WEEKLY PARTICIPATION 1: CONDITIONAL INDEPENDENCE

Recall that random vectors \mathbf{x} and \mathbf{y} are conditionally independent given \mathbf{z} , written $\mathbf{x} \perp \mathbf{y} \mid \mathbf{z}$, if the conditional joint pmf/pdf factorizes into the product of the conditional marginals:

$$p(\mathbf{x}, \mathbf{y} | \mathbf{z}) = p(\mathbf{x} | \mathbf{z}) p(\mathbf{y} | \mathbf{z}).$$

Show that if $\mathbf{x} \perp \mathbf{y} | \mathbf{z}$ then in fact we also have

$$p(\mathbf{y}|\mathbf{x},\mathbf{z}) = p(\mathbf{y}|\mathbf{z}).$$

This follows from simple algebraic manipulations using the definitions of conditional pmfs/pdfs.

Comments.

- (1) This result implies that if we are trying to predict \mathbf{y} from both \mathbf{x} and \mathbf{z} , then in fact we can do just as well by completely ignoring \mathbf{x} .
 - Using the example given in class, if we want to predict a student's first salary upon graduation, \mathbf{y} , and we know their gpa, \mathbf{z} , and their IQ, \mathbf{x} , then assuming that $\mathbf{y} \perp \mathbf{x} | \mathbf{z}$, we can get just as accurate a prediction using only their GPA.
- (2) We mentioned feature selection. One way to go about feature selection is, given a target r.v. \mathbf{y} and a large set of features \mathbf{x} , to try to partition the features to identify a small set of relevant features, $\mathbf{x} = (\mathbf{x}_{irrelevant}, \mathbf{x}_{relevant})$, where relevance means $\mathbf{y} \perp \mathbf{x}_{irrelevant} | \mathbf{x}_{relevant}$. This then allows you to fit more stable, simpler, and meaningful models, and can save a lot of computation.

1