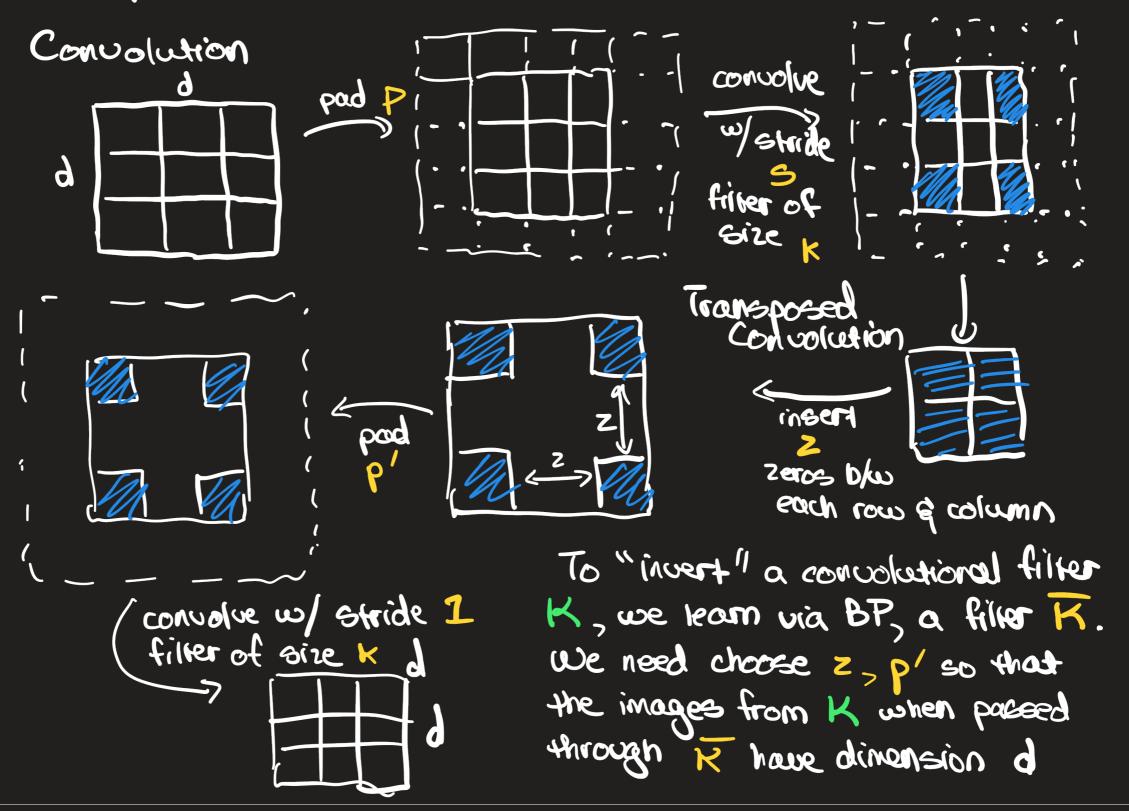
ML and Opt Lecture 17

- Transposed Convolutions
- Backprop for Convolutional Layers (sketch)
- Vanishing and Exploding Graphients
 Graphe Inception architecture (UI); aexiliary losses

Transposed Convolutions



Let 0 be the size of the image from the forward convolution

Convolution

Conval

 $0 = \underbrace{\frac{d + \lambda p - k}{5} + 1}_{S}$

Then d' be the size of the image from the transposed convolution when the input is size o

 $d'=0+(0-1)\cdot Z+\partial p'-k+1$ Want to choose z and $p' \leq 0$ d'=dPytorch:
Claim is: Z=S-1ConvaDTranspose

p' = K - P - 1

 $d' = \left(\frac{d + 2p - K}{5} + 1\right) + \left(\frac{d + 2p - K}{5}\right) \cdot (s - i) + 2(k - p - i) - k + 1$ = 1 + 2 + 2p - k + 2k - 2p - 2 - k + 1 = d

Conu2d

Input: d x d

Kerrel: KxK

Padding: P

Stride: 5

Ouxput: 0x0

where $0 = \frac{d+2p-k}{5} + 1$

Pads, then convolves with stride

ConvaD Transpose

Input: 0 × 0

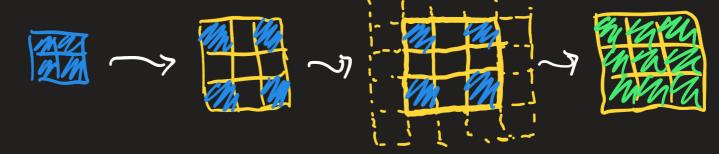
Kernel: KxK

Padding: K-P-1

Spacing: 5-1

Ouspus: axd

Inserts spaces, pads, then convolves with stride I



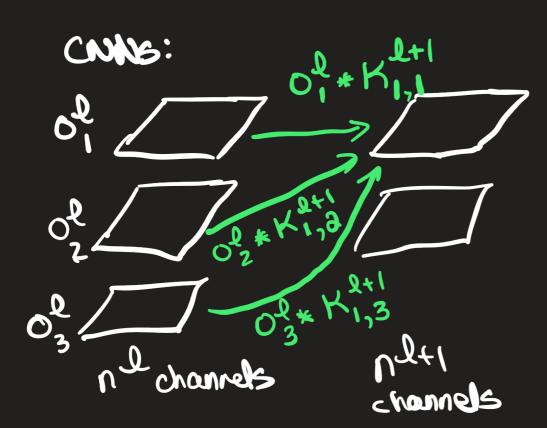
Efficient Convolutions & Bockprop

Parallels by MCPs and Convillers

MUP:

$$\alpha^{l+1} = \omega^{l+1} + b^{l+1}$$

$$0^{l+1} = \sigma(\alpha^{l+1})$$



Alt =
$$0.1 \times Kl+1 + \text{some for each}$$

Alt = $0.1 \times Kl+1 + \text{some for each}$

Ol * $Kl+1 + \text{pixel}$

Ol * $Kl+1 + \text{bl}+1$

Ol * $Kl+1 + \text{bl}+1$

Ol * $Kl+1 + \text{bl}+1$

If layer I has no channels, then

$$A^{2+1} = \left(\frac{n_2}{j=1} \circ j * K_{i,j}^{2+1} \right) + b_i^{2+1}$$

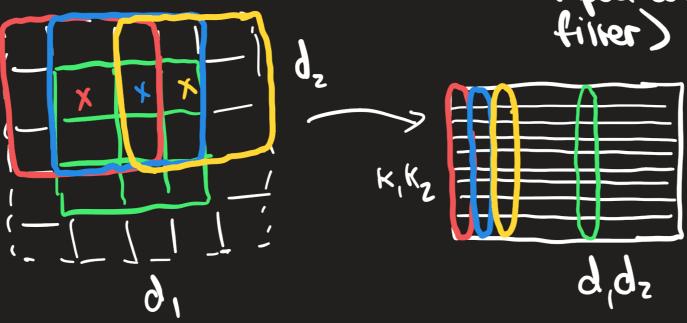
$$O_{i}^{l+l} = \sigma(A_{i}^{l+l})$$

The number of parameters for layer ItI is

nentral (assuming all the filters connecting layer et to layer et are $k_1 \times k_2$)

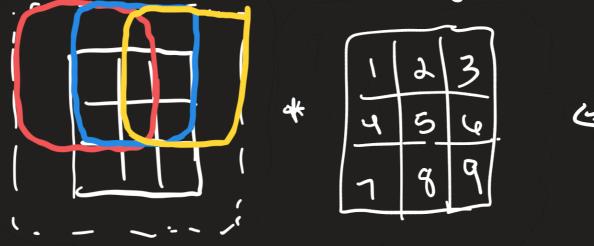
(Shetch) Efficient Computations cf Manas Sahni "Anatomy of a High-Speed Convolution" idea: reduce convolution to the indcol operation and GEMMS

- imdcol takes an image in IRd, xdz and maps to a matrix IR k, kz xd, dz (corresponding to zero-podding the input and convolving by a k, xkz filter)

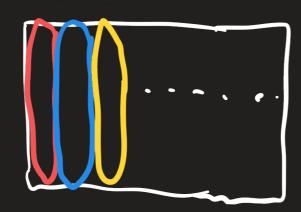


note that we want to compute of * Ketl ord this implies

$$vec(O_j^l * K_{i,j}^{l+1}) = vec(K_{i,j}^{l+1}) \cdot imdcol(O_j^l)$$



123 ... 9



This means we can write our CNN layers in the

form

$$2^{\ell+1} = e(2^{\ell+1})$$

Issues with deep NNs (not just CNNs):

- overfitting (too much corpacity for the amount)
- vanishing & exploding gradients => slow learning!
- hyperporameter setection, e.g.
 - Kernel sizes?
 - # channels per layer?
 - -# layers?
 - type of pooling & locations?
 - stride & dilation & podding?
 - learning rates? algorithm? minibatch size?
 - -weight decay?

Vanishing & Exploding Gradients Then omenon that, as the number of layers increases, as 171 in the backpropagation algorithm, 1 Twe file -> 50 vanishing exploding Downs because of the chain rule. Recall out = o (without blet) so by the multivariate $\Delta^{og}t = 2^{ogH}(og) + 2^{ogH}t$ and $\left[\int_{0}^{\infty} dt \left(O^{2} \right) \right]_{ij} = \left[\frac{\partial O^{2}_{ij}}{\partial O^{2}_{ij}} \right]_{ij} = \sigma'((w^{2}_{ij})^{2} + b^{2}_{ij})) \cdot (w^{2}_{ij})$

$$\mathcal{J}_{Olth}(o^2) = Diag(\sigma'(\omega^{l+1}o^{l+1}))(\omega^{l+1})$$

$$= Diag(\sigma'(\alpha^{l+1}))(\omega^{l+1})$$

and consequently,

Two considerations:

1) How diag (o'(ql+1)) behaves

so if all for from 0, Hen this looks like a zero matrix, so

11 Joef 11/2 << 11 Joet 11/2

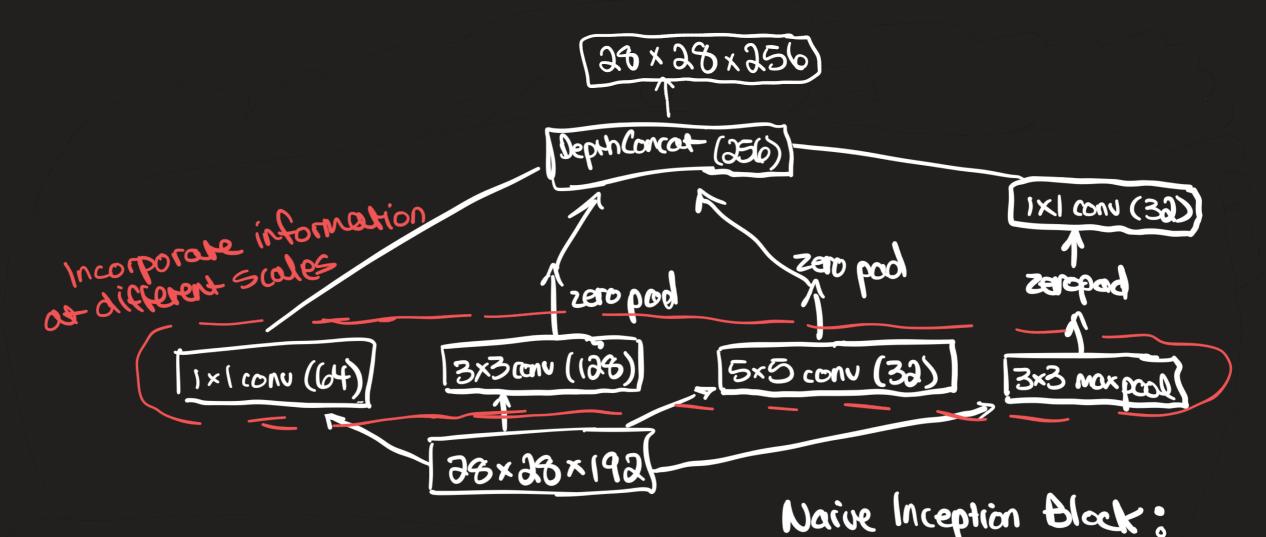
a) If the norm of our weight matrix W^{l+1} is large, then $||\nabla_{0}lf||_{2} \gg ||\nabla_{0}l_{1}f||_{2}$ if it is small, then $||\nabla_{0}lf||_{2} \ll ||\nabla_{0}l_{1}f||_{2}^{2}$

Consequence:
natively training deep NN architectures
either fails or gives poor performance

Takeaways:

- we want to keep activations close to zero so the nonlinearities in the network do not saturate
 - suggests "normalization" layers to keep activations well-behaved.
- une vant to keep weight matrices vell-behaved:
 - suggests regularizing by norm of weight matrices
- we work to maintain short paths to the output to prevent attenuation) explosion to compound suggests using "auxiliary" losses.

Grooghe Net (22 layer) CNN Inception vI 2014



preserves input-dimensions, uses information at

multiple scales

Downside: loss of parameters

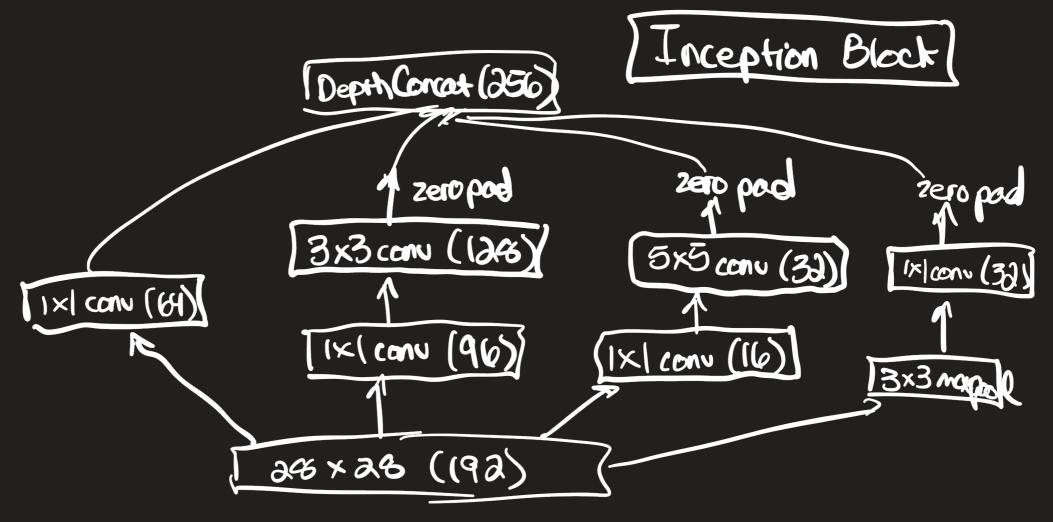
E.g. for the 3x3 conv features, we have

192 × 128 × 3 × 3 + 128 = 221, 312 parameters

96 × 192 + 96

Issue: too many parameters + 128 x 96 x 3 x 3 + 128

soln: use 1×1 convloyers for divensionality reduction



Check: # of 3x3 conv parameters (including the 96 1x1)

129248

baranopers

Original Inception (v1) architecture

Train this architecture to minimize the weighted sum of the three losses. Injects gradient information at intermediate layers to mitigate vanishing explading quadients.

Input: 224 x 224 x 3

type	patch size/ stride	output size	depth	#1×1	#3×3 reduce	#3×3	#5×5 reduce	#5×5	pool proj	params	ops
convolution	$7 \times 7/2$	112×112×64	1							2.7K	34M
max pool	3×3/2	$56 \times 56 \times 64$	0								
convolution	3×3/1	$56 \times 56 \times 192$	2		64	192				112K	360M
max pool	$3\times3/2$	$28 \times 28 \times 192$	0								
inception (3a)		$28 \times 28 \times 256$	2	64	96	128	16	32	32	159K	128M
inception (3b)		$28 \times 28 \times 480$	2	128	128	192	32	96	64	380K	304M
max pool	$3\times3/2$	$14 \times 14 \times 480$	0								
inception (4a)		$14 \times 14 \times 512$	2	192	96	208	16	48	64	364K	73M
inception (4b)		$14 \times 14 \times 512$	2	160	112	224	24	64	64	437K	88M
inception (4c)		$14 \times 14 \times 512$	2	128	128	256	24	64	64	463K	100M
inception (4d)		$14 \times 14 \times 528$	2	112	144	288	32	64	64	580K	119M
inception (4e)		$14 \times 14 \times 832$	2	256	160	320	32	128	128	840K	170M
max pool	$3\times3/2$	$7 \times 7 \times 832$	0								
inception (5a)		$7 \times 7 \times 832$	2	256	160	320	32	128	128	1072K	54M
inception (5b)		$7 \times 7 \times 1024$	2	384	192	384	48	128	128	1388K	71M
avg pool	7×7/1	$1 \times 1 \times 1024$	0								
dropout (40%)		$1 \times 1 \times 1024$	0								
linear		$1 \times 1 \times 1000$	1							1000K	1M
softmax		$1 \times 1 \times 1000$	0								

Table 1: GoogLeNet incarnation of the Inception architecture