## MIDTERM: 120 Minutes

| Last Name:  |  |
|-------------|--|
| First Name: |  |
| RIN:        |  |
| Section:    |  |

Answer **ALL** questions. You may use one double sided  $8\frac{1}{2}\times11$  crib sheet.

NO COLLABORATION or electronic devices. Any violations result in an F.

 ${\bf NO}$   ${\bf questions}$  allowed during the test. Interpret and do the best you can.

You MUST show CORRECT work, even on multiple choice questions, to get credit.

## GOOD LUCK!

| 1   | 2  | 3  | 4  | 5  | 6  | Total |
|-----|----|----|----|----|----|-------|
|     |    |    |    |    |    |       |
| 100 | 20 | 20 | 20 | 20 | 20 | 200   |

| 1   | Circle one answer per question. 10 points for each correct answer.                                                                                       |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| (a) | Compute the sum $\sum_{n=1}^{4} 5^{n+1}$ .                                                                                                               |
| (ω) | $\begin{bmatrix} A \end{bmatrix}$ 3900.                                                                                                                  |
|     | B 3901.                                                                                                                                                  |
|     | C 3905.                                                                                                                                                  |
|     | D 3906.                                                                                                                                                  |
|     | E None of the above.                                                                                                                                     |
|     |                                                                                                                                                          |
| (b) | Compute $20^{20} \mod 7$                                                                                                                                 |
|     | $oxed{A}$ 1.                                                                                                                                             |
|     | B 3.                                                                                                                                                     |
|     | C 4.                                                                                                                                                     |
|     | D 6.                                                                                                                                                     |
|     | E None of the above.                                                                                                                                     |
| (c) | A graph has degree sequence $[6, 6, 4, 3, 3, 2, 2]$ . How many edges does this graph have?                                                               |
|     | A 13.                                                                                                                                                    |
|     | B 25.                                                                                                                                                    |
|     | [C] 30.                                                                                                                                                  |
|     | D Not enough information to say.                                                                                                                         |
|     | E Such a graph does not exist.                                                                                                                           |
| (d) | Suppose a connected planar graph has 4 vertices and splits the plane into 3 regions. Which of the following are possible degree sequences for the graph? |
|     | $lacksquare{A}\ [2\ 2\ 2\ 2].$                                                                                                                           |
|     | B [3 3 3 3].                                                                                                                                             |
|     | C [3 3 2 2].                                                                                                                                             |
|     | D None of the above.                                                                                                                                     |
|     | E No such graph exists.                                                                                                                                  |
| (e) | What is the last digit of $103^{192}$ .                                                                                                                  |
|     | $oxed{A} 0$                                                                                                                                              |
|     |                                                                                                                                                          |
|     | $oxed{\mathbb{C}}$ 2                                                                                                                                     |
|     | D 3                                                                                                                                                      |
|     | $oxed{\mathrm{E}}$ 4                                                                                                                                     |

| (f) | Which of the following numbers evenly divides $5^{69} - 1$ ?                                                                                                  |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     | $oxed{A}$ 4                                                                                                                                                   |
|     | B 5                                                                                                                                                           |
|     | C 11                                                                                                                                                          |
|     | $\boxed{\mathrm{D}}$ 23                                                                                                                                       |
|     | E None of the above                                                                                                                                           |
| (g) | The converse of "If induction is appropriate then the base case is true and the inductive step holds" is:                                                     |
|     | A If the base case is false and the inductive step is false, then induction is not appropriate.                                                               |
|     | B If the base case is false or the inductive step does not hold, then induction is not appropriate.                                                           |
|     | C If induction is not appropriate, then the base case is false or the inductive step does not hold.                                                           |
|     | D If the base case is true and the inductive step holds then induction is appropriate.                                                                        |
|     | E None of the above.                                                                                                                                          |
| (h) | Which claim below is <i>not</i> true?                                                                                                                         |
|     | $\boxed{\mathbf{A}} \ 2n^2 + n \in \Theta(n^2).$                                                                                                              |
|     | $\boxed{\mathrm{B}} \ 4^n \in \Theta(2^n).$                                                                                                                   |
|     | $C$ $f \in \Theta(n)$ and $g \in \Theta(n) \Rightarrow f + g \in \Theta(n)$ .                                                                                 |
|     | D None of these claims are true.                                                                                                                              |
|     | E All of these claims are true.                                                                                                                               |
|     |                                                                                                                                                               |
| (i) | Suppose $f(x) > 0$ for all $x$ , and $f(i+1)/f(i) \le r$ , where $0 < r < 1$ . For which of the following $g$ is $\sum_{i=1}^{n} f(i) \in \Theta(g(n))$ ?     |
|     | $\boxed{\mathbf{A}} \ g(n) = 1.$                                                                                                                              |
|     | $\boxed{\mathrm{B}} \ g(n) = 2^r.$                                                                                                                            |
|     | $\boxed{\mathrm{C}} \ g(n) = \ln(r).$                                                                                                                         |
|     | $\boxed{\mathbf{D}} g(n) = r^n.$                                                                                                                              |
|     | E None of the above.                                                                                                                                          |
| (j) | Which of these sums are $O(n^2)$ : (a) $\sum_{i=1}^{n} (1+i)^2$ (b) $\sum_{i=1}^{n} 2^i$ (c) $\sum_{i=1}^{n} \frac{i}{1+i^2}$ (d) $\sum_{i=1}^{n} (-1)^i i$ ? |
|     | $oxed{f A} a, b$                                                                                                                                              |
|     | $oxed{\mathrm{B}} c$                                                                                                                                          |
|     | $oxed{\mathbb{C}} a,b,c$                                                                                                                                      |
|     | $\boxed{	ext{D}} \ a,c$                                                                                                                                       |
|     | $oxed{\mathrm{E}} c,d$                                                                                                                                        |

2 Let  $d = \gcd(m,n)$ , where m,n>0. Bezout's Theorem gives d=mx+ny where  $x,y\in\mathbb{Z}$ . Prove or disprove that it is always possible to find  $a,b\in\mathbb{Z}$  for which ax+by=1.



4 Prove, or disprove:  $n! \in \Theta(2^n)$ .

5 For  $k \in \mathbb{N}$ , show that  $2^k + 1$  and  $2^k - 1$  are relatively prime.

**6** Let  $n \ge 1$  be a natural number. Prove that  $2^{(1/2)^n}$  is not rational.

## SCRATCH

## SCRATCH