CSCI 4530/6530 Advanced Computer Graphics

https://www.cs.rpi.edu/~cutler/classes/advancedgraphics/S25/

Lecture 9: Fracture & Tetrahedral Models

Worksheet: Fluid Velocity Interpolation

Worksheet: Fluid Incompressibility

What are the horizontal and face velocities after 1, 2, and many itera

Tin Toy, Pixar Animation Studios, 1988

Acura Bullet, The Mill, SIGGRAPH 2009

HW2: Cloth & Fluid Simulation

HW2 deadline Thursday @ 11:59pm

Last Time?

Today

- Worksheet: Fluid Velocity & Incompressibility
- Continuing from Last Time...
 - Rigid Body Dynamics
 - Collision Response
 - Non-Rigid, Deformable Objects
 - Finite Element Method
- Papers for Today
- Level of Detail
- Useful & Related Term Definitions
- Tetrahedral Element Quality
- Papers for Next Time

Rigid Body Dynamics

- How do we simulate this object's motion over time?
- We could discretize the object into many particles...
 - But a rigid body does *not* deform
 - Only a few *degrees of freedom*
- Instead, we use only one particle at the center of mass
 - Body has velocity *v(t)* and angular velocity *ω(t)*
 - Compute net force & net torque

Nice Reference Material: http://www.pixar.com/companyinfo/research/pbm2001/

Degree of Freedom (DOF)

• Rotations:

Translations count too... → 6 Degrees of Freedom (DOF)

Energy & Rigid Body Collisions

- Total Energy = Kinetic Energy + Potential Energy + Rotational Energy
- Total Energy stays constant if there is no damping and no friction
- Rotational Energy is constant between collisions

http://www.myphysicslab.com/collision.html

Today

- Worksheet: Fluid Velocity & Incompressibility
- Continuing from Last Time...
 - Rigid Body Dynamics
 - Collision Response
 - Non-Rigid, Deformable Objects
 - Finite Element Method
- Papers for Today
- Level of Detail
- Useful & Related Term Definitions
- Tetrahedral Element Quality
- Papers for Next Time

Collisions

- Detection
- Response
- Overshooting problem (when we enter the solid)

Collision Response

- tangential velocity v_{t} unchanged
- normal velocity **v**_n reflects:

$$v = v_t + v_n$$

$$v \leftarrow v_t - \mathcal{E}v_n$$

- coefficient of restitution
 - 1 for elastic
 - \circ 0 for plastic
- change of velocity = $-(1+\epsilon)v$
- change of momentum *Impulse* = $-m(1+\epsilon)v$

Collisions - Overshooting

- Usually, we detect collision when it's too late: we're already inside
- Solutions: back up
 - Compute intersection point
 - Compute response there
 - Advance for remaining fractional time step
- Other solution:
 - Quick and dirty fixup
 - Just project back to object closest point

Collision Between Two Objects

• Suppose a vertex on body A is colliding into an edge of body B at point P. Define the following variables:

 $m_a, m_b = \text{mass of bodies A, B}$ $\overline{\mathbf{r}}_{ap} = \text{distance vector from center of mass of body A to point P}$ $\overline{\mathbf{r}}_{bp} = \text{distance vector from center of mass of body B to point P}$ $\omega_{a1}, \omega_{b1} = \text{initial pre-collision angular velocity of bodies A, B}$ $\omega_{a2}, \omega_{b2} = \text{final post-collision angular velocity of bodies A, B}$ $\overline{\mathbf{v}}_{a1}, \overline{\mathbf{v}}_{b1} = \text{initial pre-collision velocities of center of mass bodies A, B}$ $\overline{\mathbf{v}}_{a2}, \overline{\mathbf{v}}_{b2} = \text{final post-collision velocities of center of mass bodies A, B}$ $\overline{\mathbf{v}}_{ap1} = \text{initial pre-collision velocity of impact point on body A}$ $\overline{\mathbf{v}}_{bp1} = \text{initial pre-collision velocity of impact point on body B}$ $\overline{\mathbf{n}} = \text{normal (perpendicular) vector to edge of body B}$ e = elasticity (0 = inelastic, 1 = perfectly elastic)

http://www.myphysicslab.com/collision.html

Center of Mass & Moment of Inertia

- Center of Mass: mean location of all mass in the system
- Moment of Inertia: a measure of an object's resistance to changes to its rotation
- If a solid cylinder & a hollow tube have the same radius & the same mass, which will reach the bottom of the ramp first?

http://solomon.physics.sc.edu/~tedeschi/demo/demo12.html http://hyperphysics.phy-astr.gsu.edu/hbase/hoocyl2.html

Liu & Popović

http://en.wikipedia.org/wiki/Fosbury_Flop

Rigid Body Dynamics

- Physics
 - \circ Velocity
 - \circ Acceleration
 - AngularMomentum
- Collisions
- Friction

from: Darren Lewis http://www-cs-students.stanford.edu/~dalewis/cs448a/rigidbody.html

Advanced Collisions

- What about friction?
- What if the contact between two objects is not a single point?
- What if more than two objects collide simultaneously?

Guendelman, Bridson & Fedkiw Nonconvex Rigid Bodies with Stacking SIGGRAPH 2003

Resting Collisions

Victor J. Milenkovic & Harald Schmidl Optimization-Based Animation SIGGRAPH 2001

- We know how to simulate bouncing really well
- But resting collisions are harder to manage

Guendelman, Bridson & Fedkiw Nonconvex Rigid Bodies with Stacking, SIGGRAPH 2003

Today

- Worksheet: Fluid Velocity & Incompressibility
- Continuing from Last Time...
 - Rigid Body Dynamics
 - Collision Response
 - Non-Rigid, Deformable Objects
 - Finite Element Method
- Papers for Today
- Level of Detail
- Useful & Related Term Definitions
- Tetrahedral Element Quality
- Papers for Next Time

Simulation of Non-Rigid Objects

• We modeled string & cloth using mass-spring systems. Can we do the same?

• Yes... But a more physically accurate model uses volumetric elements

Strain & Stress

• Stress

- the internal distribution of forces within a body that balance and react to the loads applied to it
- normal stress & shear stress
- Strain
 - material deformation caused by stress.
 - measured by the change in length of a line or by the change in angle between two lines

http://en.wikipedia.org/wiki/Image:Stress_tensor.png

Finite Element Method

- To solve the continuous problem (deformation of all points of the object)
 - Discretize the problem
 - Express the interrelationship
 - Solve a big linear system
- More principled than Mass-Spring

object

large matricial system

Diagram from Debunne et al. 2001

Today

- Worksheet: Fluid Velocity & Incompressibility
- Continuing from Last Time...
 - Rigid Body Dynamics
 - Collision Response
 - Non-Rigid, Deformable Objects
 - Finite Element Method
- Papers for Today
- Level of Detail
- Useful & Related Term Definitions
- Tetrahedral Element Quality
- Papers for Next Time

Readings for Tuesday (pick one)

• James O'Brien & Jessica Hodgins "Graphical Modeling and Animation of Brittle Fracture" SIGGRAPH 1999.

- Fracture threshold
- Remeshing
 - o need connectivity info!

- Material properties
- Parameter tuning

- Creating tetrahedron to fill interior of object
- Fracture along mesh or subdivide elements along fracture plane?
 - Dynamic remeshing
- Fracture propagation, cracks cannot(do not generally?) cross each other
- Lots of science & math, but maybe not enough implementation detail?
- Slow/offline runtime, but impressive & accurate results
- Comparison to high speed footage of object fracture is impressive
- Used an explicit solver, wouldn't implicit give more accurate results?
- Noted limitations, but only very brief explanation/justification of choices
- Only works on homogenous (isotropic) materials

Fracture Opening Modes

Figure 6: Three loading modes that can be experienced by a crack. Mode I: Opening, Mode II: In-Plane Shear, and Mode III: Out-of-Plane Shear. Adapted from Anderson [1].

Image from O'Brien et al. 1999

Local Mesh Refinement

Images from O'Brien et al. 1999

Managing Fracture Adjacency

Cutler 2003

Fracture Propagation Difficulties

• Need to track direction of fracture propagation?

• Need to track crack tip?

Image from O'Brien et al. 1999

Controlling Speed of Propagation

Procedural Authoring of Solid Models, Cutler 2003

Readings for Tuesday (pick one)

 "Robust eXtended Finite Elements for Complex Cutting of Deformables", Koschier, Bender, & Thuerey, SIGGRAPH 2017

- Lots of paper space dedicated to comparison with prior techniques
- Non-planar cuts
- Can it be used for hollow objects?
- Paper titles, acronyms, importance of good names

Readings for Tuesday (pick one)

 "Multi-species" simulation of porous sand and water mixtures", Pradhana, Gast, Klar, Fu, Teran, Jiang, and Museth, SIGGRAPH 2017.

- Lots of prior knowledge in multiple domains and familiarity with prior work expected to understand this paper & the contributions
- Intuitive to have 2 grids / 2 simulations, interact with each other
- Very complex problem, requires proper attention to subtle physical properties to mimic real-world behaviors
- Good writing style, a paragraph was included to describe each equation
- Choosing an appropriate mathematical model to reproduce a particular physical phenomena seems to be an art – not strictly science!

Today

- Worksheet: Fluid Velocity & Incompressibility
- Continuing from Last Time...
 - Rigid Body Dynamics
 - Collision Response
 - Non-Rigid, Deformable Objects
 - Finite Element Method
- Papers for Today
- Level of Detail
- Useful & Related Term Definitions
- Tetrahedral Element Quality
- Papers for Next Time

"Dynamic Real-Time Deformations using Space & Time Adaptive Sampling" Debunne, Desbrun, Cani, & Barr, SIGGRAPH 2001

- Level of Detail
- Interactive shape deformation

 Use high-resolution model only in areas of extreme deformation

Multi-Resolution Deformation

Debunne, Desbrun, Cani, & Barr, SIGGRAPH 2001

- Use Voronoi diagrams to match parent & child vertices.
- Interpolate values for inactive interface vertices from active parent/child vertices

 Need to avoid interference of vibrations between simulations at different resolutions

Pre-Computation & Simulation

- FEM matrix pre-computed
- Level of detail coupling pre-computed for rest topology
- Limitation: Not appropriate for applications that need to change connectivity of elements E.g.:
 - Cloth that is cut or torn
 - Surgery simulation

Today

- Worksheet: Fluid Velocity & Incompressibility
- Continuing from Last Time...
 - Rigid Body Dynamics
 - Collision Response
 - Non-Rigid, Deformable Objects
 - Finite Element Method
- Papers for Today
- Level of Detail
- Useful & Related Term Definitions
- Tetrahedral Element Quality
- Papers for Next Time

- *Isotropic*: is a property which does not depend on the direction.
- Anisotropic: is a property which is directionally dependent.

wood grain will impact strength & appearance

Same corduroy fabric! Just oriented with nap rotated 180°!

https://missmaudesewing.co.nz/blogs/miss-maude-musings-1/sewing-with-corduroy-fabrics

- Elastic Deformation: Once the forces are no longer applied, the object returns to its original shape.
 Stress
- Plastic Deformation: An object in the plastic deformation range will first have undergone elastic deformation, which is reversible, so the object will return part way to its original shape.

http://en.wikipedia.org/wiki/Image:Stress-strain1.png

- Degenerate/III-conditioned Element: a.k.a. how "equilateral" are the elements?
 - Ratio of volume² to surface area³
 - Smallest solid angle
 - Ratio of volume to volume of smallest circumscribed sphere

• *Tension*: The direction of the force of tension is parallel to the string, away from the object exerting the stretching force.

http://fig.cox.miami.edu/~cmallery/ 255/255chem/tensegrity.sticks.jpg

 Compression: resulting in reduction of volume

> http://www.aero.polimi.it/~merlini/ SolidMechanics-FiniteElasticity/CompressionBlock.jpg

Miscellaneous Definitions: Convex vs. Non-Convex

http://img.sparknotes.com/figures/B/b333d91dc e2882b2db48b8ad670cd15a/convexconcave.gif

http://en.wikipedia.org/wiki/File:ConvexHull.svg

http://www.tensile-structures.de/Bilder/SaddleSurface.jpg

Today

- Worksheet: Fluid Velocity & Incompressibility
- Continuing from Last Time...
 - Rigid Body Dynamics
 - Collision Response
 - Non-Rigid, Deformable Objects
 - Finite Element Method
- Papers for Today
- Level of Detail
- Useful & Related Term Definitions
- Tetrahedral Element Quality
- Papers for Next Time

Multiple Materials

Mueller, Dorsey, McMillan, Jagnow, & Cutler Stable Real-Time Deformations Symposium on Computer Animation 2002

Multiple Materials

Mueller, Dorsey, McMillan, Jagnow, & Cutler Stable Real-Time Deformations Symposium on Computer Animation 2002

Multiple Materials

Images from Cutler et al. 2002

Haptic Device

- "3D mouse" + force feedback
- 6 DOF (position & orientation)
- requires 1000 Hz refresh (visual only requires ~30 Hz)

3D Mesh Simplification

1,050K tetras (133K faces)

10K tetras (3K faces)

3D Mesh Operations

- Tetrahedral Swaps
 - Choose the configuration with the best local element shape
- Edge Collapse
- Vertex Smoothing
- Vertex Addition

3D Mesh Operations

- Tetrahedral Swaps
- Edge Collapse
 - Delete a vertex & the elements around the edge
- Vertex Smoothing
- Vertex Addition

After

Prioritizing Edge Collapses

- Preserve topology

 Thin layers should not pinch together
- Collapse weight

 Edge length + boundary error
- No negative volumes
- Local element quality does not significantly worsen

3D Mesh Operations

- Tetrahedral Swaps
- Edge Collapse
- Vertex Smoothing
 - Move a vertex to the centroid of its neighbors
 - Convex or concave,
 but avoid negative volume elements
- Vertex Addition

3D Mesh Operations

- Tetrahedral Swaps
- Edge Collapse
- Vertex Smoothing
- Vertex Addition
 - At the center of a tetra, face, or edge
 - Useful when mesh is simplified, but usually needs further element shape improvement

Visualization of Tetrahedra Quality

Visualization of Tetrahedra Quality

Visualization of Tetrahedra Quality

Visualization of Simplification Algorithm

Today

- Worksheet: Fluid Velocity & Incompressibility
- Continuing from Last Time...
 - Rigid Body Dynamics
 - Collision Response
 - Non-Rigid, Deformable Objects
 - Finite Element Method
- Papers for Today
- Level of Detail
- Useful & Related Term Definitions
- Tetrahedral Element Quality
- Papers for Next Time

Reading for Friday: (pick one)

 "Real-Time Hand-Tracking with a Color Glove" SIGGRAPH 2009, Wang & Popović

Reading for Friday: (pick one)

• "Synthesis of Complex Dynamic Character Motion from Simple Animation", Liu & Popović, 2002

Reading for Friday: (pick one)

 "Artist-Directed Dynamics for 2D Animation", Bai, Kaufman, Liu, & Popović, SIGGRAPH 2016

Figure 6: *Keyframes used in the articulated character walk example.* The artist only specifies keyframes for a subset of handles (handles at hands and feet) which are shown as blue dots. Nine keyframes are used to create a walking cycle. Their timing is visualized by the black lines at the bottom. The artworks are adapted from Angryanimator.com (http://www.angryanimator.com/)