WEEKLY PARTICIPATION 6

Roy decides he would like to fit a model of the form $y=\mathbf{x}^T\boldsymbol{\omega}$ using the ℓ_1 loss instead of ℓ_2 loss, so obtains the ERM objective

$$f(\boldsymbol{\omega}) = \frac{1}{n} \|\mathbf{X}\boldsymbol{\omega} - \mathbf{y}\|_1$$

for learning the model ω from his training data. This is a non-differentiable convex function, so he knows he can use subgradient descent to find an optimizer.

Which of the following vectors are in $\partial f(\omega)$?

- (A) $\frac{1}{n}\mathbf{X}^T\mathbf{z}$ for a $\mathbf{z} \in \partial \|\mathbf{X}\boldsymbol{\omega} \mathbf{y}\|_1$.
- (B) $\frac{1}{n}\mathbf{z}$ for a \mathbf{z} satisfying $\|\mathbf{z}\|_{\infty} \leq 1$ and $\mathbf{z}^{T}(\mathbf{X}\boldsymbol{\omega} \mathbf{y}) = \|\mathbf{X}\boldsymbol{\omega} \mathbf{y}\|_{1}$.
- (C) $\frac{1}{n}\mathbf{z}$ for a $\mathbf{z} \in \partial \|\mathbf{X}\boldsymbol{\omega} \mathbf{y}\|_1$.
- (D) $\frac{1}{n}\mathbf{z}$ for a \mathbf{z} satisfying $\|\mathbf{z}\|_{\infty} \leq 1$ and $\mathbf{z}^T \boldsymbol{\omega} = \|\boldsymbol{\omega}\|_1$.

State which of options (A)–(D) give valid subgradients.