CSCI 4961/6961: Homework 1

Assigned Thursday September 10 2020. Due by 11:59pm Thursday September 17 2020.

Your answers must be LEGIBLE, clearly labeled, and provide well-written, clear, and convincing arguments. Please start early so you have ample time to see me during office hours.

Motivation: we will use sampling a lot in this course, to speed up computations. This HW looks at the types of sampling we might choose to use.

- 1. Often we want to approximate a large sum of numbers, $S = \sum_{i=1}^{n} x_i$ (imagine that $n = O(10^6)$). Here are two ways to approximate this sum, given an integer $k \ll n$:
 - (Set sampling) Sample uniformly from the set of all k-element subsets of $[n] := \{1, \ldots, n\}$ to select a set I of indices, then form the approximation

$$\hat{S}_{\text{set}} = c_{\text{set}} \sum_{i \in I} x_i.$$

The constant c_{set} is chosen so that \hat{S}_{set} is an unbiased estimate of S, that is, $\mathbb{E}\hat{S}_{\text{set}} = S$.

• (Bernoulli sampling) Sample n i.i.d. Bernoulli random variables $\alpha_i \sim \text{Bern}(\frac{k}{n})$ and form the approximation

$$\hat{S}_{\text{bern}} = c_{\text{bern}} \sum_{i=1}^{n} \alpha_i x_i,$$

where similarly to before, the constant c_{bern} is chosen so that \hat{S}_{bern} is an unbiased estimate of S, that is, $\mathbb{E}\hat{S}_{\text{bern}} = S$.

Compute the constants c_{set} and c_{bern} and compute the variances of \hat{S}_{set} and \hat{S}_{bern} . Which method do you expect to give more accurate estimates of S, and why?

- 2. Let ν be the percentage of non-zero coefficients α_i in the Bernoulli sampling approach. What are the expectation and variance of ν ?
- 3. Suppose instead $\mathbf{S} = \sum_{i=1}^{n} \mathbf{v}_{i}$ is the sum of vectors in \mathbb{R}^{d} . We can approximate this sum using the set sampling and Bernoulli sampling approaches. What are the constants c_{set} and c_{bern} in this case, and what are the covariance matrices of $\hat{\mathbf{S}}_{\text{set}}$ and $\hat{\mathbf{S}}_{\text{bern}}$?
- 4. To implement the set sampling method, we need to be able to sample uniformly from the set of k-element subsets of [n].

Here is an algorithm that attempts to do so: sample a number ℓ_1 uniformly at random from [n], then sample a number ℓ_2 uniformly at random from $[n] \setminus \{\ell_1\}$, then sample a number ℓ_3 uniformly at random from $[n] \setminus \{\ell_1, \ell_2\}$; continue in this manner until you have finally sampled a number ℓ_k uniformly at random from $[n] \setminus \{\ell_1, \ldots, \ell_{k-1}\}$.

Show that the set $\{\ell_1, \ldots, \ell_k\}$ returned by this procedure is indeed uniformly sampled from the set of k-element subsets of [n]:

$$\mathbb{P}(\{\ell_1,\ldots,\ell_k\} = \{i_1,\ldots,i_k\}) = \frac{1}{\binom{n}{k}} \quad \text{for any } k\text{-element subset } \{i_1,\ldots,i_k\} \text{ of } [n].$$

5. (CSCI6961 students) If our goal is to minimize the variance of a sampling-based estimate of S while selecting on average only k terms in the sum, we can use a non-uniform Bernoulli sampling scheme

$$\hat{S}_{imp} = \sum_{i=1}^{n} \frac{\alpha_i}{p_i} x_i$$
 where $\alpha_i \sim \text{Bern}(p_i)$

and use *importance sampling probabilities* p_i that are chosen to minimize the variance while selecting only k non-zero summands on average. Let us determine these importance sampling probabilities.

1

- (a) First, explain why the importance sampling probabilities can be determined by finding the p_i that minimize $\sum_{i=1}^{n} \frac{x_i^2}{p_i}$ subject to the constraint that $\sum_{i=1}^{n} p_i = k$, assuming that the solution of this optimization problem yields valid probabilities.
- (b) Now, solve this optimization problem and state the importance sampling probabilities. To do so, it may help to recall the Lagrange multiplier method for minimizing $f(\mathbf{p})$ subject to the constraint that $g(\mathbf{p}) = 0$. It states that the minimizer satisfies the condition $\nabla f(\mathbf{p}) = \lambda \nabla g(\mathbf{p})$ for some $\lambda \in \mathbb{R}$. This optimality condition, plus the constraint $\sum_{i=1}^{n} p_i = k$, are sufficient to determine the importance sampling probabilities.
- (c) Look at the form of these importance sampling probabilities and give an intuitive explanation for why they take that form.