CSCI 6971/4971 Spring 2019 Self-Assessment

Linear Algebra

Concepts: SVD, EVD, QR decompositions; Rank, Nullity; Positivity; Orthonormality; Vector norms; Frobenius norm; Spectral norm

- 1. What is the tightest upper bound on $|\mathbf{x}^T\mathbf{y}|$ in terms of the Euclidean norms of \mathbf{x} and \mathbf{y} ?
- 2. Let matrices \mathbf{A} and \mathbf{B} have the same dimensions; show that the trace of the matrix $\mathbf{A}\mathbf{B}^T$ is the same as the inner product of the vectors \mathbf{a} and \mathbf{b} obtained by stacking the columns of \mathbf{A} and \mathbf{B} .

- 3. Why is it that $\mathbf{A}^T \mathbf{A} + \mathbf{I}$ is invertible for any matrix \mathbf{A} ?
- 4. Express $\|\mathbf{A}^{-1}\|_2$ in terms of the singular values of \mathbf{A} .
- 5. If $\mathbf{A} = \mathbf{Q}\mathbf{R}$ is a QR decomposition, give an expression for $\mathbf{A}^T\mathbf{A}$ in terms of \mathbf{R} .
- 6. If $\mathbf{A} = \mathbf{U}\mathbf{S}\mathbf{V}^T$ is the full SVD of \mathbf{A} , then what are the full SVDs of $\mathbf{A}^T\mathbf{A}$ and $\mathbf{A}\mathbf{A}^T$?

7.	If $A = US^{3}$	\mathbf{V}^T is	s the f	ull SVD	of \mathbf{A} ,	how	can	you rea	d off	the	rank	and	nullity	of.	\mathbf{A}	from	just
	S?																

8. If
$$\mathbf{x}^T \mathbf{A}^T \mathbf{A} \mathbf{x} = 0$$
, what can we say about \mathbf{x} ?

- 9. If \mathbf{A} is symmetric (not necessarily positive-definite), how are its eigenvalue decomposition and singular value decomposition related?
- 10. If **U** is a matrix with orthonormal columns, argue that $\|\mathbf{U}\mathbf{x}\|_2^2 = \|\mathbf{x}\|_2^2$.
- 11. Express the Frobenius norm of \mathbf{A} in terms of the trace of the matrix $\mathbf{A}^T \mathbf{A}$ and argue that it is smaller than the spectral norm of \mathbf{A} .
- 12. If **A** and **B** are matrices whose columns are respectively $\{\mathbf{a}_i\}_i$ and $\{\mathbf{b}_i\}_i$, show that $\mathbf{A}\mathbf{B}^T = \sum_i a_i b_i^T$.

13. Express $\|\mathbf{a}\mathbf{a}^T\|_F^2$ in terms of the Euclidean length of \mathbf{a} .

Probability

Concepts: Independence; Variance; Expectation; Total Probability; Gaussians

- 1. Let p(x,y) be the joint pdf for two random variables X,Y in \mathbb{R}^2 ; give expressions for $p_1(x)$ and $p_2(y)$, the marginals of X and Y.
- 2. If X and Y are independent random variables, how is p related to p_1 and p_2 ?
- 3. If X and Y are independent, give an expression for the expectation of f(x)g(y), where f and g are arbitrary functions (this expression should not be true in general if X and Y are not independent).
- 4. What can be said about $\mathbb{P}\{\mathcal{E}_1 \cap \mathcal{E}_2\}$ if the events \mathcal{E}_1 and \mathcal{E}_2 are independent?
- 5. If X, Y, Z are independent, what can we say about $\mathbb{E}(X+Y+Z)$? If they are not independent?
- 6. Let $[[\cdot]]$ be the indicator function that returns 1 if the argument is true and 0 otherwise; give a simple expression for $\mathbb{E}([[X \in \mathcal{A}]])$.
- 7. Use the law of total probability to argue that $\mathbb{P}\{\mathcal{E}_1\} \leq \mathbb{P}\{\mathcal{E}_1 \cap \mathcal{E}_2\} + \mathbb{P}\{\mathcal{E}_2^c\}$.

- 8. Give a sufficient condition for when the variance of X + Y equals the sum of the variances of X and Y. Provide a proof of your claim.
- 9. Let \mathbf{x} be a standard multivariate Gaussian in \mathbb{R}^n , \mathbf{O} be an orthonormal matrix, and \mathcal{A} be a subset of \mathbb{R}^n . Argue that $\mathbb{P}\{\mathbf{O}\mathbf{x}\in\mathcal{A}\}=\mathbb{P}\{\mathbf{x}\in\mathbf{O}^T\mathcal{A}\}$, and evaluate the integral for the latter probability to argue that $\mathbf{O}\mathbf{x}$ is also a standard multivariate Gaussian.

10. If X_1, \ldots, X_n are independent identically distributed samples drawn from a distribution with finite variance, what can we say about the distribution of their average $\frac{1}{n} \sum_{i=1}^{n} X_i$?