	$\frac{+4}{2}$		
№ 3	$\frac{0}{3}$	$\rightarrow \frac{+1}{3}$	$\rightarrow \frac{-1}{3}$	$\frac{+2}{3}$	$\frac{-2}{3}$	$\frac{+3}{3}$	$\frac{-3}{3}$	$\frac{+4}{3}$		
4		<u>+1</u> ←			$\frac{-2}{4}$	$\frac{+3}{4}$	$\frac{-3}{4}$	$\frac{+4}{4}$	$\frac{-4}{4}$	• • •
5	$\frac{0}{5}$	$\frac{+1}{5}$						$\frac{+4}{5}$	$\frac{-4}{5}$	
:	:	:	:	:	÷	÷	:	:	÷	٠

$$|\mathbb{Q}| = |\mathbb{N}| \times |\mathbb{Z}| \gg |\mathbb{N}|.$$
 X

This is surprising because between any two rationals there is another (not true for \mathbb{N}).

\mathbb{Q}	0	+1	-1	+2	\mathbb{Z} -2	+3	-3	+4	-4	
1		$\rightarrow \frac{+1}{1}$	<u>-1</u> 1	$\rightarrow \frac{+2}{1}$	$\frac{-2}{1}$	<u>+3</u> 1	$\frac{-3}{1}$	<u>+4</u> 1	$\frac{-4}{1}$	
2	$\frac{0}{2}$	$\begin{array}{c} \downarrow \\ +1 \\ \hline 2 \\ \hline \rightarrow \frac{+1}{3} \\ \hline \end{array}$	$\frac{1}{2}$	$\frac{+2}{2}$	$\frac{1}{\frac{-2}{2}}$ $\frac{-2}{3}$	$\frac{+3}{2}$	$\frac{-3}{2}$			• • •
\mathbb{N} 3	$\frac{1}{2}$	$\rightarrow \frac{+1}{3}$	$\rightarrow \frac{-1}{3}$	$\frac{+2}{3}$	$\frac{-2}{3}$	$\frac{+3}{3}$	$\frac{-3}{3}$			• • •
4	$0 \leftarrow 4 \leftarrow 0 \leftarrow 0 \leftarrow 0$	<u>+1</u> ←	$-\frac{-1}{4}$	$\frac{+2}{4}$	$\frac{-2}{4}$			$\frac{+4}{4}$	$\frac{-4}{4}$	• • •
5	<u>√</u> <u>0</u> 5	$\frac{+1}{5}$	$\frac{-1}{5}$	$\frac{+2}{5}$	$\frac{-2}{5}$	$\frac{+3}{5}$	$\frac{-3}{5}$	$\frac{+4}{5}$	$\frac{-4}{5}$	• • •
:	:	:	:	÷	:	÷	:	÷	÷	٠

$$|\mathbb{Q}| = |\mathbb{N}| \times |\mathbb{Z}| \gg |\mathbb{N}|.$$
 **

This is surprising because between any two rationals there is another (not true for \mathbb{N}).

\mathbb{Q}	0	+1	-1	+2	\mathbb{Z} -2	+3	-3	+4	- 4	
1	<u>0</u>	$\rightarrow \frac{+1}{1}$	<u>-1</u> _	$\rightarrow \frac{+2}{1}$	<u>-2</u> 1	<u>+3</u> 1	<u>-3</u> 1	<u>+4</u> 1	<u>-4</u> 1	• • •
2	$\frac{0}{2}$	$\begin{array}{c} +1 \\ -2 \\ \end{array}$ $\begin{array}{c} +1 \\ 3 \\ \end{array}$	$\frac{1}{2}$	$\frac{+2}{2}$	$\frac{-2}{2}$	$\frac{+3}{2}$	$\frac{-3}{2}$			
\mathbb{N} 3	$\frac{0}{3}$	$\rightarrow \frac{+1}{3}$	$\rightarrow \frac{1}{3}$	$\frac{+2}{3}$	$\frac{-2}{3}$	$\frac{+3}{3}$	$\frac{-3}{3}$		$\frac{-4}{3}$	• • •
4	$\frac{0}{4}$	<u>+1</u> ←	<u></u> -1/4 ←	$\frac{+2}{4}$				_	$\frac{-4}{4}$	
5	$\frac{\stackrel{\checkmark}{0}}{5}$	$\rightarrow \frac{+1}{5}$	$\frac{-1}{5}$	$\frac{+2}{5}$	$\frac{-2}{5}$	<u>+3</u> 5	$\frac{-3}{5}$	$\frac{+4}{5}$	$\frac{-4}{5}$	• • •
:	:	:	÷	÷	:	:	:	:	:	٠

$$|\mathbb{Q}| = |\mathbb{N}| \times |\mathbb{Z}| \gg |\mathbb{N}|.$$
 \times

Rationals are Countable: $|\mathbb{Q}| = |\mathbb{N}|$

This is surprising because between any two rationals there is another (not true for \mathbb{N}).

$$\mathbb{Q} = \{ \frac{0}{1}, \frac{+1}{1}, \frac{+1}{2}, \frac{0}{2}, \frac{0}{3}, \frac{+1}{3}, \frac{-1}{3}, \frac{-1}{2}, \frac{-1}{1}, \frac{+2}{1}, \frac{+2}{2}, \frac{+2}{3}, \frac{+2}{4}, \frac{-1}{4}, \frac{+1}{4}, \frac{0}{4}, \frac{0}{5}, \ldots \}$$

Rationals are Countable: $|\mathbb{Q}| = |\mathbb{N}|$

This is surprising because between any two rationals there is another (not true for \mathbb{N}).

$$\mathbb{Q} = \{ \frac{0}{1}, \frac{+1}{1}, \frac{+1}{2}, \frac{0}{2}, \frac{0}{3}, \frac{+1}{3}, \frac{-1}{3}, \frac{-1}{2}, \frac{-1}{1}, \frac{+2}{1}, \frac{+2}{2}, \frac{+2}{3}, \frac{+2}{4}, \frac{-1}{4}, \frac{+1}{4}, \frac{0}{4}, \frac{0}{5}, \ldots \}$$

 $|\{\text{Rational Values}\}| \le |\mathbb{Q}| \le |\mathbb{N}|.$

Exercise. What is a mathematical formula for the list-position of $z/n \in \mathbb{Q}$?

$$\mathcal{B} = \{ \varepsilon$$

$$\mathcal{B} = \{\varepsilon, 0, 1$$

$$\mathcal{B} = \{\varepsilon, 0, 1, 00, 01, 10, 11\}$$

$$\mathcal{B} = \{\varepsilon, 0, 1, 00, 01, 10, 11, 000, 001, 010, 011, 100, 101, 110, 111\}$$

$$\mathcal{B} = \{ \varepsilon, 0, 1, 00, 01, 10, 11, 000, 001, 010, 011, 100, 101, 110, 111, 0000, \ldots \} \qquad \leftarrow \text{list}$$

Programs are finite binary strings. We show that all finite binary strings \mathcal{B} are countable.

$$\mathcal{B} = \{ \varepsilon, 0, 1, 00, 01, 10, 11, 000, 001, 010, 011, 100, 101, 110, 111, 0000, \ldots \} \qquad \leftarrow \text{list}$$

Pop Quiz. What is the list-position of 0110?

Exercise. For the (k+1)-bit string $b = b_k b_{k-1} \cdots b_1 b_0$, define the strings numerical value:

value(b) =
$$b_0 \cdot 2^0 + b_1 \cdot 2^1 + \dots + b_{k-1} \cdot 2^{k-1} + b_k \cdot 2^k$$
.

Show:

list-position of $b = 2^{\text{length}(b)} + \text{value}(b)$.

Programs are finite binary strings. We show that all finite binary strings \mathcal{B} are countable.

$$\mathcal{B} = \{ \varepsilon, 0, 1, 00, 01, 10, 11, 000, 001, 010, 011, 100, 101, 110, 111, 0000, \ldots \} \qquad \leftarrow \text{list}$$

Pop Quiz. What is the list-position of 0110?

Exercise. For the (k+1)-bit string $b = b_k b_{k-1} \cdots b_1 b_0$, define the strings numerical value:

value(b) =
$$b_0 \cdot 2^0 + b_1 \cdot 2^1 + \dots + b_{k-1} \cdot 2^{k-1} + b_k \cdot 2^k$$
.

Show:

list-position of
$$b = 2^{\text{length}(b)} + \text{value}(b)$$
.

 $\mathbb{N}_0, E, \mathbb{Z}, \mathbb{Q}, \mathcal{B}$ are countable,... Is Everything Countable?

Cantor's Diagonal Argument: Assume there is a list of *all* infinite binary strings.

Cantor's Diagonal Argument: Assume there is a list of *all* infinite binary strings.

Cantor's Diagonal Argument: Assume there is a list of all infinite binary strings.

Consider the "diagonal string"

$$b = 0000100101 \cdots$$

Cantor's Diagonal Argument: Assume there is a list of *all* infinite binary strings.

Consider the "diagonal string"

$$b = 0000100101 \cdots$$

Flip the bits,

$$\overline{b} = 1111011010\cdots$$

Cantor's Diagonal Argument: Assume there is a list of *all* infinite binary strings.

Consider the "diagonal string"

$$b = 0000100101 \cdots$$

Flip the bits,

$$\overline{b} = 1111011010\cdots$$

 \overline{b} is not in the list (differs in the *i*th position from b_i), a contradiction.

Cantor's Diagonal Argument: Assume there is a list of *all* infinite binary strings.

Consider the "diagonal string"

$$b = 0000100101 \cdots$$

Flip the bits,

$$\bar{b} = 1111011010 \cdots$$

 \overline{b} is not in the list (differs in the *i*th position from b_i), a contradiction.

Reals are Uncountable

Every real has an infinite binary representation and every infinite binary string evaluates to a real number.

Cantor's Diagonal Argument: Assume there is a list of *all* infinite binary strings.

Consider the "diagonal string"

$$b = 0000100101 \cdots$$

Flip the bits,

$$\overline{b} = 1111011010 \cdots$$

 \overline{b} is not in the list (differs in the *i*th position from b_i), a contradiction.

Reals are Uncountable

Every real has an infinite binary representation and every infinite binary string evaluates to a real number.

That is $|\{\text{reals in } [0,1]\}| = |\{\text{infinte binary stings}\}| > |\mathbb{N}|$.

Cantor took on the abstract beast Infinity. (1874)

Cantor took on the abstract beast Infinity. (1874)

 ~ 60 years later, Alan Turing asked the abstract question: What can we compute? (1936)

Cantor took on the abstract beast Infinity. (1874)

 ~ 60 years later, Alan Turing asked the abstract question: What can we compute? (1936)

Every binary function f on \mathbb{N} corresponds to a infinite binary string $f(1)f(2)f(3)\cdots$,

Cantor took on the abstract beast Infinity. (1874)

 \sim 60 years later, Alan Turing asked the abstract question: What can we compute? (1936)

Every binary function f on \mathbb{N} corresponds to a infinite binary string $f(1)f(2)f(3)\cdots$,

n: 1 2 3 4 5 6 7 8 9 10 ···

f(n): 0 1 1 0 1 0 0 1 1 ...

```
Cantor took on the abstract beast Infinity. (1874)
```

 ~ 60 years later, Alan Turing asked the abstract question: What can we compute? (1936)

Every binary function f on N corresponds to a infinite binary string $f(1)f(2)f(3)\cdots$,

```
1 2 3 4 5 6 7 8 9 10 ...
 n:
f(n): 0 1 1 0 1 0 0 1 1 ...
```

Every program is a finite binary string. For example,

```
int main();  //a program that does nothing
```

is the finite binary string (ASCII code)

```
Cantor took on the abstract beast Infinity. (1874)
```

 ~ 60 years later, Alan Turing asked the abstract question: What can we compute? (1936)

Every binary function f on N corresponds to a infinite binary string $f(1)f(2)f(3)\cdots$,

```
1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \quad 8 \quad 9 \quad 10 \quad \cdots
  n:
f(n): 0 1 1 0 1 0 0 1 1 ...
```

Every program is a finite binary string. For example,

```
int main();  //a program that does nothing
```

is the finite binary string (ASCII code)

```
Programs \leftarrow Countable
```

Functions \leftarrow Uncountable

```
Cantor took on the abstract beast Infinity. (1874)
```

 ~ 60 years later, Alan Turing asked the abstract question: What can we compute? (1936)

Every binary function f on N corresponds to a infinite binary string $f(1)f(2)f(3)\cdots$,

$$n$$
: 1 2 3 4 5 6 7 8 9 10 ···· $f(n)$: 0 1 1 0 1 0 0 1 1 ····

Every program is a finite binary string. For example,

```
int main();
             //a program that does nothing
```

is the finite binary string (ASCII code)

```
Programs \leftarrow Countable
                                                         |\{\text{functions on }\mathbb{N}\}| \gg |\{\text{programs}\}|
Functions \leftarrow Uncountable
```

There are MANY MANY functions that cannot be computed by programs! Are there interesting, useful functions that cannot be computed by programs?