CSCI 4530/6530 Advanced Computer Graphics

https://www.cs.rpi.edu/~cutler/classes/advancedgraphics/S25/

Lecture 4: Subdivision Surfaces

https://imgur.com/gallery/1jwOQms

Worksheet: Shortest Edge Collapse

- Perform a sequence of 3 edge collapses, one-at-a-time
- Always collapse the shortest edge that does not result in a zero area or "flipped"/upside-down triangle
- Replacement vertex should be at the midpoint of the edge

Questions on Homework 1?

HW1 Progress Post due Saturday @ midnight!

- What's an illegal edge collapse?
- To be legal, the ring of neighboring vertices *must be unique* (have no duplicates)!

What if vertex 1 is the same as vertex 4?

Notes about Homework Autograding

- Homework Autograding is run on a Linux desktop machine
- Automated:
 - Keyboard & mouse commands
 - Reasonable pauses (sleep)
 - Screenshots
- Will have longer wait times than other courses...
 - not parallelized (one student at a time)

Don't panic if autograding takes a while or gets stuck.

Post on the forum if you experience problems.

Misc. Announcements

- Homework 1 Progress Post
 - Deadline extended to Saturday 1/18 @ midnight (no late days)
 - Post 1 image + short written description of progress
- Homework 1 Deadline
 - Thursday 1/18 @ midnight (max 2 late days allowed)
- Barb's Office Hours Mondays 1-3pm, Lally 302
- Nyx's Office Hours Wednesdays noon-2pm, AE 118
- Mingyi's Office Hours Thursdays 6-8pm, CII 3112
- Also immediately after lecture on Tuesdays & Fridays

Last Time?

- Curves & Surfaces
- Continuity Definitions
 - \circ C⁰, G¹, C¹, ... C^{∞}
- Interpolation vs.Approximation Splines
- Cubic Bézier & BSpline

3/6

B_{i-0}

Today

- Worksheet: Shortest Edge Collapse
- From Last Time: Bézier Splines → Bézier Surfaces
- Papers for Today
 - "Subdivision Surfaces in Character Animation"
 - "Piecewise Smooth Surface Reconstruction"
- Misc. Mesh/Surface Vocabulary
- Subdivision Surface "Zoo"
- Interpolating Subdivision
- Papers for Next Time

Spline Surface via Tensor Product

Of two vectors:

vectors:
$$\begin{bmatrix} a_1 & a_2 & a_3 \end{bmatrix} \otimes \begin{bmatrix} b_1 & b_2 & b_3 & b_4 \end{bmatrix} = \begin{bmatrix} a_1b_1 & a_2b_1 & a_3b_1 \\ a_1b_2 & a_2b_2 & a_3b_2 \\ a_1b_3 & a_2b_3 & a_3b_3 \\ a_1b_4 & a_2b_4 & a_3b_4 \end{bmatrix}$$

 Similarly, we can define a surface as the tensor product of two curves....

Bilinear Patch

- 1D Linear Interpolation: $\mathbf{L}(P_1, P_2, \alpha) = (1 \alpha)P_1 + \alpha P_2$
- 2D Bilinear Interpolation: $\mathbf{Q}(s,t) = \mathbf{L}(\mathbf{L}(P_1, P_2, t), \mathbf{L}(P_3, P_4, t), s)$

- Bilinear Interpolation creates non-planar quadrilaterals (if P_1 , P_2 , P_3 , P_4 are not co-planar)
- But will this help us model smooth surfaces?
- Do we have control of the derivative at the edges?

Ruled Surfaces in Art & Architecture

http://www.bergenwood.no/wp-content/media/images/frozenmusic.jpg

Chiras Iulia Astri Isabella Matiss Shteinerts

Antoni Gaudi Children's School Barcelona

http://www.lonelyplanetimages.com/images/399954

Bicubic Bézier Patch

Bézier Curve: **CB** $(P_1, P_2, P_3, P_4, \alpha)$

Bézier Surface: $\mathbf{Q}(s,t) = \mathbf{CB}(\mathbf{CB}(P1, P2, P3, P4, t),$

(**CB** (P1, P2, P3, P4, t),

(**CB** (P1, P2, P3, P4, t),

(**CB** (P1, P2, P3, P4, t), s)

(b)

Editing Bicubic Bézier Patches

Bicubic Bézier Patch Tessellation

 Given 16 control points and a tessellation resolution, we can create a triangle mesh

resolution: 5x5 vertices

resolution: 11x11 vertices

resolution: 41x41 vertices

Modeling with Bicubic Bézier Patches

Original Teapot specified with Bézier Patches:

 But it's not "watertight": it has intersecting surfaces at spout & handle, no bottom, a hole at the spout tip, a gap between lid & base

Trimming Curves for Patches

Shirley, Fundamentals of Computer Graphics

Spline-Based Modeling Headaches

Questions?

Bézier Patches?

or

Triangle Mesh?

Today

- Worksheet: Shortest Edge Collapse
- From Last Time: Bézier Splines → Bézier Surfaces
- Papers for Today
 - "Subdivision Surfaces in Character Animation"
 - "Piecewise Smooth Surface Reconstruction"
- Misc. Mesh/Surface Vocabulary
- Subdivision Surface "Zoo"
- Interpolating Subdivision
- Papers for Next Time

Reading for Today

DeRose, Kass, & Truong,
 "Subdivision Surfaces in Character Animation",
 SIGGRAPH 1998

Quad Meshes
more common
in artistic practice
(e.g. Pixar's Geri's Game)

Figure 5: Geri's hand as a piecewise smooth Catmull-Clark surface. Infinitely sharp creases are used between the skin and the finger nails.

Subdivision Surfaces in Character Animation

- Catmull Clark Subdivision Rules
- Semi-sharp vs.
 Infinitely-sharp creases
- Mass-Spring Cloth (next week)
- Hierarchical Mesh for Collision
- Texturing Subdivision Surfaces

Figure 11: (a) A texture mapped regular pentagon comprised of 5 triangles; (b) the pentagonal model with its vertices moved; (c) A subdivision surface whose control mesh is the same 5 triangles in (a), and where boundary edges are marked as creases; (d) the subdivision surface with its vertices positioned as in (b).

Reading for Today

Hoppe et al.,
 "Piecewise Smooth
 Surface Reconstruction"
 SIGGRAPH 1994

Triangle meshes directly applies to HW1!

Piecewise Smooth Surface Reconstruction

- From input: scanned mesh points
 - Estimate topological type (genus)
 - Mesh optimization(a.k.a. simplification)
 - Smooth surface optimization

Piecewise Smooth Surface Reconstruction

Piecewise Smooth Surface Reconstruction

- Crease subdivision masks decouple behavior of surface on either side of crease
- Crease rules cannot model a cone
- Optimization can be done locally
 - subdivision control points have only local influence
- Results
 - Noise?
 - Applicability?
 - o Limitations?
 - Running Time

Today

- Worksheet: Shortest Edge Collapse
- From Last Time: Bézier Splines → Bézier Surfaces
- Papers for Today
 - "Subdivision Surfaces in Character Animation"
 - "Piecewise Smooth Surface Reconstruction"
- Misc. Mesh/Surface Vocabulary
- Subdivision Surface "Zoo"
- Interpolating Subdivision
- Papers for Next Time

 Genus: The maximum number of disjoint simple closed curves which can be cut from an orientable surface of genus g without disconnecting it is g.

double torus: g = 2

Homeomorphic/Topological equivalence:
 a continuous stretching and bending of the object into a new shape

http://en.wikipedia.org/wiki/Image:Mug_and_Torus_morph.gif

- Dihedral Angle:
 - "looking down the edge" between two faces...
 - the angle between the planes of two triangular faces

Valence (a.k.a. degree):
 the number of edges incident to the vertex

Warp & weft:

Yarns used in weaving.

Because the weft does not have to be stretched in the way that the warp is, it can generally be less strong.

- Extraordinary Vertex
 - Quad mesh: vertices w/ valence ≠ 4
 - Hex mesh: vertices w/ valence ≠ 3
 - Tri mesh: vertices w/ valence ≠ 6

- Extraordinary Vertex
 - Quad mesh: vertices w/ valence ≠ 4
 - Hex mesh: vertices w/ valence ≠ 3
 - Tri mesh: vertices w/ valence ≠ 6

How does valence change with each subdivision iteration?

Questions?

Today

- Worksheet: Shortest Edge Collapse
- From Last Time: Bézier Splines → Bézier Surfaces
- Papers for Today
 - "Subdivision Surfaces in Character Animation"
 - "Piecewise Smooth Surface Reconstruction"
- Misc. Mesh/Surface Vocabulary
- Subdivision Surface "Zoo"
- Interpolating Subdivision
- Papers for Next Time

Chaikin's Algorithm

Doo-Sabin Subdivision

- Shrink each original face:
 move every vertex halfway to face center
- Add a new face at each vertex:
 edge count = original vertex valence
- Add a quad at each original edge

Doo-Sabin Subdivision

Does a cube turn into a sphere with Doo-Sabin subdivision?

Loop Subdivision

- Add a vertex in the middle of each edge
- Replace each triangle with 4 triangles
- Adjust the positions of both old & new vertices...

Shirley, Fundamentals of Computer Graphics

Loop Subdivision

SIGGRAPH 2000 course notes Subdivision for Modeling and Animation (page 70)

Subdivision Rules. The masks for the Loop scheme are shown in Figure 4.3. For boundaries and edges tagged as *crease* edges, special rules are used. These rules produce a cubic spline curve along the boundary/crease. The curve only depends on control points on the boundary/crease.

Figure 4.3: Loop subdivision: in the picture above, β can be chosen to be either $\frac{1}{n}(5/8-(\frac{3}{8}+\frac{1}{4}\cos\frac{2\pi}{n})^2)$ (original choice of Loop [16]), or, for n > 3, $\beta = \frac{3}{8n}$ as proposed by Warren [33]. For n = 3, $\beta = 3/16$ can be used.

Adding Creases to Loop Subdivision

- Vertex & edge masks
- Limit masks
 - Position
 - Tangent

Hoppe et al., "Piecewise Smooth Surface Reconstruction" SIGGRAPH 1994

dart vertex

regular or non-regular crease vertex

(2) regular crease edge

(3) non-regular crease edge

Catmull Clark Subdivision

"Subdivision Surfaces in Character Animation", DeRose, Kass & Truong, SIGGRAPH 1998

$$e_j^{i+1} = \frac{v^i + e_j^i + f_{j-1}^{i+1} + f_j^{i+1}}{4},\tag{1}$$

where subscripts are taken modulo the valence of the central vertex v^0 . (The valence of a vertex is the number of edges incident to it.) Finally, a vertex point v^i is computed as

$$v^{i+1} = \frac{n-2}{n}v^i + \frac{1}{n^2}\sum_j e^i_j + \frac{1}{n^2}\sum_j f^{i+1}_j$$
 (2)

Vertices of valence 4 are called ordinary; others are called extraordinary.

Catmull Clark Subdivision

- Add a vertex in the middle of each original edge
- Add a vertex in the middle of each original face
- Connect each new edge vertex to each new face vertex
- NOTE: The mesh contains only quads after 1 iteration.

https://team.inria.fr/virtualplants/teaching/informatique-graphique-2016/tp4-instructions/

Catmull Clark Subdivision

Adjust/average the position of every vertex (old & new) using these masks:

http://www.cl.cam.ac.uk/teaching/ 2005/AdvGraph/exercise2.html

Catmull Clark is preferred by Artists

- Catmull-Clark is based on quadrilaterals
 - Like NURBS, specifically cubic BSplines
 - Implicit adjacency in subdivided microgeometry
 - Quads are better than triangles for symmetric objects

Does a cube turn into a sphere with Loop subdivision? What about with Catmull-Clark subdivision?

Butterfly Subdivision

- Triangle-based subdivision
- Alternate scheme to Loop

http://www.cl.cam.ac.uk/teaching/2005/AdvGraph/exercise2.html

√3 Subdivision Kobbelt, SIGGRAPH 2000

Adaptive Subdivision (Loop): Need to close gaps between different levels of refinement

the split operation places a midvertex at the centre of each triangle

joining the midvertex to the vertices of the triangle realises the 1-to-3 split

after smoothing each old vertex, edges are flipped to connect pairs of midvertices

Loop: less localized refinement

√3: more localized refinement

Questions?

Justin Legakis

Today

- Worksheet: Shortest Edge Collapse
- From Last Time: Bézier Splines → Bézier Surfaces
- Papers for Today
 - "Subdivision Surfaces in Character Animation"
 - "Piecewise Smooth Surface Reconstruction"
- Misc. Mesh/Surface Vocabulary
- Subdivision Surface "Zoo"
- Interpolating Subdivision
- Papers for Next Time

Interpolation vs. Approximation Curves

Interpolation Curve:
 over constrained → lots of (undesirable?) oscillations

Artists would like to have this direct control of surface!

Approximation Curve – more reasonable?

Interpolating Subdivision

• Chaikin:

• Doo-Sabin:

Surface will pass through the centroids of each edge/face

Interpolating Subdivision

- Interpolation vs.
 Approximation of control points
- Handle arbitrary topological type
- Reduce the "extraneous bumps & wiggles"

"Efficient, fair interpolation using Catmull-Clark surfaces", Halstead, Kass & DeRose, SIGGRAPH 1993

Figure 4: Interpolating a coarsely polygonized torus. Upper left: original mesh. Upper right: Shirman-Séquin interpolation[14]. Lower left: Interpolating Catmull-Clark surface. Lower right: Faired interpolating Catmull-Clark surface.

Interpolation of Catmull-Clark Surfaces

- Artist draws an input control mesh (solid black)
 - Catmull Clark subdivision of the input will be non-interpolating (solid red)

• Idea: Automatically compute a **new control mesh (dashed black)** such that Catmull Clark of the new mesh **will interpolate (dashed red)** the vertices of the original mesh!

Vertex Position in Limit

 V_n stores the center vertex & surrounding as a big column vector

$$V_n^{i+1} = \mathbf{S}_n V_n^i$$

When n = 4:(n = valence)

$$V_n^{\infty} := \lim_{i \to \infty} \mathbf{S}_n^i V_n^1$$

$$\mathbf{S}_{4} = \frac{1}{16} * \begin{pmatrix} 6 & 6 & 1 & 0 & 1 & 1 & 0 & 0 & 1 \\ 6 & 6 & 1 & 0 & 1 & 1 & 0 & 0 & 1 \\ 6 & 1 & 6 & 1 & 0 & 1 & 1 & 0 & 0 \\ 6 & 0 & 1 & 6 & 1 & 0 & 1 & 1 & 0 \\ 6 & 1 & 0 & 1 & 6 & 0 & 0 & 1 & 1 \\ 4 & 4 & 4 & 0 & 0 & 4 & 0 & 0 & 0 \\ 4 & 0 & 4 & 4 & 0 & 0 & 4 & 0 & 0 \\ 4 & 0 & 0 & 4 & 4 & 0 & 0 & 4 & 0 \\ 4 & 4 & 0 & 0 & 4 & 0 & 0 & 0 & 4 \end{pmatrix}$$

Solve for New Positions

- Goal: Find the control mesh vertex positions,
 x (a column vector of 3D points), such that the position of the vertices in the limit match the input vertices, b (also a column vector of points)
- Use Least Squares to solve

$$\mathbf{A}\mathbf{x} = \mathbf{b}$$

where A is a square matrix with the interpolation rules and connectivity of the mesh

See paper for extension to match limit normals

Fairing

- Fairing: an additional part or structure added to an aircraft, tractor-trailer, etc. to smooth the outline and thus reduce drag
- Subdivide initial resolution twice so that all constrained vertex positions are independent

Figure 5: Top row: Original mesh, Interpolating mesh, Faired interpolating mesh. Bottom row: Corresponding Catmull-Clark surfaces. Interpolation introduces wiggles which are removed by fairing.

Questions?

Today

- Worksheet: Shortest Edge Collapse
- From Last Time: Bézier Splines → Bézier Surfaces
- Papers for Today
 - "Subdivision Surfaces in Character Animation"
 - "Piecewise Smooth Surface Reconstruction"
- Misc. Mesh/Surface Vocabulary
- Subdivision Surface "Zoo"
- Interpolating Subdivision
- Papers for Next Time

Reading for Next Time: (pick one)

"Multidimensional Binary Search Trees Used for Associative Searching", Bentley, Communications of the ACM, 1975

Reading for Next Time: (pick one)

"OBB-Tree: A Hierarchical Structure for Rapid Interference Detection", Gottschalk, Lin, & Manocha, SIGGRAPH 1996.

Reading for Next Time: (pick one)

"Visibility
Preprocessing
For Interactive
Walkthroughs",
Teller & Sequin,
SIGGRAPH 1991.

