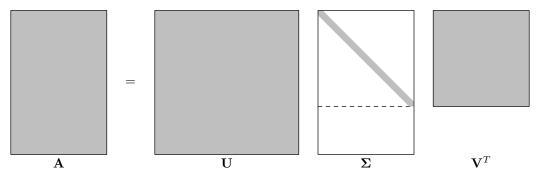
SVD review

Let \mathbf{A} be a rank- ρ matrix in $\mathbb{R}^{m \times n}$ with $m \geq n$. Recall that the *full* SVD of \mathbf{A} takes the form $\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T$, where \mathbf{U} is an $m \times m$ orthonormal matrix (i.e., the columns of \mathbf{U} have unit length and are mutually orthogonal; more concisely, $\mathbf{U}^T \mathbf{U} = \mathbf{I}_m$), \mathbf{V} is an $n \times n$ orthonormal matrix, and $\mathbf{\Sigma}$ is an $m \times n$ diagonal matrix that has nonnegative entries. The columns of \mathbf{U} and \mathbf{V} are called, respectively, the left and right singular vectors of \mathbf{A} , and the diagonal entries of $\mathbf{\Sigma}$ are called the singular values of \mathbf{A} . In particular, \mathbf{A} has m left singular vectors and n singular values and right singular vectors.



We decompose U as

$$\mathbf{U} = \begin{bmatrix} \mathbf{u}_1 & \dots & \mathbf{u}_m \end{bmatrix} = \begin{bmatrix} \mathbf{U}_{
ho} & \mathbf{U}_{
ho}^{\perp} \end{bmatrix},$$

so that \mathbf{u}_i denotes the *i*th left singular vector of \mathbf{A} , and the first ρ left singular vectors of \mathbf{A} constitute the matrix \mathbf{U}_{ρ} , while the remaining left singular vectors constitute $\mathbf{U}_{\rho}^{\perp}$. Note that $\mathbf{U}_{\rho}^{T}\mathbf{U}_{\rho}^{\perp} = \mathbf{0}$. We similarly decompose the matrix of right singular vectors as

$$\mathbf{V} = \begin{bmatrix} \mathbf{v}_1 & \dots & \mathbf{v}_n \end{bmatrix} = \begin{bmatrix} \mathbf{V}_{
ho} & \mathbf{V}_{
ho}^{\perp} \end{bmatrix},$$

and the matrix of singular values as

$$oldsymbol{\Sigma} = egin{bmatrix} oldsymbol{\Sigma}_{
ho} \ oldsymbol{0}_{m-
ho imes n} \end{bmatrix}.$$

Using this notation, the full SVD of A has the decomposition

$$\mathbf{A} = \begin{bmatrix} \mathbf{U}_{\rho} & \mathbf{U}_{\rho}^{\perp} \end{bmatrix} \begin{bmatrix} \mathbf{\Sigma}_{\rho} \\ \mathbf{0}_{m-\rho \times n} \end{bmatrix} \begin{bmatrix} \mathbf{V}_{\rho}^{T} \\ (\mathbf{V}_{\rho}^{\perp})^{T} \end{bmatrix}. \tag{1}$$

The full SVD is useful because in the decomposition $\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T$, the matrices \mathbf{U} and \mathbf{V} are orthonormal, so are invertible, and preserve Euclidean norms of vectors. It also lets you immediately read off orthogonal bases for the four fundamental subspaces associated with \mathbf{A} : the kernel/null space (has basis $\mathbf{V}_{\rho}^{\perp}$), the column space (has basis \mathbf{U}_{ρ}), the row space (has basis \mathbf{V}_{ρ}), and the cokernel (i.e. the set of vectors so that $\mathbf{x}^T \mathbf{A} = \mathbf{0}$, equivalently the kernel of \mathbf{A}^T ; this has basis $\mathbf{U}_{\rho}^{\perp}$).

However, as you can check by multiplying out equation (1), we can also write $\mathbf{A} = \mathbf{U}_{\rho} \mathbf{\Sigma}_{\rho} \mathbf{V}_{\rho}^{T}$. This is called the *reduced* SVD, and is a more condensed factorization that is very useful in practice. Now \mathbf{U}_{ρ} and \mathbf{V}_{ρ} only contain the singular vectors corresponding to the nonzero singular values of \mathbf{A} . Note that if \mathbf{A} is an invertible matrix then the reduced SVD and full SVD are identical.