CSCI 4530/6530 Advanced Computer Graphics

https://www.cs.rpi.edu/~cutler/classes/advancedgraphics/S25/

Lecture 10: Animation, Motion Capture, & Inverse Kinematics

SIGGRAPH 2002 Mocap Papers

Spacetime Swing - Siggraph 1998

HW2 Velocity Interpolation Debugging

grid 6 4 1
cell_dimensions 1 1 1
timestep 0.01

flow compressible xy_boundary free_slip yz_boundary free_slip zx_boundary free_slip viscosity 0.1 gravity 0

initial_particles everywhere random density 64

initial_velocity zero

u 1 2 0 10

			1				
*		Å.		4			
*		L		1		+	
	1	L		1	4		
		1	1	1			
			1	1			
-						-	

Last Time?

- Tetrahedral Meshing
- Haptics
- Anisotropic Materials
- Fracture

Today

- Finish Slides from Last Time:
 - Level of Detail
 - Useful & Related Term Definitions
 - Tetrahedral Element Quality
- How do we Animate?
 - Keyframing & Procedural Animation
 - Physically-Based Animation
 - Motion Capture
 - Skeletal Animation & Forward and Inverse Kinematics
- Readings for Today
- Figure Skating Lesson
- Readings for Next Time

"Dynamic Real-Time Deformations using Space & Time Adaptive Sampling" Debunne, Desbrun, Cani, & Barr, SIGGRAPH 2001

- Level of Detail
- Interactive shape deformation

 Use high-resolution model only in areas of extreme deformation

Multi-Resolution Deformation

Debunne, Desbrun, Cani, & Barr, SIGGRAPH 2001

- Use Voronoi diagrams to match parent & child vertices.
- Interpolate values for inactive interface vertices from active parent/child vertices

 Need to avoid interference of vibrations between simulations at different resolutions

Pre-Computation & Simulation

- FEM matrix pre-computed
- Level of detail coupling pre-computed for rest topology
- Limitation: Not appropriate for applications that need to change connectivity of elements E.g.:
 - Cloth that is cut or torn
 - Surgery simulation

Today

- Finish Slides from Last Time:
 - Level of Detail
 - Useful & Related Term Definitions
 - Tetrahedral Element Quality
- How do we Animate?
 - Keyframing & Procedural Animation
 - Physically-Based Animation
 - Motion Capture
 - Skeletal Animation & Forward and Inverse Kinematics
- Readings for Today
- Figure Skating Lesson
- Readings for Next Time

- *Isotropic*: is a property which does not depend on the direction.
- Anisotropic: is a property which is directionally dependent.

wood grain will impact strength & appearance

Same corduroy fabric! Just oriented with nap rotated 180°!

https://missmaudesewing.co.nz/blogs/miss-maude-musings-1/sewing-with-corduroy-fabrics

- Elastic Deformation: Once the forces are no longer applied, the object returns to its original shape.
 Stress
- Plastic Deformation: An object in the plastic deformation range will first have undergone elastic deformation, which is reversible, so the object will return part way to its original shape.

http://en.wikipedia.org/wiki/Image:Stress-strain1.png

- Degenerate/III-conditioned Element: a.k.a. how "equilateral" are the elements?
 - Ratio of volume² to surface area³
 - Smallest solid angle
 - Ratio of volume to volume of smallest circumscribed sphere

• *Tension*: The direction of the force of tension is parallel to the string, away from the object exerting the stretching force.

http://fig.cox.miami.edu/~cmallery/ 255/255chem/tensegrity.sticks.jpg

 Compression: resulting in reduction of volume

> http://www.aero.polimi.it/~merlini/ SolidMechanics-FiniteElasticity/CompressionBlock.jpg

Miscellaneous Definitions: Convex vs. Non-Convex

http://img.sparknotes.com/figures/B/b333d91dc e2882b2db48b8ad670cd15a/convexconcave.gif

http://en.wikipedia.org/wiki/File:ConvexHull.svg

http://www.tensile-structures.de/Bilder/SaddleSurface.jpg

Today

- Finish Slides from Last Time:
 - Level of Detail
 - Useful & Related Term Definitions
 - Tetrahedral Element Quality
- How do we Animate?
 - Keyframing & Procedural Animation
 - Physically-Based Animation
 - Motion Capture
 - Skeletal Animation & Forward and Inverse Kinematics
- Readings for Today
- Figure Skating Lesson
- Readings for Next Time

Multiple Materials

Mueller, Dorsey, McMillan, Jagnow, & Cutler Stable Real-Time Deformations Symposium on Computer Animation 2002

Multiple Materials

Mueller, Dorsey, McMillan, Jagnow, & Cutler Stable Real-Time Deformations Symposium on Computer Animation 2002

Multiple Materials

Images from Cutler et al. 2002

Haptic Device

- "3D mouse" + force feedback
- 6 DOF (position & orientation)
- requires 1000 Hz refresh (visual only requires ~30 Hz)

3D Mesh Simplification

1,050K tetras (133K faces)

10K tetras (3K faces)

3D Mesh Operations

- Tetrahedral Swaps
 - Choose the configuration with the best local element shape
- Edge Collapse
- Vertex Smoothing
- Vertex Addition

3D Mesh Operations

- Tetrahedral Swaps
- Edge Collapse
 - Delete a vertex & the elements around the edge
- Vertex Smoothing
- Vertex Addition

After

Prioritizing Edge Collapses

- Preserve topology

 Thin layers should not pinch together
- Collapse weight

 Edge length + boundary error
- No negative volumes
- Local element quality does not significantly worsen

3D Mesh Operations

- Tetrahedral Swaps
- Edge Collapse
- Vertex Smoothing
 - Move a vertex to the centroid of its neighbors
 - Convex or concave,
 but avoid negative volume elements
- Vertex Addition

3D Mesh Operations

- Tetrahedral Swaps
- Edge Collapse
- Vertex Smoothing
- Vertex Addition
 - At the center of a tetra, face, or edge
 - Useful when mesh is simplified, but usually needs further element shape improvement

Visualization of Tetrahedra Quality

Visualization of Tetrahedra Quality

Visualization of Tetrahedra Quality

Visualization of Simplification Algorithm

Today

- Finish Slides from Last Time:
 - Level of Detail
 - Useful & Related Term Definitions
 - Tetrahedral Element Quality
- How do we Animate?
 - Keyframing & Procedural Animation
 - Physically-Based Animation
 - Motion Capture
 - Skeletal Animation & Forward and Inverse Kinematics
- Readings for Today
- Figure Skating Lesson
- Readings for Next Time
Keyframing

- Use spline curves to automate the inbetweening
 - Good control
 - Less tedious than drawing *every* frame
- Creating a good animation still requires considerable skill and talent and learning from observing the real world

ACM © 1987 "Principles of traditional animation applied to 3D computer animation"

Disney's 12 Principles of Animation

"The Illusion of Life: Disney Animation", Ollie Johnston & Frank Thomas, 1981

Squash & Stretch

Slow In & Slow Out

https://www.animdesk.com/the-principl es-of-animation-squash-and-stretch

https://characteranimationlara.home.blog/ 2018/10/21/the-12-principles-of-animation

Procedural Animation

- Describes the motion algorithmically, as a function of small number of parameters
- Example: a clock with second, minute and hour hands
 - express the clock motions in terms of a "seconds" variable
 - the clock is animated by varying the seconds parameter
- Example: A bouncing ball
 - Abs(sin(ω t+ θ_0))*e^{-kt}

Today

- Finish Slides from Last Time:
 - Level of Detail
 - Useful & Related Term Definitions
 - Tetrahedral Element Quality
- How do we Animate?
 - Keyframing & Procedural Animation
 - Physically-Based Animation
 - Motion Capture
 - Skeletal Animation & Forward and Inverse Kinematics
- Readings for Today
- Figure Skating Lesson
- Readings for Next Time

Physically-Based Animation

- Assign physical properties to objects (masses, forces, inertial properties)
- Simulate physics by solving equations
- Realistic, but difficult to control
- Used for *secondary motions* (hair, cloth, scattering, splashes, breaking, smoke, etc.) that respond to primary *user controlled* animation

"Interactive Manipulation of Rigid Body Simulations" SIGGRAPH 2000, Popović, Seitz, Erdmann, Popović & Witkin "Sampling Plausible Solutions to Multi-body Constraint Problems" Chenney & Forsyth, SIGGRAPH 2000

Today

- Finish Slides from Last Time:
 - Level of Detail
 - Useful & Related Term Definitions
 - Tetrahedral Element Quality
- How do we Animate?
 - Keyframing & Procedural Animation
 - Physically-Based Animation
 - Motion Capture
 - Skeletal Animation & Forward and Inverse Kinematics
- Readings for Today
- Figure Skating Lesson
- Readings for Next Time

Motion Capture

- Optical markers & high-speed cameras: Triangulation → 3D position
- Captures style, subtle nuances and realism
- You must observe someone do something
- Difficult (or impossible?) to edit mo-cap data

Today

- Finish Slides from Last Time:
 - Level of Detail
 - Useful & Related Term Definitions
 - Tetrahedral Element Quality
- How do we Animate?
 - Keyframing & Procedural Animation
 - Physically-Based Animation
 - Motion Capture
 - Skeletal Animation & Forward and Inverse Kinematics
- Readings for Today
- Figure Skating Lesson
- Readings for Next Time

Articulated Models

- Articulated models:
 - \circ rigid parts
 - \circ connected by joints
- They can be animated by specifying the joint angles as functions of time.

Skeleton Hierarchy

• Each bone transformation described relative to the parent in the hierarchy:

1 DOF: knee

3 DOF: arm

2 DOF: wrist

Skeletal Animation Challenges

- Skinning
 - Complex deformable skin, muscle, skin motion
- Hierarchical controls
 - Smile control, eye blinking, etc.
 - Keyframes for these higher-level controls
- A huge amount of time is spent building the 3D models, its skeleton, and its controls

Maya tutorial

Forward Kinematics

 Given skeleton parameters p, and the position of the effector in local coordinates V₁, what is the position of the effector in the world coordinates V_w?

 $V_{w} = T(x_{h}, y_{h}, z_{h})R(q_{h}, f_{h}, s_{h})T_{h}R(q_{t}, f_{t}, s_{t})T_{t}R(q_{c})T_{c}R(q_{f}, f_{f})V_{l}$ $V_{w} = S(p)V_{l}$ S(p) is "just" a 4x4 affine transformation matrix!

Inverse Kinematics (IK)

- Given the position of the effecter in local coordinates V₁ and the *desired position* V_w in world coordinates, what are the skeleton parameters p?
- Much harder!! It requires solving the inverse of the nonlinear function:

find *p* such that $S(p)V_1 = V_w$

Why is this hard? Why is it non-linear?

Under-/Over- Constrained IK

• Application: Robot Motion Planning

"The good-looking textured light-sourced bouncy fun smart and stretchy page" Hugo Elias, http://freespace.virgin.net/hugo.elias/models/m_ik.htm

Searching Configuration Space

- Use *gradient descent* to walk from starting configuration to target
- Angle restrictions & collisions can introduce local minima

pose space shaded by distance to target

"The good-looking textured light-sourced bouncy fun smart and stretchy page" Hugo Elias, http://freespace.virgin.net/hugo.elias/models/m_ik2.htm

IK Challenge

- Find a "natural" skeleton configuration for a collection of pose constraints
- A vector constraint function C(p) = 0 collects all pose constraints
- A scalar objective function g(p) measures the quality of a pose, g(p) is minimum for most natural poses.

Example g(p):

- \circ deviation from natural pose
- \circ joint stiffness
- power consumption

Force: Newton (N) = kg * m / s² Work: Joule (J) = N*m = kg * m² / s² Power: Watt (W) = J/s = kg * m² / s³

Questions?

"Spacetime Constraints", Witkin & Kass, SIGGRAPH 1988

Today

- Finish Slides from Last Time:
 - Level of Detail
 - Useful & Related Term Definitions
 - Tetrahedral Element Quality
- How do we Animate?
 - Keyframing & Procedural Animation
 - Physically-Based Animation
 - Motion Capture
 - Skeletal Animation & Forward and Inverse Kinematics
- Readings for Today
- Figure Skating Lesson
- Readings for Next Time

Reading for Today: (pick one)

• "Real-Time Hand-Tracking with a Color Glove" SIGGRAPH 2009, Wang & Popović

Capturing and Animating Occluded Cloth, White, Crane, & Forsyth, SIGGRAPH 2007

Reading for Today: (pick one)

 "Artist-Directed Dynamics for 2D Animation", Bai, Kaufman, Liu, & Popović, SIGGRAPH 2016

Figure 6: *Keyframes used in the articulated character walk example.* The artist only specifies keyframes for a subset of handles (handles at hands and feet) which are shown as blue dots. Nine keyframes are used to create a walking cycle. Their timing is visualized by the black lines at the bottom. The artworks are adapted from Angryanimator.com (http://www.angryanimator.com/)

Reading for Today: (pick one)

• "Synthesis of Complex Dynamic Character Motion from Simple Animation", Liu & Popović, 2002

What's a Natural Pose?

- Training database of ~50 "natural poses"
- For each, compute center of mass of:
 - \circ Upper body
 - Arms
 - \circ Lower body
- The relative COM of each generated pose is matched to most the most similar database example

Liu & Popović

Linear and Angular Momentum

- In unconstrained animation (no contacts), both linear & angular momentum should be conserved
- The center of mass should follow a parabolic trajectory according to gravity
- The joints should move such that the angular momentum of the whole body remains constant

During Constrained Motion

During *constrained* motion (when in contact with the ground), the angular momentum follows a spline curve p_3 modeled after biomechanics data p_4 unconstrained p_1 unconstrained d, Liu & Popović da constrained

System Features

- Automatically detect point/line/plane constraints (e.g., feet in contact with ground) and unconstrained portions of animation (e.g., free flight)
- Linear and angular momentum constraints *without having to compute muscle forces*
- Minimize:
 - Mass displacement
 - Velocity of the degrees of freedom (DOF)
 - "Unbalance" (distance
 the COM is outside
 of ground constraints)

"Synthesis of Complex Dynamic Character Motion from Simple Animation", Liu & Popović, 2002

Today

- Finish Slides from Last Time:
 - Level of Detail
 - Useful & Related Term Definitions
 - Tetrahedral Element Quality
- How do we Animate?
 - Keyframing & Procedural Animation
 - Physically-Based Animation
 - Motion Capture
 - Skeletal Animation & Forward and Inverse Kinematics
- Readings for Today
- Figure Skating Lesson
- Readings for Next Time

Coach Mary Figure Skating

https://www.youtube.com/channel/UCUqodbdTE3hIjfloPDn6amw https://www.youtube.com/watch?v=eVP8r-ubbp8

forward outside edge arms back knees back shoulders and chest up right a

.

12.23

RINK

Figure Skating Motion Capture, Richards Biomechanics Lab, University of Delaware, 2017

https://www.udel.edu/udaily/2017/december/figure-skating-biomechanics-olympics/

"Articulated Swimming Creatures" Jie Tan, Yuting Gu, Greg Turk, and C. Karen Liu, SIGGRAPH 2011

Figure 8: A five-link eel swims in a 2D fluid environment. In contrast to the simulation in 3D, an eel swimming in 2D fluid sheds only one single vortex street. Red traces show the counter-clockwise vortices while blue traces show the clockwise vortices. "Flexible Muscle-Based Locomotion for Bipedal Creatures", Geijtenbeek, van de Panne, van der Stappen, SIGGRAPH Asia 2013

Figure 1: Physics-based simulation of locomotion for a variety of creatures driven by 3D muscle-based control. The synthesized controllers can locomote in real time at a range of speeds, be steered to a target heading, and can traverse variable terrain.
Today

- Finish Slides from Last Time:
 - Level of Detail
 - Useful & Related Term Definitions
 - Tetrahedral Element Quality
- How do we Animate?
 - Keyframing & Procedural Animation
 - Physically-Based Animation
 - Motion Capture
 - Skeletal Animation & Forward and Inverse Kinematics
- Readings for Today
- Figure Skating Lesson
- Readings for Next Time

Reading for Tuesday

 "An improved illumination model for shaded display" Turner Whitted, Communications of the ACM, 1980.

