Foundations of Computer Science Lecture 10

Number Theory

Division and the Greatest Common Divisor Fundamental Theorem of Arithmetic Cryptography and Modular Arithmetic RSA: Public Key Cryptography

Last Time

- Why sums and reccurrences? Running times of programs.
- Tools for summation: constant rule, sum rule, common sums and nested sum rule.
- Comparing functions asymptotics: Big-Oh, Theta, Little-Oh notation. $\log \log(n) < \log^{\alpha}(n) < n^{\epsilon} < 2^{\delta n}$
- The method of integration estimating sums.

$$\sum_{i=1}^{n} i^{k} \sim \frac{n^{k+1}}{k+1} \qquad \qquad \sum_{i=1}^{n} \frac{1}{i} \sim \ln n \qquad \qquad \ln n! = \sum_{i=1}^{n} \ln i \sim n \ln n - n$$

Today: Number Theory

- Division and Greatest Common Divisor (GCD)
 - Euclid's algorithm
 - Bezout's identity

2 Fundamental Theorem of Arithmetic

- Modular Arithmetic
 - Cryptography
 - RSA public key cryptography

Number theory has attracted the best of the best, because

"Babies can ask questions which grown-ups can't solve" – P. Erdős

6 = 1 + 2 + 3 is *perfect* (equals the sum of its proper divisors). Is there an odd perfect number?

Number theory has attracted the best of the best, because

"Babies can ask questions which grown-ups can't solve" – P. Erdős

6 = 1 + 2 + 3 is *perfect* (equals the sum of its proper divisors). Is there an odd perfect number?

Quotient-Remainder Theorem

For $n \in \mathbb{Z}$ and $d \in \mathbb{N}$, n = qd + r. The quotient $q \in \mathbb{Z}$ and remainder $0 \le r < d$ are unique.

e.g.
$$n = 27, d = 6$$
: $27 = 4 \cdot 6 + 4 \rightarrow \text{rem}(27, 6) = 4$.

$$27 = 4 \cdot 6 + 4$$

$$\rightarrow$$

Number theory has attracted the best of the best, because

"Babies can ask questions which grown-ups can't solve" – P. Erdős

6 = 1 + 2 + 3 is *perfect* (equals the sum of its proper divisors). Is there an odd perfect number?

Quotient-Remainder Theorem

For $n \in \mathbb{Z}$ and $d \in \mathbb{N}$, n = qd + r. The quotient $q \in \mathbb{Z}$ and remainder $0 \le r < d$ are unique.

e.g.
$$n = 27, d = 6$$
: $27 = 4 \cdot 6 + 4 \rightarrow \text{rem}(27, 6) = 4$.

Divisibility. d divides n, d|n if and only if n = qd for some $q \in \mathbb{Z}$. e.g. 6|24.

Number theory has attracted the best of the best, because

"Babies can ask questions which grown-ups can't solve" – P. Erdős

6 = 1 + 2 + 3 is *perfect* (equals the sum of its proper divisors). Is there an odd perfect number?

Quotient-Remainder Theorem

For $n \in \mathbb{Z}$ and $d \in \mathbb{N}$, n = qd + r. The quotient $q \in \mathbb{Z}$ and remainder $0 \le r < d$ are unique.

e.g.
$$n = 27, d = 6$$
: $27 = 4 \cdot 6 + 4 \rightarrow \text{rem}(27, 6) = 4$.

Divisibility. d divides n, d|n if and only if n = qd for some $q \in \mathbb{Z}$. e.g. 6|24.

Primes. P = $\{2, 3, 5, 7, 11, ...\}$ = $\{p \mid p \ge 2 \text{ and the only positive divisors of } p \text{ are } 1, p\}.$

Number theory has attracted the best of the best, because

"Babies can ask questions which grown-ups can't solve" – P. Erdős

6 = 1 + 2 + 3 is *perfect* (equals the sum of its proper divisors). Is there an odd perfect number?

Quotient-Remainder Theorem

For $n \in \mathbb{Z}$ and $d \in \mathbb{N}$, n = qd + r. The quotient $q \in \mathbb{Z}$ and remainder $0 \le r < d$ are unique.

e.g.
$$n = 27, d = 6$$
: $27 = 4 \cdot 6 + 4 \rightarrow \text{rem}(27, 6) = 4$.

Divisibility. d divides n, d|n if and only if n = qd for some $q \in \mathbb{Z}$. e.g. 6|24.

Primes. P = $\{2, 3, 5, 7, 11, ...\}$ = $\{p \mid p \ge 2 \text{ and the only positive divisors of } p \text{ are } 1, p\}$.

Division Facts (Exercise 10.2)

- **1** d|0.
- If d|m and d'|n, then dd'|mn.
- If d|m and m|n, then d|n.

- If d|n and d|m, then d|n+m.
- If d|m+n and d|m, then d|n.

Divisors of 30: $\{1, 2, 3, 5, 6, 15, 30\}$. Divisors of 42: $\{1, 2, 3, 6, 7, 14, 21, 42\}$. Common divisors: $\{1, 2, 3, 6\}$.

Divisors of 30: $\{1, 2, 3, 5, 6, 15, 30\}$. Divisors of 42: $\{1, 2, 3, 6, 7, 14, 21, 42\}$. Common divisors: $\{1, 2, 3, 6\}$. $greatest\ common\ divisor\ (GCD) = 6$.

Divisors of 30: $\{1, 2, 3, 5, 6, 15, 30\}$. Divisors of 42: $\{1, 2, 3, 6, 7, 14, 21, 42\}$. Common divisors: $\{1, 2, 3, 6\}$. $greatest\ common\ divisor\ (GCD) = 6.$

Definition. Greatest Common Divisor, GCD

Let m, n be two integers not both zero. gcd(m, n) is the largest integer that divides both m and n: gcd(m,n)|m, gcd(m,n)|n and any other common divisor $d \leq gcd(m,n)$.

Notice that every common divisor divides the GCD. Also, gcd(m, n) = gcd(n, m).

Divisors of 30: $\{1, 2, 3, 5, 6, 15, 30\}$. Divisors of 42: $\{1, 2, 3, 6, 7, 14, 21, 42\}$. Common divisors: $\{1, 2, 3, 6\}$. $greatest\ common\ divisor\ (GCD) = 6.$

Definition. Greatest Common Divisor, GCD

Let m, n be two integers not both zero. gcd(m, n) is the largest integer that divides both m and n: gcd(m,n)|m, gcd(m,n)|n and any other common divisor $d \leq gcd(m,n)$.

Notice that every common divisor divides the GCD. Also, gcd(m, n) = gcd(n, m).

Relatively Prime

If gcd(m, n) = 1, then m, n are relatively prime.

Example: 6 and 35 are not prime but they are relatively prime.

Divisors of 30: $\{1, 2, 3, 5, 6, 15, 30\}$. Divisors of 42: $\{1, 2, 3, 6, 7, 14, 21, 42\}$. Common divisors: $\{1, 2, 3, 6\}$. $greatest\ common\ divisor\ (GCD) = 6.$

Definition. Greatest Common Divisor, GCD

Let m, n be two integers not both zero. gcd(m, n) is the largest integer that divides both m and n: gcd(m,n)|m, gcd(m,n)|n and any other common divisor $d \leq gcd(m,n)$.

Notice that every common divisor divides the GCD. Also, gcd(m, n) = gcd(n, m).

Relatively Prime

If gcd(m, n) = 1, then m, n are relatively prime.

Example: 6 and 35 are not prime but they are relatively prime.

Theorem.

Divisors of 30: $\{1, 2, 3, 5, 6, 15, 30\}$. Divisors of 42: $\{1, 2, 3, 6, 7, 14, 21, 42\}$. Common divisors: $\{1, 2, 3, 6\}$. $greatest\ common\ divisor\ (GCD) = 6.$

Definition. Greatest Common Divisor, GCD

Let m, n be two integers not both zero. gcd(m, n) is the largest integer that divides both m and n: gcd(m,n)|m, gcd(m,n)|n and any other common divisor $d \leq gcd(m,n)$.

Notice that every common divisor divides the GCD. Also, gcd(m, n) = gcd(n, m).

Relatively Prime

If gcd(m, n) = 1, then m, n are relatively prime.

Example: 6 and 35 are not prime but they are relatively prime.

Theorem.

gcd(m, n) = gcd(rem(n, m), m).

Proof. $n = qm + r \rightarrow r = n - qm$. Let $D = \gcd(m, n)$ and $d = \gcd(m, r)$.

Divisors of 30: $\{1, 2, 3, 5, 6, 15, 30\}$. Divisors of 42: $\{1, 2, 3, 6, 7, 14, 21, 42\}$. Common divisors: $\{1, 2, 3, 6\}$. $greatest\ common\ divisor\ (GCD) = 6.$

Definition. Greatest Common Divisor, GCD

Let m, n be two integers not both zero. gcd(m, n) is the largest integer that divides both m and n: gcd(m,n)|m, gcd(m,n)|n and any other common divisor $d \leq gcd(m,n)$.

Notice that every common divisor divides the GCD. Also, gcd(m, n) = gcd(n, m).

Relatively Prime

If gcd(m, n) = 1, then m, n are relatively prime.

Example: 6 and 35 are not prime but they are relatively prime.

Theorem.

gcd(m, n) = gcd(rem(n, m), m).

Proof. $n = qm + r \rightarrow r = n - qm$. Let $D = \gcd(m, n)$ and $d = \gcd(m, r)$. $D|m \text{ and } D|n \to D \text{ divides } r = n - qm.$

Divisors of 30: $\{1, 2, 3, 5, 6, 15, 30\}$. Divisors of 42: $\{1, 2, 3, 6, 7, 14, 21, 42\}$. Common divisors: $\{1, 2, 3, 6\}$. $greatest\ common\ divisor\ (GCD) = 6$.

Definition. Greatest Common Divisor, GCD

Let m, n be two integers not both zero. gcd(m, n) is the largest integer that divides both m and n: gcd(m, n)|m, gcd(m, n)|n and any other common divisor $d \leq gcd(m, n)$.

Notice that every common divisor divides the GCD. Also, gcd(m, n) = gcd(n, m).

Relatively Prime

If gcd(m, n) = 1, then m, n are relatively prime.

Example: 6 and 35 are not prime but they are relatively prime.

Theorem.

gcd(m, n) = gcd(rem(n, m), m).

Proof. $n = qm + r \rightarrow r = n - qm$. Let $D = \gcd(m, n)$ and $d = \gcd(m, r)$. $D|m \text{ and } D|n \rightarrow D \text{ divides } r = n - qm. \text{ Hence, } D \leq \gcd(m, r) = d. \tag{D is a common divisor of m, r)}$

Divisors of 30: $\{1, 2, 3, 5, 6, 15, 30\}$. Divisors of 42: $\{1, 2, 3, 6, 7, 14, 21, 42\}$. Common divisors: $\{1, 2, 3, 6\}$. $greatest\ common\ divisor\ (GCD) = 6.$

Definition. Greatest Common Divisor, GCD

Let m, n be two integers not both zero. gcd(m, n) is the largest integer that divides both m and n: gcd(m,n)|m, gcd(m,n)|n and any other common divisor $d \leq gcd(m,n)$.

Notice that every common divisor divides the GCD. Also, gcd(m, n) = gcd(n, m).

Relatively Prime

If gcd(m, n) = 1, then m, n are relatively prime.

Example: 6 and 35 are not prime but they are relatively prime.

Theorem.

gcd(m, n) = gcd(rem(n, m), m).

Proof. $n = qm + r \rightarrow r = n - qm$. Let $D = \gcd(m, n)$ and $d = \gcd(m, r)$. D|m and $D|n \to D$ divides r = n - qm. Hence, $D \le \gcd(m,r) = d$. (D is a common divisor of m, r) d|m and $d|r \to d$ divides n = qm + r.

Divisors of 30: $\{1, 2, 3, 5, 6, 15, 30\}$. Divisors of 42: $\{1, 2, 3, 6, 7, 14, 21, 42\}$. Common divisors: $\{1, 2, 3, 6\}$. $greatest\ common\ divisor\ (GCD) = 6.$

Definition. Greatest Common Divisor, GCD

Let m, n be two integers not both zero. gcd(m, n) is the largest integer that divides both m and n: gcd(m,n)|m, gcd(m,n)|n and any other common divisor $d \leq gcd(m,n)$.

Notice that every common divisor divides the GCD. Also, gcd(m, n) = gcd(n, m).

Relatively Prime

If gcd(m, n) = 1, then m, n are relatively prime.

Example: 6 and 35 are not prime but they are relatively prime.

Theorem.

gcd(m, n) = gcd(rem(n, m), m).

Proof. $n = qm + r \rightarrow r = n - qm$. Let $D = \gcd(m, n)$ and $d = \gcd(m, r)$. D|m and $D|n \to D$ divides r = n - qm. Hence, $D \leq \gcd(m,r) = d$. (D is a common divisor of m, r) d|m and $d|r \to d$ divides n = qm + r. Hence, $d \leq \gcd(m, n) = D$. (d is a common divisor of m, n)

Divisors of 30: $\{1, 2, 3, 5, 6, 15, 30\}$. Divisors of 42: $\{1, 2, 3, 6, 7, 14, 21, 42\}$. Common divisors: $\{1, 2, 3, 6\}$. $greatest\ common\ divisor\ (GCD) = 6.$

Definition. Greatest Common Divisor, GCD

Let m, n be two integers not both zero. gcd(m, n) is the largest integer that divides both m and n: gcd(m,n)|m, gcd(m,n)|n and any other common divisor $d \leq gcd(m,n)$.

Notice that every common divisor divides the GCD. Also, gcd(m, n) = gcd(n, m).

Relatively Prime

If gcd(m, n) = 1, then m, n are relatively prime.

Example: 6 and 35 are not prime but they are relatively prime.

Theorem.

gcd(m, n) = gcd(rem(n, m), m).

Proof. $n = qm + r \rightarrow r = n - qm$. Let $D = \gcd(m, n)$ and $d = \gcd(m, r)$. $D|m \text{ and } D|n \to D \text{ divides } r = n - qm. \text{ Hence, } D \leq \gcd(m,r) = d.$ (D is a common divisor of m, r) $d|m \text{ and } d|r \to d \text{ divides } n = qm + r. \text{ Hence, } d \leq \gcd(m,n) = D.$ (d is a common divisor of m, n) $D \leq d$ and $D \geq d \rightarrow D = d$, which proves $\gcd(m, n) = \gcd(n, r)$.

Theorem.

Theorem.

$$gcd(42, 108) = gcd(24, 42)$$
 $24 = 108 - 2 \cdot 42$

Theorem.

$$gcd(m, n) = gcd(rem(n, m), m).$$

$$\gcd(42, 108) = \gcd(24, 42)$$
 $24 = \mathbf{108} - 2 \cdot \mathbf{42}$
= $\gcd(18, 24)$ $18 = 42 - 24 = 42 - \underbrace{(108 - 2 \cdot 42)}_{24} = 3 \cdot \mathbf{42} - \mathbf{108}$

Theorem.

$$\gcd(42, 108) = \gcd(24, 42)$$

$$= \gcd(18, 24)$$

$$= \gcd(6, 18)$$

$$24 = 108 - 2 \cdot 42$$

$$= \gcd(6, 18)$$

$$18 = 42 - 24 = 42 - (108 - 2 \cdot 42) = 3 \cdot 42 - 108$$

$$= \gcd(6, 18)$$

$$6 = 24 - 18 = (108 - 2 \cdot 42) - (3 \cdot 42 - 108) = 2 \cdot 108 - 5 \cdot 42$$

Theorem.

$$\gcd(42, 108) = \gcd(24, 42) \qquad 24 = \mathbf{108} - 2 \cdot \mathbf{42}$$

$$= \gcd(18, 24) \qquad 18 = 42 - 24 = 42 - \underbrace{(108 - 2 \cdot 42)}_{24} = 3 \cdot \mathbf{42} - \mathbf{108}$$

$$= \gcd(6, 18) \qquad 6 = 24 - 18 = \underbrace{(108 - 2 \cdot 42)}_{24} - \underbrace{(3 \cdot 42 - 108)}_{18} = 2 \cdot \mathbf{108} - 5 \cdot \mathbf{42}$$

$$= \gcd(0, 6) \qquad 0 = 18 - 3 \cdot 6$$

Theorem.

$$\gcd(42, 108) = \gcd(24, 42)$$

$$= \gcd(18, 24)$$

$$= \gcd(6, 18)$$

$$= \gcd(0, 6)$$

$$= \gcd(0, n)$$

$$24 = 108 - 2 \cdot 42$$

$$= \gcd(108 - 2 \cdot 42) = 3 \cdot 42 - 108$$

$$= (108 - 2 \cdot 42) - (3 \cdot 42 - 108) = 2 \cdot 108 - 5 \cdot 42$$

$$= \gcd(0, 6)$$

$$= (3 \cdot 42 - 108) = 2 \cdot 108 - 5 \cdot 42$$

$$= \gcd(0, 6)$$

$$= (3 \cdot 42 - 108) = 2 \cdot 108 - 5 \cdot 42$$

$$= \gcd(0, 6)$$

$$= (3 \cdot 42 - 108) = 2 \cdot 108 - 5 \cdot 42$$

Theorem.

gcd(m, n) = gcd(rem(n, m), m).

$$\gcd(42, 108) = \gcd(24, 42) \qquad 24 = \mathbf{108} - 2 \cdot \mathbf{42}$$

$$= \gcd(18, 24) \qquad 18 = 42 - 24 = 42 - \underbrace{(108 - 2 \cdot 42)}_{24} = 3 \cdot \mathbf{42} - \mathbf{108}$$

$$= \gcd(6, 18) \qquad 6 = 24 - 18 = \underbrace{(108 - 2 \cdot 42)}_{24} - \underbrace{(3 \cdot 42 - 108)}_{18} = 2 \cdot \mathbf{108} - 5 \cdot \mathbf{42}$$

$$= \gcd(0, 6) \qquad 0 = 18 - 3 \cdot 6$$

$$= 6 \qquad \gcd(0, n) = n$$

Remainders in Euclid's algorithm are integer linear combinations of 42 and 108.

Theorem.

gcd(m, n) = gcd(rem(n, m), m).

$$\gcd(42, 108) = \gcd(24, 42) \qquad 24 = \mathbf{108} - 2 \cdot \mathbf{42}$$

$$= \gcd(18, 24) \qquad 18 = 42 - 24 = 42 - \underbrace{(108 - 2 \cdot 42)}_{24} = 3 \cdot \mathbf{42} - \mathbf{108}$$

$$= \gcd(6, 18) \qquad 6 = 24 - 18 = \underbrace{(108 - 2 \cdot 42)}_{24} - \underbrace{(3 \cdot 42 - 108)}_{18} = 2 \cdot \mathbf{108} - 5 \cdot \mathbf{42}$$

$$= \gcd(0, 6) \qquad 0 = 18 - 3 \cdot 6$$

$$= 6 \qquad \gcd(0, n) = n$$

Remainders in Euclid's algorithm are integer linear combinations of 42 and 108.

In particular, $gcd(42, 108) = 6 = 2 \times 108 - 5 \times 42$.

Theorem.

gcd(m, n) = gcd(rem(n, m), m).

$$\gcd(42, 108) = \gcd(24, 42) \qquad 24 = \mathbf{108} - 2 \cdot \mathbf{42}$$

$$= \gcd(18, 24) \qquad 18 = 42 - 24 = 42 - \underbrace{(108 - 2 \cdot 42)}_{24} = 3 \cdot \mathbf{42} - \mathbf{108}$$

$$= \gcd(6, 18) \qquad 6 = 24 - 18 = \underbrace{(108 - 2 \cdot 42)}_{24} - \underbrace{(3 \cdot 42 - 108)}_{18} = 2 \cdot \mathbf{108} - 5 \cdot \mathbf{42}$$

$$= \gcd(0, 6) \qquad 0 = 18 - 3 \cdot 6$$

$$= 6 \qquad \gcd(0, n) = n$$

Remainders in Euclid's algorithm are integer linear combinations of 42 and 108.

In particular, $gcd(42, 108) = 6 = 2 \times 108 - 5 \times 42$.

This will be true for gcd(m, n) in general:

$$gcd(m, n) = mx + ny$$
 for some $x, y \in \mathbb{Z}$.

From Euclid's Algorithm,

$$gcd(m, n) = mx + ny$$
 for some $x, y \in \mathbb{Z}$.

From Euclid's Algorithm,

$$gcd(m, n) = mx + ny$$
 for some $x, y \in \mathbb{Z}$.

Can any smaller positive number z be a linear combination of m and n?

suppose:
$$z = mx + ny > 0$$
.

From Euclid's Algorithm,

$$gcd(m, n) = mx + ny$$
 for some $x, y \in \mathbb{Z}$.

Can any smaller positive number z be a linear combination of m and n?

suppose:
$$z = mx + ny > 0$$
.

$$\gcd(m,n) \text{ divides RHS} \to \gcd(m,n)|z, \text{ i.e } z \geq \gcd(m,n) \qquad \text{(because } \gcd(m,n)|m \text{ and } \gcd(m,n)|n).$$

From Euclid's Algorithm,

$$gcd(m, n) = mx + ny$$
 for some $x, y \in \mathbb{Z}$.

Can any smaller positive number z be a linear combination of m and n?

suppose:
$$z = mx + ny > 0$$
.

$$\gcd(m,n) \text{ divides RHS} \to \gcd(m,n)|z, \text{ i.e } z \ge \gcd(m,n)$$
 (because $\gcd(m,n)|m \text{ and } \gcd(m,n)|n).$

Theorem. Bezout's Identity

gcd(m, n) is the smallest positive integer linear combination of m and n:

$$gcd(m, n) = mx + ny$$
 for $x, y \in \mathbb{Z}$.

Formal Proof. Let ℓ be the smallest positive linear combination of m, n: $\ell = mx + ny$.

- Prove $\ell \ge \gcd(m, n)$ as above.
- Prove $\ell \leq \gcd(m, n)$ by showing ℓ is a common divisor $(\operatorname{rem}(m, \ell) = \operatorname{rem}(n, \ell) = 0)$.

From Euclid's Algorithm,

$$gcd(m, n) = mx + ny$$
 for some $x, y \in \mathbb{Z}$.

Can any smaller positive number z be a linear combination of m and n?

suppose:
$$z = mx + ny > 0$$
.

$$\gcd(m,n) \text{ divides RHS} \to \gcd(m,n)|z, \text{ i.e } z \ge \gcd(m,n)$$
 (because $\gcd(m,n)|m \text{ and } \gcd(m,n)|n).$

Theorem. Bezout's Identity

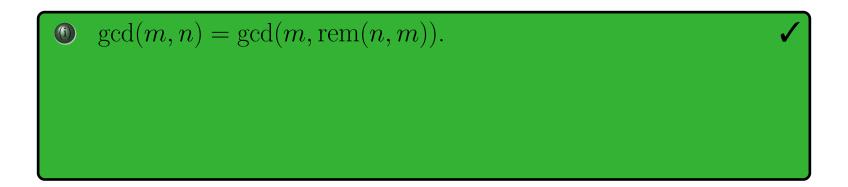
gcd(m, n) is the *smallest positive integer linear combination* of m and n:

$$gcd(m, n) = mx + ny$$
 for $x, y \in \mathbb{Z}$.

Formal Proof. Let ℓ be the smallest positive linear combination of m, n: $\ell = mx + ny$.

- Prove $\ell \ge \gcd(m, n)$ as above.
- Prove $\ell \leq \gcd(m, n)$ by showing ℓ is a common divisor $(\operatorname{rem}(m, \ell) = \operatorname{rem}(n, \ell) = 0)$.

There is no "formula" for GCD. But this is close to a "formula".



Proof.

D Facts

- Every common divisor of m, n divides gcd(m, n).

Proof.

(e.g. 1,2,3,6 are common divisors of 30,42 and all divide the GCD 6)

Facts

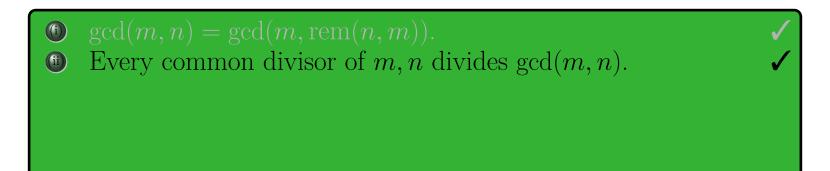
- Every common divisor of m, n divides gcd(m, n).

Proof.

 $\gcd(m,n) = mx + ny.$

(e.g. 1,2,3,6 are common divisors of 30,42 and all divide the GCD 6)

GCD Facts



Proof.

 $\gcd(m,n) = mx + ny$. Any common divisor divides the RHS and so also the LHS. (e.g. 1,2,3,6 are common divisors of 30,42 and all divide the GCD 6)

- For $k \in \mathbb{N}$, $gcd(km, kn) = k \cdot gcd(m, n)$.

Proof.

 $\gcd(m,n) = mx + ny$. Any common divisor divides the RHS and so also the LHS. (e.g. 1,2,3,6 are common divisors of 30,42 and all divide the GCD 6)

(e.g. $gcd(6, 15) = 3 \rightarrow gcd(12, 30) = 2 \times 3 = 6$)

- For $k \in \mathbb{N}$, $\gcd(km, kn) = k \cdot \gcd(m, n)$.

Proof.

- gcd(m, n) = mx + ny. Any common divisor divides the RHS and so also the LHS. (e.g. 1,2,3,6 are common divisors of 30,42 and all divide the GCD 6)
- $\gcd(km, kn) = kmx + kny = k(mx + ny).$

(e.g. $gcd(6, 15) = 3 \rightarrow gcd(12, 30) = 2 \times 3 = 6$)

- For $k \in \mathbb{N}$, $gcd(km, kn) = k \cdot gcd(m, n)$.

Proof.

- gcd(m,n) = mx + ny. Any common divisor divides the RHS and so also the LHS. (e.g. 1,2,3,6 are common divisors of 30,42 and all divide the GCD 6)
- gcd(km, kn) = kmx + kny = k(mx + ny). The RHS is the smallest possible, so there is no smaller positive linear combination of m, n.

(e.g. $gcd(6, 15) = 3 \rightarrow gcd(12, 30) = 2 \times 3 = 6$)

- For $k \in \mathbb{N}$, $\gcd(km, kn) = k \cdot \gcd(m, n)$.

Proof.

- gcd(m, n) = mx + ny. Any common divisor divides the RHS and so also the LHS. (e.g. 1,2,3,6 are common divisors of 30,42 and all divide the GCD 6)
- gcd(km,kn) = kmx + kny = k(mx + ny). The RHS is the smallest possible, so there is no smaller positive linear combination of m, n. That is gcd(m, n) = (mx + ny). (e.g. $gcd(6, 15) = 3 \rightarrow gcd(12, 30) = 2 \times 3 = 6$)

- IF gcd(l, m) = 1 AND gcd(l, n) = 1, THEN gcd(l, mn) = 1.

Proof.

- gcd(m,n) = mx + ny. Any common divisor divides the RHS and so also the LHS. (e.g. 1,2,3,6 are common divisors of 30,42 and all divide the GCD 6)
- gcd(km, kn) = kmx + kny = k(mx + ny). The RHS is the smallest possible, so there is no smaller positive linear combination of m, n. That is gcd(m, n) = (mx + ny). (e.g. $gcd(6, 15) = 3 \rightarrow gcd(12, 30) = 2 \times 3 = 6$)

(e.g. gcd(15, 4) = 1 and $gcd(15, 7) = 1 \rightarrow gcd(15, 28) = 1$)

- IF gcd(l, m) = 1 AND gcd(l, n) = 1, THEN gcd(l, mn) = 1.

Proof.

- gcd(m,n) = mx + ny. Any common divisor divides the RHS and so also the LHS. (e.g. 1,2,3,6 are common divisors of 30,42 and all divide the GCD 6)
- gcd(km, kn) = kmx + kny = k(mx + ny). The RHS is the smallest possible, so there is no smaller positive linear combination of m, n. That is gcd(m, n) = (mx + ny). (e.g. $gcd(6, 15) = 3 \rightarrow gcd(12, 30) = 2 \times 3 = 6$)
- $1 = \ell x + my$ and $1 = \ell x' + ny'$.

(e.g. gcd(15, 4) = 1 and $gcd(15, 7) = 1 \rightarrow gcd(15, 28) = 1$)

- IF gcd(l, m) = 1 AND gcd(l, n) = 1, THEN gcd(l, mn) = 1.

Proof.

- gcd(m,n) = mx + ny. Any common divisor divides the RHS and so also the LHS. (e.g. 1,2,3,6 are common divisors of 30,42 and all divide the GCD 6)
- gcd(km, kn) = kmx + kny = k(mx + ny). The RHS is the smallest possible, so there is no smaller positive linear combination of m, n. That is gcd(m, n) = (mx + ny). (e.g. $gcd(6, 15) = 3 \rightarrow gcd(12, 30) = 2 \times 3 = 6$)
- $1 = \ell x + my$ and $1 = \ell x' + ny'$. Multiplying, $1 = (\ell x + my)(\ell x' + ny') = \ell \cdot (\ell xx' + nxy' + myx') + mn \cdot (yy').$ (e.g. gcd(15, 4) = 1 and $gcd(15, 7) = 1 \rightarrow gcd(15, 28) = 1$)

- IF d|mn AND gcd(d, m) = 1, THEN d|n.

Proof.

- gcd(m, n) = mx + ny. Any common divisor divides the RHS and so also the LHS. (e.g. 1,2,3,6 are common divisors of 30,42 and all divide the GCD 6)
- gcd(km, kn) = kmx + kny = k(mx + ny). The RHS is the smallest possible, so there is no smaller positive linear combination of m, n. That is gcd(m, n) = (mx + ny). (e.g. $gcd(6, 15) = 3 \rightarrow gcd(12, 30) = 2 \times 3 = 6$)
- $1 = \ell x + my$ and $1 = \ell x' + ny'$. Multiplying, $1 = (\ell x + my)(\ell x' + ny') = \ell \cdot (\ell xx' + nxy' + myx') + mn \cdot (yy').$ (e.g. gcd(15, 4) = 1 and $gcd(15, 7) = 1 \rightarrow gcd(15, 28) = 1$)

(e.g. gcd(4, 15) = 1 and $4|15 \times 16 \rightarrow 4|16$)

Creator: Malik Magdon-Ismail

- IF d|mn AND gcd(d, m) = 1, THEN d|n.

Proof.

- gcd(m, n) = mx + ny. Any common divisor divides the RHS and so also the LHS. (e.g. 1,2,3,6 are common divisors of 30,42 and all divide the GCD 6)
- gcd(km,kn) = kmx + kny = k(mx + ny). The RHS is the smallest possible, so there is no smaller positive linear combination of m, n. That is gcd(m, n) = (mx + ny). (e.g. $gcd(6, 15) = 3 \rightarrow gcd(12, 30) = 2 \times 3 = 6$)
- $1 = \ell x + my$ and $1 = \ell x' + ny'$. Multiplying, $1 = (\ell x + my)(\ell x' + ny') = \ell \cdot (\ell xx' + nxy' + myx') + mn \cdot (yy').$ (e.g. gcd(15, 4) = 1 and $gcd(15, 7) = 1 \rightarrow gcd(15, 28) = 1$)
- $dx + my = 1 \rightarrow ndx + nmy = n$.

(e.g. gcd(4, 15) = 1 and $4|15 \times 16 \rightarrow 4|16$)

IF d|mn AND gcd(d, m) = 1, THEN d|n.

Proof.

- gcd(m,n) = mx + ny. Any common divisor divides the RHS and so also the LHS. (e.g. 1,2,3,6 are common divisors of 30,42 and all divide the GCD 6)
- gcd(km, kn) = kmx + kny = k(mx + ny). The RHS is the smallest possible, so there is no smaller positive linear combination of m, n. That is gcd(m, n) = (mx + ny). (e.g. $gcd(6, 15) = 3 \rightarrow gcd(12, 30) = 2 \times 3 = 6$)
- $1 = \ell x + my$ and $1 = \ell x' + ny'$. Multiplying, $1 = (\ell x + my)(\ell x' + ny') = \ell \cdot (\ell xx' + nxy' + myx') + mn \cdot (yy').$ (e.g. gcd(15, 4) = 1 and $gcd(15, 7) = 1 \rightarrow gcd(15, 28) = 1$)
- $dx + my = 1 \rightarrow ndx + nmy = n$. Since d|mn, d divides the LHS, hence d|n, the RHS. (e.g. gcd(4, 15) = 1 and $4|15 \times 16 \rightarrow 4|16$)

gcd(m, n) = gcd(m, rem(n, m)).Every common divisor of m, n divides gcd(m, n). For $k \in \mathbb{N}$, $gcd(km, kn) = k \cdot gcd(m, n)$. IF gcd(l, m) = 1 AND gcd(l, n) = 1, THEN gcd(l, mn) = 1. IF d|mn AND gcd(d, m) = 1, THEN d|n.

Proof.

- gcd(m,n) = mx + ny. Any common divisor divides the RHS and so also the LHS. (e.g. 1,2,3,6 are common divisors of 30,42 and all divide the GCD 6)
- gcd(km,kn) = kmx + kny = k(mx + ny). The RHS is the smallest possible, so there is no smaller positive linear combination of m, n. That is gcd(m, n) = (mx + ny). (e.g. $gcd(6, 15) = 3 \rightarrow gcd(12, 30) = 2 \times 3 = 6$)
- $1 = \ell x + my$ and $1 = \ell x' + ny'$. Multiplying, $1 = (\ell x + my)(\ell x' + ny') = \ell \cdot (\ell xx' + nxy' + myx') + mn \cdot (yy').$ (e.g. gcd(15, 4) = 1 and $gcd(15, 7) = 1 \rightarrow gcd(15, 28) = 1$)
- $dx + my = 1 \rightarrow ndx + nmy = n$. Since d|mn, d divides the LHS, hence d|n, the RHS. (e.g. gcd(4, 15) = 1 and $4|15 \times 16 \rightarrow 4|16$)

Given 3 and 5-gallon jugs, measure exactly 4 gallons.

1: Repeatedly fill the 3-gallon jug.

- 1: Repeatedly fill the 3-gallon jug.
- 2: Empty the 3-gallon jug into the 5-gallon jug.

- 1: Repeatedly fill the 3-gallon jug.
- 2: Empty the 3-gallon jug into the 5-gallon jug.
- 3: If ever the 5-gallon jug is full, empty it by discarding the water.

- 1: Repeatedly fill the 3-gallon jug.
- 2: Empty the 3-gallon jug into the 5-gallon jug.
- 3: If ever the 5-gallon jug is full, empty it by discarding the water. (0,0)

- 1: Repeatedly fill the 3-gallon jug.
- 2: Empty the 3-gallon jug into the 5-gallon jug.
- 3: If ever the 5-gallon jug is full, empty it by discarding the water.

$$(0,0) \xrightarrow{1:} (3,0)$$

- 1: Repeatedly fill the 3-gallon jug.
- 2: Empty the 3-gallon jug into the 5-gallon jug.
- 3: If ever the 5-gallon jug is full, empty it by discarding the water.

$$(0,0) \xrightarrow{1:} (3,0) \xrightarrow{2:} (0,3)$$

- 1: Repeatedly fill the 3-gallon jug.
- 2: Empty the 3-gallon jug into the 5-gallon jug.
- 3: If ever the 5-gallon jug is full, empty it by discarding the water.

$$(0,0) \xrightarrow{1:} (3,0) \xrightarrow{2:} (0,3) \xrightarrow{1:} (3,3)$$

- 1: Repeatedly fill the 3-gallon jug.
- 2: Empty the 3-gallon jug into the 5-gallon jug.
- 3: If ever the 5-gallon jug is full, empty it by discarding the water.

$$(0,0) \xrightarrow{1:} (3,0) \xrightarrow{2:} (0,3) \xrightarrow{1:} (3,3) \xrightarrow{2:} (1,5)$$

- 1: Repeatedly fill the 3-gallon jug.
- 2: Empty the 3-gallon jug into the 5-gallon jug.
- 3: If ever the 5-gallon jug is full, empty it by discarding the water.

$$(0,0) \xrightarrow{1:} (3,0) \xrightarrow{2:} (0,3) \xrightarrow{1:} (3,3) \xrightarrow{2:} (1,5) \xrightarrow{3:} (1,0)$$

- 1: Repeatedly fill the 3-gallon jug.
- 2: Empty the 3-gallon jug into the 5-gallon jug.
- 3: If ever the 5-gallon jug is full, empty it by discarding the water.

$$(0,0) \xrightarrow{1:} (3,0) \xrightarrow{2:} (0,3) \xrightarrow{1:} (3,3) \xrightarrow{2:} (1,5) \xrightarrow{3:} (1,0) \xrightarrow{2:} (0,1)$$

- 1: Repeatedly fill the 3-gallon jug.
- 2: Empty the 3-gallon jug into the 5-gallon jug.
- 3: If ever the 5-gallon jug is full, empty it by discarding the water.

$$(0,0) \xrightarrow{1:} (3,0) \xrightarrow{2:} (0,3) \xrightarrow{1:} (3,3) \xrightarrow{2:} (1,5) \xrightarrow{3:} (1,0) \xrightarrow{2:} (0,1) \xrightarrow{1:} (3,1)$$

- 1: Repeatedly fill the 3-gallon jug.
- 2: Empty the 3-gallon jug into the 5-gallon jug.
- 3: If ever the 5-gallon jug is full, empty it by discarding the water.

$$(0,0) \xrightarrow{1:} (3,0) \xrightarrow{2:} (0,3) \xrightarrow{1:} (3,3) \xrightarrow{2:} (1,5) \xrightarrow{3:} (1,0) \xrightarrow{2:} (0,1) \xrightarrow{1:} (3,1) \xrightarrow{2:} (\mathbf{0,4}) \checkmark$$

Given 3 and 5-gallon jugs, measure exactly 4 gallons.

- 1: Repeatedly fill the 3-gallon jug.
- 2: Empty the 3-gallon jug into the 5-gallon jug.
- 3: If ever the 5-gallon jug is full, empty it by discarding the water.

$$(0,0) \xrightarrow{1:} (3,0) \xrightarrow{2:} (0,3) \xrightarrow{1:} (3,3) \xrightarrow{2:} (1,5) \xrightarrow{3:} (1,0) \xrightarrow{2:} (0,1) \xrightarrow{1:} (3,1) \xrightarrow{2:} (\mathbf{0,4}) \checkmark$$

After the 3-gallon jug is emptied into the 5-gallon jug, the state is $(0, \ell)$, where

$$\ell = 3x - 5y.$$

(the 3-gallon jug has been emptied xtimes and the 5-gallon jug y times)

(integer linear combination of 3, 5).

Given 3 and 5-gallon jugs, measure exactly 4 gallons.

- 1: Repeatedly fill the 3-gallon jug.
- 2: Empty the 3-gallon jug into the 5-gallon jug.
- 3: If ever the 5-gallon jug is full, empty it by discarding the water.

$$(0,0) \xrightarrow{1:} (3,0) \xrightarrow{2:} (0,3) \xrightarrow{1:} (3,3) \xrightarrow{2:} (1,5) \xrightarrow{3:} (1,0) \xrightarrow{2:} (0,1) \xrightarrow{1:} (3,1) \xrightarrow{2:} (\mathbf{0,4}) \checkmark$$

After the 3-gallon jug is emptied into the 5-gallon jug, the state is $(0, \ell)$, where

$$\ell = 3x - 5y.$$

(the 3-gallon jug has been emptied xtimes and the 5-gallon jug y times)

(integer linear combination of 3, 5). Since gcd(3,5) = 1 we can get $\ell = 1$,

$$1 = 3 \cdot 2 - 5 \cdot 1$$

(after emptying the 3-gallon jug 2 times and the 5 gallon jug once, there is 1 gallon)

Given 3 and 5-gallon jugs, measure exactly 4 gallons.

- 1: Repeatedly fill the 3-gallon jug.
- 2: Empty the 3-gallon jug into the 5-gallon jug.
- 3: If ever the 5-gallon jug is full, empty it by discarding the water.

$$(0,0) \xrightarrow{1:} (3,0) \xrightarrow{2:} (0,3) \xrightarrow{1:} (3,3) \xrightarrow{2:} (1,5) \xrightarrow{3:} (1,0) \xrightarrow{2:} (0,1) \xrightarrow{1:} (3,1) \xrightarrow{2:} (\mathbf{0,4}) \checkmark$$

After the 3-gallon jug is emptied into the 5-gallon jug, the state is $(0, \ell)$, where

$$\ell = 3x - 5y.$$

(the 3-gallon jug has been emptied xtimes and the 5-gallon jug y times)

(integer linear combination of 3, 5). Since gcd(3,5) = 1 we can get $\ell = 1$,

$$1 = 3 \cdot 2 - 5 \cdot 1$$

(after emptying the 3-gallon jug 2 times and the 5 gallon jug once, there is 1 gallon)

Do this 4 times and you have 4 gallons (guaranteed).

(Actually fewer pours works.)

$$(0,0) \xrightarrow{1:} (3,0) \xrightarrow{2:} (0,3) \xrightarrow{1:} (3,3) \xrightarrow{2:} (1,5) \xrightarrow{3:} (1,0) \xrightarrow{2:} (0,1)$$

(repeat 4 times)

Given 3 and 5-gallon jugs, measure exactly 4 gallons.

- 1: Repeatedly fill the 3-gallon jug.
- 2: Empty the 3-gallon jug into the 5-gallon jug.
- 3: If ever the 5-gallon jug is full, empty it by discarding the water.

$$(0,0) \xrightarrow{1:} (3,0) \xrightarrow{2:} (0,3) \xrightarrow{1:} (3,3) \xrightarrow{2:} (1,5) \xrightarrow{3:} (1,0) \xrightarrow{2:} (0,1) \xrightarrow{1:} (3,1) \xrightarrow{2:} (\mathbf{0,4}) \checkmark$$

After the 3-gallon jug is emptied into the 5-gallon jug, the state is $(0, \ell)$, where

$$\ell = 3x - 5y.$$

(the 3-gallon jug has been emptied xtimes and the 5-gallon jug y times)

(integer linear combination of 3, 5). Since gcd(3,5) = 1 we can get $\ell = 1$,

$$1 = 3 \cdot 2 - 5 \cdot 1$$

(after emptying the 3-gallon jug 2 times and the 5 gallon jug once, there is 1 gallon)

Do this 4 times and you have 4 gallons (guaranteed).

(Actually fewer pours works.)

$$(0,0) \xrightarrow{1:} (3,0) \xrightarrow{2:} (0,3) \xrightarrow{1:} (3,3) \xrightarrow{2:} (1,5) \xrightarrow{3:} (1,0) \xrightarrow{2:} (0,1)$$
 (repeat 4 times)

If the producers of Die Hard had chosen 3 and 6 gallon jugs, there can be no sequel (phew).

(Why?)

Theorem. Uniqueness of Prime Factorization

Every $n \geq 2$ is uniquely (up to reordering) a product of primes.

Theorem. Uniqueness of Prime Factorization

Every $n \geq 2$ is uniquely (up to reordering) a product of primes.

Euclid's Lemma: For primes p, q_1, \ldots, q_ℓ , if $p|q_1q_2\cdots q_\ell$ then p is one of the q_i .

Theorem. Uniqueness of Prime Factorization

Every $n \geq 2$ is uniquely (up to reordering) a product of primes.

Euclid's Lemma: For primes p, q_1, \ldots, q_ℓ , if $p|q_1q_2\cdots q_\ell$ then p is one of the q_i .

Proof of lemma: If $p|q_{\ell}$ then $p=q_{\ell}$.

Theorem. Uniqueness of Prime Factorization

Every $n \geq 2$ is uniquely (up to reordering) a product of primes.

Euclid's Lemma: For primes p, q_1, \ldots, q_ℓ , if $p|q_1q_2\cdots q_\ell$ then p is one of the q_i .

Proof of lemma: If $p|q_{\ell}$ then $p=q_{\ell}$. If not, $\gcd(p,q_{\ell})=1$ and $p|q_1\cdots q_{\ell-1}$ by GCD fact (v).

Theorem. Uniqueness of Prime Factorization

Every $n \geq 2$ is uniquely (up to reordering) a product of primes.

Euclid's Lemma: For primes p, q_1, \ldots, q_ℓ , if $p|q_1q_2\cdots q_\ell$ then p is one of the q_i .

Proof of lemma: If $p|q_{\ell}$ then $p=q_{\ell}$. If not, $\gcd(p,q_{\ell})=1$ and $p|q_1\cdots q_{\ell-1}$ by GCD fact (v). Induction on ℓ .

Theorem. Uniqueness of Prime Factorization

Every $n \geq 2$ is uniquely (up to reordering) a product of primes.

Euclid's Lemma: For primes p, q_1, \ldots, q_ℓ , if $p|q_1q_2\cdots q_\ell$ then p is one of the q_i . Proof of lemma: If $p|q_\ell$ then $p=q_\ell$. If not, $\gcd(p,q_\ell)=1$ and $p|q_1\cdots q_{\ell-1}$ by GCD fact (v). Induction on ℓ .

Proof. (FTA) Contradiction. Let n_* be the smallest counter-example, $n_* > 2$ and

$$n_* = p_1 p_2 \cdots p_n \\ = q_1 q_2 \cdots q_k$$

Theorem. Uniqueness of Prime Factorization

Every $n \geq 2$ is uniquely (up to reordering) a product of primes.

Euclid's Lemma: For primes p, q_1, \ldots, q_ℓ , if $p|q_1q_2\cdots q_\ell$ then p is one of the q_i . Proof of lemma: If $p|q_\ell$ then $p=q_\ell$. If not, $\gcd(p,q_\ell)=1$ and $p|q_1\cdots q_{\ell-1}$ by GCD fact (v). Induction on ℓ .

Proof. (FTA) Contradiction. Let n_* be the smallest counter-example, $n_* > 2$ and

$$n_* = p_1 p_2 \cdots p_n \\ = q_1 q_2 \cdots q_k$$

Since $p_1|n_*$, it means $p_1|q_1q_2\cdots q_k$ and by Euclid's Lemma, $p_1=q_i$ (w.l.o.g. q_1).

Fundamental Theorem of Arithmetic Part (ii)

Theorem. Uniqueness of Prime Factorization

Every $n \geq 2$ is uniquely (up to reordering) a product of primes.

Euclid's Lemma: For primes p, q_1, \ldots, q_ℓ , if $p|q_1q_2\cdots q_\ell$ then p is one of the q_i . Proof of lemma: If $p|q_\ell$ then $p=q_\ell$. If not, $\gcd(p,q_\ell)=1$ and $p|q_1\cdots q_{\ell-1}$ by GCD fact (v). Induction on ℓ .

Proof. (FTA) Contradiction. Let n_* be the smallest counter-example, $n_* > 2$ and

$$n_* = p_1 p_2 \cdots p_n$$
$$= q_1 q_2 \cdots q_k$$

Since $p_1|n_*$, it means $p_1|q_1q_2\cdots q_k$ and by Euclid's Lemma, $p_1=q_i$ (w.l.o.g. q_1).

$$n_*/p_1 = p_2 \cdots p_n \\ = q_2 \cdots q_k.$$

Creator: Malik Magdon-Ismail Number Theory: 10/14 Cryptography $101 \rightarrow$

Fundamental Theorem of Arithmetic Part (ii)

Theorem. Uniqueness of Prime Factorization

Every $n \geq 2$ is uniquely (up to reordering) a product of primes.

Euclid's Lemma: For primes p, q_1, \ldots, q_ℓ , if $p|q_1q_2\cdots q_\ell$ then p is one of the q_i .

Proof of lemma: If $p|q_{\ell}$ then $p=q_{\ell}$. If not, $\gcd(p,q_{\ell})=1$ and $p|q_1\cdots q_{\ell-1}$ by GCD fact (v). Induction on ℓ .

Proof. (FTA) Contradiction. Let n_* be the smallest counter-example, $n_* > 2$ and

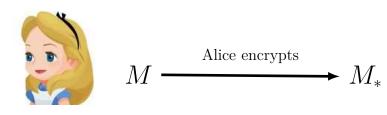
$$n_* = p_1 p_2 \cdots p_n$$
$$= q_1 q_2 \cdots q_k$$

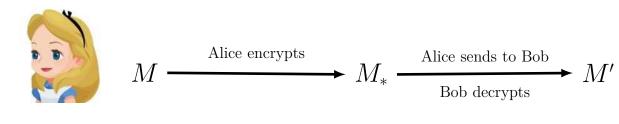
Since $p_1|n_*$, it means $p_1|q_1q_2\cdots q_k$ and by Euclid's Lemma, $p_1=q_i$ (w.l.o.g. q_1).

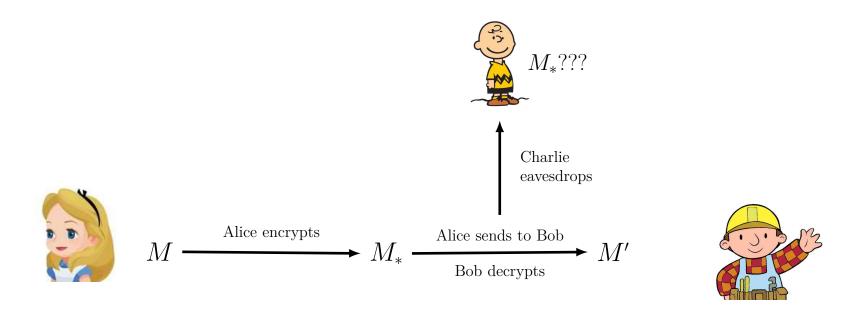
$$n_*/p_1 = p_2 \cdots p_n \\ = q_2 \cdots q_k.$$

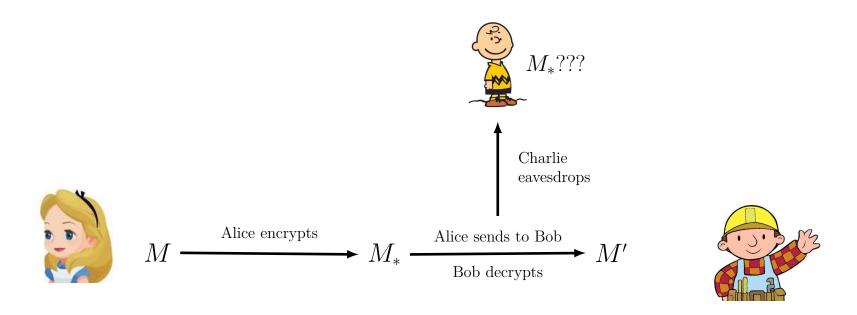
That is, n_*/p_1 is a smaller counter-example. **FISHY!**

Creator: Malik Magdon-Ismail Number Theory: 10/14 Cryptography $101 \rightarrow$





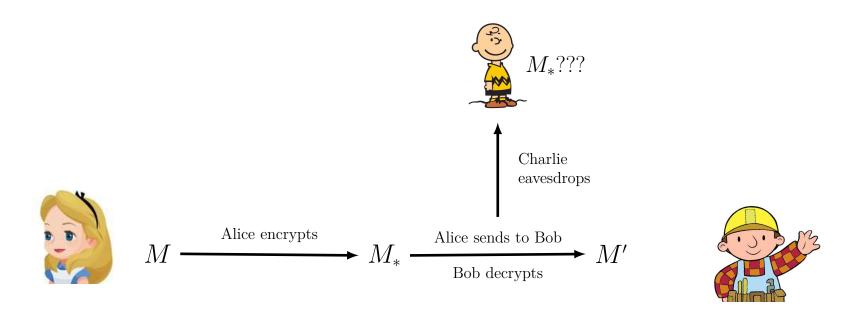




Example.

Alice Encrypts: $M_* = M \times k$

(k is a shared secret - private key)

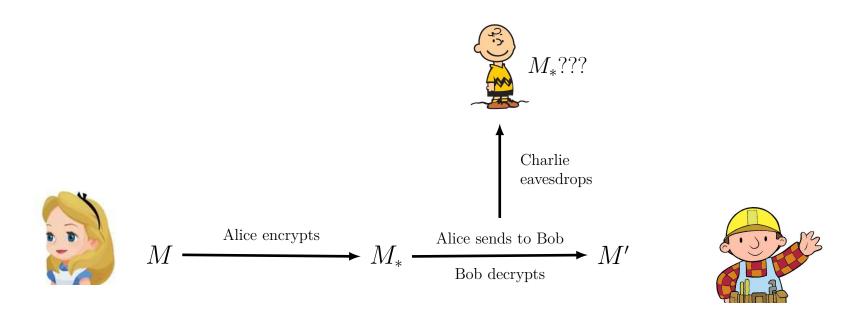


Example.

Alice Encrypts: $M_* = M \times k$

Alice and Bob know k, Charlie does not.

(k is a shared secret - private key)



Example.

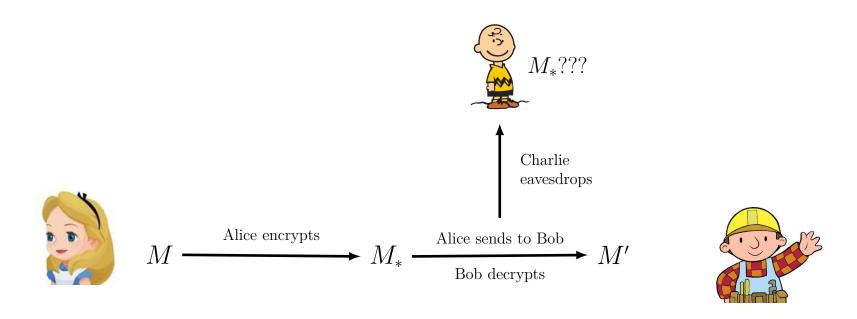
Alice Encrypts: $M_* = M \times k$

Alice and Bob know k, Charlie does not.

Bob Decrypts: $M' = M_*/k = M \times k/k = M$.

(k is a shared secret - private key)

(Hooray, M' = M and Charlie is in the dark.)



Example.

Alice Encrypts: $M_* = M \times k$

(k is a shared secret - private key)

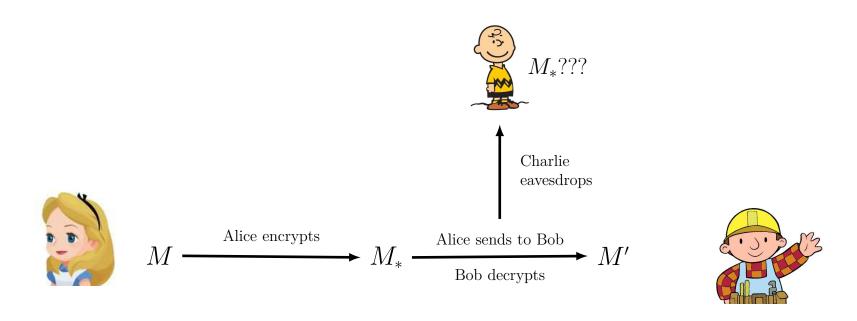
Alice and Bob know k, Charlie does not.

Bob Decrypts: $M' = M_*/k = M \times k/k = M$.

(Hooray, M' = M and Charlie is in the dark.)

Secure as long as Charlie cannot factor M' into k and M.

(Factoring is HARD)



Example.

Alice Encrypts: $M_* = M \times k$

(k is a shared secret - private key)

Alice and Bob know k, Charlie does not.

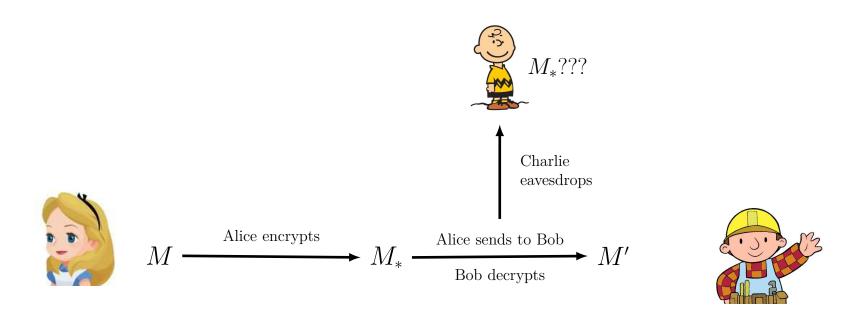
Bob Decrypts: $M' = M_*/k = M \times k/k = M$.

(Hooray, M' = M and Charlie is in the dark.)

Secure as long as Charlie cannot factor M' into k and M.

(Factoring is HARD)

One time use. For two cypher-texts, $k = \gcd(M_{1*}, M_{2*})$.



Example.

Alice Encrypts: $M_* = M \times k$

(k is a shared secret - private key)

Alice and Bob know k, Charlie does not.

Bob Decrypts: $M' = M_*/k = M \times k/k = M$.

(Hooray, M' = M and Charlie is in the dark.)

Secure as long as Charlie cannot factor M' into k and M.

(Factoring is HARD)

One time use. For two cypher-texts, $k = \gcd(M_{1*}, M_{2*})$.

To improve, we need modular arithmetic.

$$a \equiv b \pmod{d}$$

$$d|(a-b),$$

 $a \equiv b \pmod{d}$ if and only if d|(a-b), i.e. a-b=kd for $k \in \mathbb{Z}$

$$41 \equiv 79 \pmod{19}$$

$$41 \equiv 79 \pmod{19}$$
 because $41 - 79 = -38 = -2 \cdot 19$.

$$a \equiv b \pmod{d}$$

$$d|(a-b),$$

 $a \equiv b \pmod{d}$ if and only if d|(a-b), i.e. a-b=kd for $k \in \mathbb{Z}$

$$41 \equiv 79 \pmod{19}$$

$$41 \equiv 79 \pmod{19}$$
 because $41 - 79 = -38 = -2 \cdot 19$.

Modular Equivalence Properties.

Suppose $a \equiv b \pmod{d}$, i.e. a = b + kd, and $r \equiv s \pmod{d}$, i.e. $r = s + \ell d$.

$$a \equiv b \pmod{d}$$

$$d|(a-b),$$

 $a \equiv b \pmod{d}$ if and only if d|(a-b), i.e. a-b=kd for $k \in \mathbb{Z}$

$$41 \equiv 79 \pmod{19}$$

$$41 \equiv 79 \pmod{19}$$
 because $41 - 79 = -38 = -2 \cdot 19$.

Modular Equivalence Properties.

Suppose $a \equiv b \pmod{d}$, i.e. a = b + kd, and $r \equiv s \pmod{d}$, i.e. $r = s + \ell d$. Then,

(a)
$$ar \equiv bs \pmod{d}$$
.

(a)
$$ar \equiv bs \pmod{d}$$
. (b) $a + r \equiv b + s \pmod{d}$. (c) $a^n \equiv b^n \pmod{d}$.

(c)
$$a^n \equiv b^n \pmod{d}$$
.

$$a \equiv b \pmod{d}$$
 if and only if $d|(a-b)$, i.e. $a-b=kd$ for $k \in \mathbb{Z}$
$$41 \equiv 79 \pmod{19}$$
 because $41-79=-38=-2\cdot 19.$

Modular Equivalence Properties.

Suppose
$$a \equiv b \pmod{d}$$
, i.e. $a = b + kd$, and $r \equiv s \pmod{d}$, i.e. $r = s + \ell d$. Then, (a) $ar \equiv bs \pmod{d}$. (b) $a + r \equiv b + s \pmod{d}$. (c) $a^n \equiv b^n \pmod{d}$.

$$\begin{array}{ll} ar-bs & (a+r)-(b+s) \\ = (b+kd)(s+\ell d)-bs & = (b+kd+s+\ell d)-b-s \\ = d(ks+b\ell l+k\ell d). & = d(k+\ell). \end{array}$$
 Repeated application of (a) Induction.

Addition and multiplication are just like regular arithmetic.

$$a \equiv b \pmod{d}$$
 if and only if $d|(a-b)$, i.e. $a-b=kd$ for $k \in \mathbb{Z}$ $41 \equiv 79 \pmod{19}$ because $41-79=-38=-2\cdot 19$.

Modular Equivalence Properties.

Suppose
$$a \equiv b \pmod{d}$$
, i.e. $a = b + kd$, and $r \equiv s \pmod{d}$, i.e. $r = s + \ell d$. Then, (a) $ar \equiv bs \pmod{d}$. (b) $a + r \equiv b + s \pmod{d}$. (c) $a^n \equiv b^n \pmod{d}$.

$$\begin{array}{ll} ar-bs & (a+r)-(b+s) \\ = (b+kd)(s+\ell d)-bs & = (b+kd+s+\ell d)-b-s \\ = d(ks+b\ell l+k\ell d). & = d(k+\ell). \end{array}$$
 Repeated application.
$$= d(k+\ell).$$
 That is $d|ar-bs$.

Repeated application of (a)

Addition and multiplication are just like regular arithmetic.

$$a \equiv b \pmod{d}$$

$$d|(a-b)$$

 $a \equiv b \pmod{d}$ if and only if d|(a-b), i.e. a-b=kd for $k \in \mathbb{Z}$

$$41 \equiv 79 \pmod{19}$$

$$41 \equiv 79 \pmod{19}$$
 because $41 - 79 = -38 = -2 \cdot 19$.

Modular Equivalence Properties.

Suppose $a \equiv b \pmod{d}$, i.e. a = b + kd, and $r \equiv s \pmod{d}$, i.e. $r = s + \ell d$. Then,

(a)
$$ar \equiv bs \pmod{d}$$
.

(a)
$$ar \equiv bs \pmod{d}$$
. (b) $a + r \equiv b + s \pmod{d}$. (c) $a^n \equiv b^n \pmod{d}$.

(c)
$$a^n \equiv b^n \pmod{d}$$
.

$$ar - bs$$

$$= (b + kd)(s + \ell d) - bs$$

$$= d(ks + b\ell l + k\ell d).$$
That is $d|ar - bs$.

$$ar - bs$$

$$= (b + kd)(s + \ell d) - bs$$

$$= d(ks + b\ell l + k\ell d).$$

$$= (b + kd + s + \ell d) - b - s$$

$$= d(k + \ell).$$
That is $d|ar - bs$.

That is $d|(a + r) - (b + s)$.

Repeated application of (a) Induction.

Addition and multiplication are just like regular arithmetic.

$$3^2 \equiv -1 \pmod{10}$$

$$a \equiv b \pmod{d}$$

$$d|(a-b),$$

 $a \equiv b \pmod{d}$ if and only if d|(a-b), i.e. a-b=kd for $k \in \mathbb{Z}$

$$41 \equiv 79 \pmod{19}$$

$$41 \equiv 79 \pmod{19}$$
 because $41 - 79 = -38 = -2 \cdot 19$.

Modular Equivalence Properties.

Suppose $a \equiv b \pmod{d}$, i.e. a = b + kd, and $r \equiv s \pmod{d}$, i.e. $r = s + \ell d$. Then,

(a)
$$ar \equiv bs \pmod{d}$$
.

(a)
$$ar \equiv bs \pmod{d}$$
. (b) $a + r \equiv b + s \pmod{d}$. (c) $a^n \equiv b^n \pmod{d}$.

(c)
$$a^n \equiv b^n \pmod{d}$$

$$ar - bs$$

$$= (b + kd)(s + \ell d) - bs$$

$$= d(ks + b\ell l + k\ell d).$$
That is $d|ar - bs$.

$$ar - bs$$

$$= (b + kd)(s + \ell d) - bs$$

$$= d(ks + b\ell l + k\ell d).$$

$$= d(k + \ell l).$$

$$= d(k + \ell l).$$
That is $d|ar - bs$.
$$(a + r) - (b + s)$$

$$= (b + kd + s + \ell d) - b - s$$

$$= d(k + \ell l).$$
That is $d|(a + r) - (b + s)$.

Repeated application of (a) Induction.

Addition and multiplication are just like regular arithmetic.

$$3^2 \equiv -1 \pmod{10}$$

 $\rightarrow (3^2)^{1008} \equiv (-1)^{1008} \pmod{10}$

$$a \equiv b \pmod{d}$$
 if and only if $d|(a-b)$, i.e. $a-b=kd$ for $k \in \mathbb{Z}$ $41 \equiv 79 \pmod{19}$ because $41-79=-38=-2\cdot 19$.

Modular Equivalence Properties.

Suppose
$$a \equiv b \pmod{d}$$
, i.e. $a = b + kd$, and $r \equiv s \pmod{d}$, i.e. $r = s + \ell d$. Then,

(a) $ar \equiv bs \pmod{d}$.

(b) $a + r \equiv b + s \pmod{d}$.

(c) $a^n \equiv b^n \pmod{d}$.

$$ar - bs = (b + kd)(s + \ell d) - bs = (b + kd + s + \ell d) - b - s = (b + kd + s + \ell d) - b - s = d(k + \ell)$$
.

That is $d|ar - bs$.

That is $d|ar - bs$.

The mode d induction of (a) Induction.

Addition and multiplication are just like regular arithmetic.

$$3^2 \equiv -1 \pmod{10}$$

 $\rightarrow (3^2)^{1008} \equiv (-1)^{1008} \pmod{10}$
 $\rightarrow 3 \cdot (3^2)^{1008} \equiv 3 \cdot (-1)^{1008} \pmod{10}$

$$a \equiv b \pmod{d}$$
 if and only if $d|(a-b)$, i.e. $a-b=kd$ for $k \in \mathbb{Z}$ $41 \equiv 79 \pmod{19}$ because $41-79=-38=-2\cdot 19$.

Modular Equivalence Properties.

Suppose
$$a \equiv b \pmod{d}$$
, i.e. $a = b + kd$, and $r \equiv s \pmod{d}$, i.e. $r = s + \ell d$. Then, (a) $ar \equiv bs \pmod{d}$. (b) $a + r \equiv b + s \pmod{d}$. (c) $a^n \equiv b^n \pmod{d}$.
$$(c) a^n \equiv b^n \pmod{d}.$$
 Repeated application of (a)
$$= d(ks + b\ell l + k\ell d).$$
 That is $d|ar - bs$. That is $d|ar + b + kd$.

That is d|ar - bs.

Addition and multiplication are just like regular arithmetic.

$$3^{2} \equiv -1 \pmod{10}$$

$$\to (3^{2})^{1008} \equiv (-1)^{1008} \pmod{10}$$

$$\to 3 \cdot (3^{2})^{1008} \equiv 3 \cdot (-1)^{1008} \pmod{10}$$

$$\equiv 3$$

 $15 \cdot \emptyset \equiv 13 \cdot \emptyset \pmod{12}$

$$15 \cdot \emptyset \equiv 13 \cdot \emptyset \pmod{12}$$
$$15 \not\equiv 13 \pmod{12} \qquad \times$$

$$15 \cdot \emptyset \equiv 13 \cdot \emptyset \pmod{12}$$
 $15 \cdot \emptyset \equiv 2 \cdot \emptyset \pmod{13}$ $15 \not\equiv 13 \pmod{12}$

$$15 \cdot \emptyset \equiv 13 \cdot \emptyset \pmod{12}$$
 $15 \cdot \emptyset \equiv 2 \cdot \emptyset \pmod{13}$ $15 \not\equiv 13 \pmod{12}$ \times $15 \equiv 2 \pmod{13}$ \checkmark

$$15 \cdot \mathscr{B} \equiv 13 \cdot \mathscr{B} \pmod{12}$$
 $15 \cdot \mathscr{B} \equiv 2 \cdot \mathscr{B} \pmod{13}$ $7 \cdot \mathscr{B} \equiv 22 \cdot \mathscr{B} \pmod{15}$ $15 \not\equiv 13 \pmod{12}$ \checkmark $15 \equiv 2 \pmod{13}$

$$15 \cdot \emptyset \equiv 13 \cdot \emptyset \pmod{12}$$
 $15 \cdot \emptyset \equiv 2 \cdot \emptyset \pmod{13}$ $7 \cdot \emptyset \equiv 22 \cdot \emptyset \pmod{15}$ $15 \not\equiv 13 \pmod{12}$ $15 \equiv 2 \pmod{13}$ $15 \equiv 2 \pmod{13}$ $15 \equiv 2 \pmod{13}$ $15 \equiv 2 \pmod{15}$

$$15 \cdot \emptyset \equiv 13 \cdot \emptyset \pmod{12}$$
 $15 \cdot \emptyset \equiv 2 \cdot \emptyset \pmod{13}$ $7 \cdot \emptyset \equiv 22 \cdot \emptyset \pmod{15}$ $15 \not\equiv 13 \pmod{12}$ $(\text{mod } 12)$ $(\text{mod } 13)$ $(\text{mod } 13)$ $(\text{mod } 15)$

Modular Division: cancelling a factor from both sides

Suppose $ac \equiv bc \pmod{d}$. You can cancel c to get $a \equiv b \pmod{d}$ if $\gcd(c,d) = 1$.

Proof. d|c(a-b). By GCD fact (v), d|a-b because gcd(c,d)=1.

$$15 \cdot \varnothing \equiv 13 \cdot \varnothing \pmod{12}$$
 $15 \cdot \varnothing \equiv 2 \cdot \varnothing \pmod{13}$ $7 \cdot \varnothing \equiv 22 \cdot \varnothing \pmod{15}$ $15 \not\equiv 13 \pmod{12}$ \checkmark $7 \equiv 22 \pmod{15}$ \checkmark

Modular Division: cancelling a factor from both sides

Suppose $ac \equiv bc \pmod{d}$. You can cancel c to get $a \equiv b \pmod{d}$ if $\gcd(c,d) = 1$.

Proof. d|c(a-b). By GCD fact (v), d|a-b because gcd(c,d)=1.

If d is prime, then division with prime modulus is pretty much like regular division.

$$15 \cdot \emptyset \equiv 13 \cdot \emptyset \pmod{12}$$
 $15 \cdot \emptyset \equiv 2 \cdot \emptyset \pmod{13}$ $7 \cdot \emptyset \equiv 22 \cdot \emptyset \pmod{15}$ $15 \not\equiv 13 \pmod{12}$ $(\text{mod } 12)$ $(\text{mod } 13)$ $(\text{mod } 13)$ $(\text{mod } 15)$

Modular Division: cancelling a factor from both sides

Suppose $ac \equiv bc \pmod{d}$. You can cancel c to get $a \equiv b \pmod{d}$ if $\gcd(c,d) = 1$.

Proof. d|c(a-b). By GCD fact (v), d|a-b because gcd(c,d)=1.

If d is prime, then division with prime modulus is pretty much like regular division.

Modular Inverse. Inverses do not exist in \mathbb{N} . Modular inverse may exist.

$$3 \times n = 1$$

$$3 \times n = 1 \pmod{7}$$

$$n = ?$$

$$15 \cdot \mathscr{B} \equiv 13 \cdot \mathscr{B} \pmod{12}$$
 $15 \cdot \mathscr{B} \equiv 2 \cdot \mathscr{B} \pmod{13}$ $7 \cdot \mathscr{B} \equiv 22 \cdot \mathscr{B} \pmod{15}$ $15 \not\equiv 13 \pmod{12}$ \checkmark $7 \equiv 22 \pmod{15}$

Modular Division: cancelling a factor from both sides

Suppose $ac \equiv bc \pmod{d}$. You can cancel c to get $a \equiv b \pmod{d}$ if $\gcd(c,d) = 1$.

Proof. d|c(a-b). By GCD fact (v), d|a-b because gcd(c,d)=1.

If d is prime, then division with prime modulus is pretty much like regular division.

Modular Inverse. Inverses do not exist in \mathbb{N} . Modular inverse may exist.

$$3 \times n = 1$$

$$n = ?$$

$$3 \times n = 1 \pmod{7} \qquad \qquad n = 5$$

$$n=5$$

Creator: Malik Magdon-Ismail

RSA Public Key Cryptography Uses Modular Arithmetic

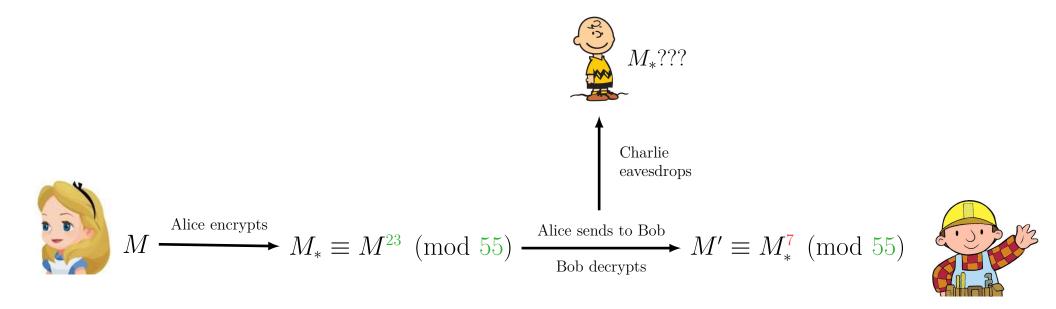
Bob broadcasts to the world the numbers 23, 55.

(Bob's RSA public key).

RSA Public Key Cryptography Uses Modular Arithmetic

Bob broadcasts to the world the numbers 23, 55.

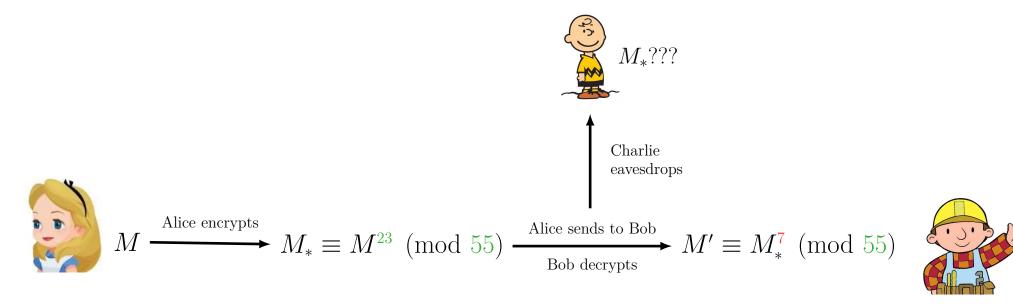
(Bob's RSA public key).



RSA Public Key Cryptography Uses Modular Arithmetic

Bob broadcasts to the world the numbers 23, 55.

(Bob's RSA public key).



Examples. Does Bob always decode to the correct message?

$$M=2.$$
 $M_*=8$ $M'=2$ $M'=M \odot$ $2^{23} \equiv 8 \pmod{55}$ $8^7 \equiv 2 \pmod{55}$ $M=3.$ $M_*=27$ $M'=3$ M'

Exercise 10.14. Proof that Bob always decodes to the right message for special 55,23 and 7. (How to get them?) **Practical Implementation.** Good idea to pad with random bits to make the cypher text random.