READING RESEARCH PAPERS

CS Graduate Skills Seminar

Alex Gittens

The importance of reading

- Reading is essential for your success as a researcher
 - Identifies research directions and trends
 - Learn useful tools and techniques
 - Clarifies your research community
 - Prevents duplicated and wasted efforts
- Must identify WHAT papers to read
- Should know WHY to read them
- And HOW to read them effectively

Outline

- TAXONOMY of papers, publication venues
- WHY, WHEN to read a paper
- HOW to find papers to read
- **ORGANIZING** your reading
- CAVEATS in reading
- MULTI-PASS reading
- ANATOMY of papers
- POST-MORTEM after reading
- Some final thoughts

CLASSES of papers

Technical Papers

- Novel research contributions
- Define and investigate problem, documents conclusions
- Results can be theory, or experimental, or both
- · Main type of paper you will be reading and producing in grad school

Survey Papers

- Summarize results and directions in a particular research field
- Attempt to impose high-level structure on disparate results
- Can be useful when starting in a new research direction

Vision Papers

Advocate for new directions on old problems or looking at new problems

TYPES of papers

- Seminal
 - Foundational results, opened new research direction
 - Often old (70s, 80s)
- Influential
 - · Highly cited, novel perspective and directions in field
 - Could be seminal or not
 - Considered required reading in your field
- Expository
 - Papers your advisor recommends reading to understand your field
 - Excellent problem descriptions and motivation
 - Detailed related works sections
 - May or may not be influential
- Relevant
 - Related to your specific research

VENUES for papers

- Conference Papers
 - A primary publication method in many subfields of CS
 - Fast moving: less than a year between submission and publication
 - Relate to the topic of the conference, published in proceedings
 - Peer-reviewed and voted on for acceptance
 - Usual short, around 8 pages
- Workshop Papers
 - Preliminary versions of conference papers
 - Usually short
 - Also peer-reviewed
 - May or may not be published in workshop proceedings

VENUES for papers

- Journal Papers
 - Relate to the topic of the journal (see editorial statement on website)
 - Usually longer than conference papers (exception: Letters type journals)
 - Stronger peer-review process, multiple rounds of submission
 - Slower-moving: usually 6+ months to a couple years from submission to publication
 - Often extended versions of conference papers

VENUES for papers

- Preprints and Technical Reports
 - Not peer-reviewed
 - Serve as way to disseminate results quickly
 - Posted on author's webpages, preprint servers (e.g. arXiv)
 - Preprint: pre-publication version of a peer-reviewed paper
 - TRs: may or may not be in process of peer-review

HOW to read effectively

- In a nutshell:
 - **1. Skim** for the main ideas and results
 - 2. Re-read to get the gist of the arguments/proofs and experiments
 - 3. Re-read critically, challenging the claims
 - 4. Summarize to ensure you understand the contributions and main ideas

WHY to read a given paper

- You find it interesting
- It was recommended to you
- To learn new tools or methods relevant to your research
- As **background** or to cite for your research
- As background for reading another paper
- To prepare for a conference or meeting
- To review for a conference or journal
- Assigned reading in a course, or reading group

HOW to find papers to read

- Ask your advisor
- Related works section of relevant papers
- Check forward citations of relevant papers (Google Scholar, ...)
- Follow preprint servers (arXiv, ...)
- Follow journals' RSS feeds of recent articles
- Check conference proceedings
- Check researchers' webpages for preprints
- Get to know your research community (conferences, individual researchers, relevant journals)

WHEN to read a given paper

- When writing your own paper
 - Look for related results and relevant tools
 - Give credit where it is due (related works)
 - Position your paper and explain its contribution
 - Survey the field, as a service to the reader
- Knowledge Maintenance
 - Know what is going on in your field (preprints, workshops, conferences)
 - Find interesting problems to work on
- Pre-conference
 - Plan which talks you will attend, and read those papers
 - Read before the talk, before the poster session, before author leaves

PLANNING to read a paper

- Time management
 - Length of paper:
 - journal papers and TRs (a day or two) could be 40 pages
 - conference papers (several hours) usually around 8 pages (minus appendices)
 - Purpose in reading affects time spent:
 - Knowing what's in a paper (skim)
 - Understanding the main ideas (read notation and main results, experiments)
 - Understanding the details (read everything closely)
 - Checking the details (do the algebra)

ORGANIZING reading

- Keep track of papers you want to read, and why
 - Bibliography tools: BibTeX, ...
 - Paper managers: Mendeley, Papers, ...
 - Annotated pdf readers
- Keep track of papers you read, and your thoughts
 - Judgements and questions
 - Ideas for related research directions
 - Related works to follow up on

ORGANIZING reading

- Time management:
 - Schedule regular times for reading
 - Don't linger on tough spots, skip and revisit
- Reading order (if you can choose):
 - First, read easily digestible papers
 - Next, relevant papers
 - Next, influential papers
 - Skim: seminal papers. Especially if they are old

CAVEATS in reading: peer review

- Conference reviewing is problematic
 - Single-blind vs double-blind
 - Quick turn arounds on reviewing
 - Sometimes poor selection of reviewers
 - Reviewers fatigued by multiple papers at once
- Journal reviewing also has issues
 - Scrutiny inverse with paper length
 - Reviewers take their time
- Preprints are not peer-reviewed at all

CAVEATS in reading: credulity

- Be aware of your own biases
 - Belief that publication means correctness
 - Belief that authors know how to position their work
 - Belief that authors mention all related works
 - Trust that experiments are meaningful (choice of metrics, datasets, etc.)
 - Trust that theory is meaningful
- Challenge your assumptions and biases. Do not depend on peer review. Research papers are not textbooks.

CAVEATS in reading: writing quality

- Good researchers are not necessarily good writers
- More effort is spend on polishing some papers than others
- Sometimes difficulty in understanding is not solely due to you
- To mediate (your advisor can help):
 - Identify quality expository papers in your field, start with them
 - Familiarize yourself with notation and conventions of your field, folkloric results

BEFORE reading a paper

- Check the publication details
 - Publication venue, date
 - *Is there a journal version* of this conference/workshop/TR?
 - *Is this the authoritative version?*
 - Who are the authors? Identify professors, post-docs, students, affiliations
 - Who is the corresponding author for questions?
 - Check citation count: how influential is this work?
- Read the abstract
 - What do the authors think is their contribution?
 - Does this still seem worth reading?

BEFORE reading a paper

- Skim:
 - Get very broad outline of paper contents
 - Understand how it relates to your research interests
- Decide whether to continue reading
 - Is this relevant to you?
 - Is the quality of the paper up to par?
 - Do you need to read other background material first?

Multi-pass Reading

- Recall purpose in reading:
 - Knowing what's in a paper
 - Understanding the main ideas
 - Understanding the details
 - Checking the details (for reviewing, or practice with the tools)
- First, skim:
 - Understand positioning
 - Understand main results
 - Understand meaning of experiments
 - Formulate your take-aways from the paper

Multi-pass Reading

- Second pass, go deeper:
 - Identify the main tools and ideas used. Which are new?
 - Any flaws or omissions in methodology or theory?
 - Look for simple implications of complex or difficult to parse claims: are they reasonable?
- Third pass, challenge:
 - Are the technical details correct?
 - Can the results be obtained more simply?
 - Hardcore: if code is available, were the experiments done as described?

Anatomy of a Research Paper

- Introduction
- Related Works
- Notation
- Main Results and/or Algorithms
- Experimental Results
- Conclusion
- Appendices: Theory, Supplemental Experiments
- Bibliography

Reading the Introduction and Related Works

- Purpose of the Introduction:
 - Describe the problem being addressed
 - Motivate interest in this problem
 - Position the paper's results in the broader area of research
 - Explain the importance of the results
- Purpose of Related Works:
 - Give fair comparison to similar work
 - Provide reader with context to judge results
- You judge:
 - How interesting/important is this problem?
 - How novel and reasonable are the paper's results?
 - What related works would I benefit from reading?
 - Keep in mind the authors' claims as you read the rest of the paper

Reading the Main Results

- Describes solution to the problems raised in the introduction
 - Algorithms
 - Software, Hardware
 - Novel theoretical understanding
- You judge:
 - In what sense is the problem solved? Partially? Completely?
 - Is the solution fully and unambiguously described?
 - How efficient is the solution?
 - How meaningful are these results?
 - Do the results match the claims made in the introduction and abstract?
 - Can you build off this paper?

Reading the Main Results

- Decide ahead of time on your criteria for measuring quality of the solution
 - What would a reasonable solution look like or guarantee?
 - Scalability?
 - Robustness?
- If theory, look at simplified models (e.g. restate tensor results as matrix results)

Reading the Experimental Results

- Provides experimental validation of results
 - Describes experimental design and setup
- You judge:
 - Are the relevant questions answered? (depends partly on authors' claims)
 - Are the baselines appropriate, and strong enough?
 - Are the metrics meaningful and sufficient for the problem?
 - Are datasets reasonably challenging, representative, and illustrative? Are the results statistically meaningful?
 - Are these experiments in keeping with standard practice?
 - Do the results support the claims made in the introduction and abstract?

Reading the Experimental Results

- Decide ahead of time on your criteria for judging quality of the experiments
 - Avoids bias towards agreeing with authors' choices
- Example considerations (depends on your area):
 - Hyperparameter selection
 - Hidden costs (model selection)
 - Bias in data selection
 - no-drawbacks-at-all-itist
 - Accuracy-vs-time tradeoff

Reading the Appendices

- Expands on body of the paper with further details
 - Usually in theory papers, contains the technical proof details
 - In empirical papers, contains further experimental validation

You judge:

- Given why I'm reading this paper, is this relevant material?
- How does this reflect or supplement the main claims of the paper?

For theory papers:

- Understand how the parts hang together first before reading in detail
- Identify the crucial insightful results vs the mechanical lemmata
- Work through the proofs yourself, try to reorganize and simplify

Reading the Conclusion

- Summarizes the main points of the paper
- Looks forward to future directions
- You judge:
 - Do the conclusions match/repeat the claims made earlier?
 - Do you think the research directions are worth pursuing?
 - Are there more valuable contributions that you feel should be listed?

AFTER reading

- Are you confident in your understanding?
 - Read it again
 - See related works for different perspectives
 - Talk to your advisor
- Questions about correctness of the paper
 - Talk to your advisor
 - Contact the corresponding advisor
- Big picture
 - What was the value of this paper for your research?
 - What new tools or approaches did you learn?
 - Where will you go from here: more reading? Work on this problem?

Some other thoughts

- Read as if a friend is asking for feedback
- Active reading w/ pen and paper (or tablet and stylus)
- Challenge everything: do I know how to do this better, make this more concise, transparent?
- Post-mortem: can I teach the ideas in this paper to someone else w/o jumping into equations?

Some other other thoughts

- Try to position paper techniques and results in your personal knowledge graph
 - Tie in with what you already know.
 - Make it more approachable and see as something you could produce
 - Own the knowledge in what you read

Questions?

HOW to read effectively

- Reading is like eating
 - We need to do it to get sustenance (knowledge)
 - There are some shared commonalities, but everyone finds their own way to chew and digest
- Know WHEN and WHY to read a paper
- ORGANIZE yourself
- Read SMART
- DOCUMENT your take-aways