CSCI 4530/6530 Advanced Computer Graphics
https://www.cs.rpi.edu/~cutler/classes/advancedgraphics/S25/

Lecture 2:
Adjacency
Data Structures

includes material from Justin Legakis

Worksheet: Transformations!

Write down the 3x3 matrix that transforms this set of 4 points:
A: (0,0) B: (1,0) C:(1,1) D: (0,1)

NOTE: We’'ll be doing pair worksheets
throughout the term. Bonus points if you work
with a different partner for every worksheet!

to the

Show your work.

If you finish early...
Solve the problem using a different technique.

Cubic Trag edy Ming-Yuan Chuan & Chun-Wang Sun, SIGGRAPH 2005

https://docs.google.com/file/d/1SX_d-YSuL5S_U4MfeUYKOTwK71xs12nn/preview

Last Time?

e Simple Transformations

|

Identity

e C(Classes of Transformations
e Representation

o homogeneous coordinates
e Composition

. X a b c¢ d X
o not commutative e AN
o Orthographic & Z' I] k I z projector -
1 0 0 0 1|1

Perspective Projections

Homework 0: OpenGL/Metal Warmup

o Get familiar with:
o C++ environment
o OpenGL / Metal
o Transformations
o Simple Vector &
Matrix classes

e Due ASAP...

e Y4 of the points of the other HWs
(but you should still do it and submit it!)

e Any Questions?

Reminder: Participation/Laptops in Class Policy

e Lecture is intended to be discussion-intensive
e Laptops, tablet computers, smart phones, and other internet-connected
devices are not allowed
o Except during the discussion of the day's assigned paper: students
may use their laptop/tablet to view an electronic version of the paper.
o Other exceptions to this policy are negotiable; please see the
instructor in office hours

Today

« Worksheet: Transformations

« Surface Definitions

« Simple Data Structures

« Fixed Storage Data Structures

» Fixed Computation Data Structures

« Today’'s Reading: “Progressive Meshes”

« Reading for Tuesday & Homework 1 Preview

Today

Worksheet: Transformations

Surface Definitions

— Well-Formed Surfaces

— Orientable Surfaces

— Computational Complexity

Simple Data Structures

Fixed Storage Data Structures

Fixed Computation Data Structures

Today’s Reading: “Progressive Meshes”
Reading for Tuesday & Homework 1 Preview

Well-Formed Surfaces

e Components Intersect "Properly"
o Any pair of Faces are: disjoint, share single Vertex,
or share 2 Vertices and the Edge joining them
o Every edge is incident to exactly 2 vertices
o Every edge is incident to exactly 2 faces
e Local Topology is "Proper”
o Neighborhood of a vertex is homeomorphic to a disk
(permits stretching and bending, but not tearing)
Also called a 2-manifold
If boundaries are allowed, points on the boundary
are homeomorphic to a half-disk, called a "manifold

with boundaries” .
e Global Topology is "Proper" -

o Connected, Closed, & Bounded

Orientable Surfaces?

Closed Surfaces and Refraction

e Original Teapot model is not "watertight™:
o intersecting surfaces at spout & handle, no bottom,
a hole at the spout tip, a gap between lid & base
e Requires repair before ray tracing with refraction

Henrik Wann Jensen

Computational Complexity

e Adjacent Element Access Time
o linear, constant time average case, or constant time?
o requires loops/recursion/if ?
e Memory
o variable size arrays or constant size?
e Maintenance
o ease of editing
o ensuring consistency

Questions?

Today

« Worksheet: Transformations
« Surface Definitions
« Simple Data Structures
— List of Polygons
— List of Edges
— List of Unique Vertices & Indexed Faces:
— Simple Adjacency Data Structure
* Fixed Storage Data Structures
» Fixed Computation Data Structures
« Today’s Reading: “Progressive Meshes”
« Reading for Tuesday & Homework 1 Preview

List of Polygons:

(3,-2,5), (3,06,2), (-6,2,4)
(2,2,4), (0,-1,-2), (9,4,0), (4,2,9)
(1,2,-2), (8,8,7), (-4,-5,1)
(-8,2,7), (=2,3,9), (1,2,-7)

How do you identify/count the triangles vs. the quads?

How do you identify which vertices are shared by one or more elements?
Can you find the elements that share an edge with a specific triangle?
Are there any concerns with using floating point / decimal coordinates?

List of Edges:

(3,0,2), (-6,2,4)
(2,2,4), (0,-1,-2)
(9,4,0), (4,2,9)
8,8,7), (-4,-5,1)
-8,2,7), (1,2,-7)
3,0,-3), (=7,4,-3)
9,4,0), (4,2,9)
3,6,2), (-6,2,4)

-3,0,-4), (7,-3,-4) Which vertex has the highest valence? (valence = # of edges)
Which edges are boundary edges? (Used by only 1 element)
Do any of the edges cross?

List of Unique Vertices & Indexed Faces:

Vertices: (-1, -1, -1)
(]-I _]-r)
(ll ’ _]—) P
(-1, 1, 1)
(1, -1, -1)
(1, -1, 1)
(1, 1, -1) /‘
(1, 1, 1)
Faces:

Does this use more or less memory than a simple list of polygons?

Primary advantage? Eliminates concerns about floating point
rounding/imprecision when comparing point values.

N P w e o1
O W b U I
o J O O 0
o1 I NN oYy W

Problems with Simple Data Structures

e No Adjacency information
e Linear-time searches for neighbors

Structured Unstructured

e Adjacency is implicit for structured meshes, but what do we do for
unstructured meshes?

Mesh Data

e S0, in addition to:
o Geometric Information (position)
o Attribute Information
(color, texture, temperature, population density, etc.)
e Let's store:
o Topological Information
(adjacency / connectivity / neighbors)

Simple Adjacency

e Each element (vertex, edge, and face)
has a list of pointers to all incident elements
e Queries depend only on local complexity of mesh
e Data structures do not have fixed size
e Slow! Big! Too much work to maintain!

Questions?

Today

« Worksheet: Transformations
« Surface Definitions
« Simple Data Structures
» Fixed Storage Data Structures
— Winged Edge (Baumgart, 1975)
» Fixed Computation Data Structures
« Today’s Reading: “Progressive Meshes”
« Reading for Tuesday & Homework 1 Preview

Winged Edge (Baumgart, 1975)

Each edge stores pointers
to 4 Adjacent Edges,
2 Face & 2 Vertex neighbors

Vertices and Faces

have a single pointer

to one incident Edge

Data Structure Size?
Fixed/constant number of bytes!

How do we gather all faces
surrounding one vertex?

Messy, because there is no
consistent way to order pointers

Incident
Edge

V_Bottom

Vertex
Top

Edge
Lefi+

Righi-

Geometric
Information

Face
Left

Face

Right

Incident
Edge

Attribute
Information

Attri

Information

bute

Attribute
Information

VERTEX

Edge
Left—

FiEl‘:;:I ﬁ $+

Vertex
Bottom

EDGE

FACE

Today

« Worksheet: Transformations
« Surface Definitions
« Simple Data Structures
« Fixed Storage Data Structures
* Fixed Computation Data Structures
— HalfEdge (Eastman 1982)
— SplitEdge
— Corner
— QuadEdge (Guibas and Stolfi 1985)
— FacetEdge (Dobkin and Laszlo 1987)
« Today’'s Reading: “Progressive Meshes”
« Reading for Tuesday & Homework 1 Preview

HalfEdge (Eastman 1982)

e Every edge is represented by two directed HalfEdge structures

e Each HalfEdge stores:
o vertex at end of directed edge
o symmetric half edge
o face to left of edge
o points to the HalfEdge
counter-clockwise around
face on left
e Orientation is essential, but
can be done consistently!

T

&

Uf\%uw\%uw E
H— o -
¥

i¢ . Y
3. ’ .’\E

4
3‘% :
—& & o—
Ay Xdln . hln

HalfEdge (Eastman 1982)

e Starting at a half edge, how do we find:
o the other vertex of the edge?

the other face of the edge?

the clockwise edge around

the face at the left?

all the edges surrounding

the face at the left?

all the faces surrounding

the vertex?

O

O

¥

M

I_Iil_l\

.“‘E
)

® C
M

N

&
\HIB\
3

\f

MIri

(]

—o—

W

—
i

HalfEdge (Eastman 1982)

e Loop around a Face:

HalfEdgeMesh: :Faceloop (HalfEdge *HE) {
HalfEdge *loop = HE;

do {
loop = loop->Next;
} while (loop != HE);

}

e Loop around a Vertex:

HalfEdgeMesh: :VertexLoop (HalfEdge *HE)
HalfEdge *loop = HE;

do {
loop = loop->Next->Sym;
} while (loop != HE);

{

N LN
o ¢ ® —

o
- .
| b g g —r

P
2 % E
7 ® ® b s N

Al N = ln

HalfEdge (Eastman 1982)

e Data Structure Size?
Fixed/constant number of bytes

e Data:
o geometric information stored at Vertices
o attribute information in Vertices, HalfEdges, and/or Faces
o topological information in HalfEdges only!
e Orientable surfaces only (no Mobius Strips!)
e Local consistency everywhere implies global consistency
e Time Complexity?
Linear in the amount of information gathered

SplitEdge Data Structure

SE N S SIS %ﬂf %U-f -
m\ /m\ /m\ gL. L %ﬂﬂ
f&‘f/ . j:}f/ * ?\%‘; jﬂﬂ\%\%\ ﬂ"ﬂ:
i it it
b
=

Qﬁ% %:“%\ B

HalfEdge and SplitEdge are dual structures!
SplitEdgeMesh: :Faceloop () = HalfEdgeMesh::VertexLoop ()

SplitEdgeMesh: :VertexLoop () = HalfEdgeMesh::FaceLoop ()

Corner Data Structure

The Corner Data Structure is its own dual!

—:_i
T

rd 4 :
g 4
\ P ol

Questions?

Today

« Worksheet: Transformations
« Surface Definitions
« Simple Data Structures
« Fixed Storage Data Structures
* Fixed Computation Data Structures
— HalfEdge (Eastman, 1982)
— SplitEdge
— Corner
— QuadEdge (Guibas and Stolfi, 1985)
— FacetEdge (Dobkin and Laszlo, 1987)
« Today’'s Reading: “Progressive Meshes”
« Reading for Tuesday & Homework 1 Preview

QuadEdge (Guibas and Stolfi, 1985)

e Consider the Mesh and its Dual Mesh simultaneously
o Vertices and Faces switch roles, we just re-label them
o Edges remain Edges \

e Classic dual mesh example:
o Delaunay Triangulation®
o Voronoi Diagram*

* has other special properties

Today

« Worksheet: Transformations

« Surface Definitions

« Simple Data Structures

« Fixed Storage Data Structures

» Fixed Computation Data Structures

« Today’'s Reading: “Progressive Meshes”

« Reading for Tuesday & Homework 1 Preview

QuadEdge (Guibas and Stolfi, 1985)

e Eight ways to look at each edge
o Four ways to look at primal edge
o Four ways to look at dual edge

QuadEdge (Guibas and Stolfi, 1985)

e Operators in Edge Algebra:

o Rot: Bug rotates 90 degrees to its left
(switches to/from dual graph)

o Sym: Bug turns around 180 degrees

o Flip: Bug flips upside down
(other side of the leaf)

o Onext: Bug rotates CCW to next edge with
same origin (either Vertex or Face)

_<§ﬁe< ‘MM ext(e) Mp (e) rotate(e)

Note: different authors use different terminology...

QuadEdge (Guibas and Stolfi, 1985)

e Some Properties of Flip, Sym, Rot, and Onext:

e Lprev = e Lnext' = e Onext Sym
e Rprev = e Rnext’ = e Sym Onext
e Dprev = e Dnext! = e Rot™' Onext Rot

o eRott=e

o eRot?’#e

o eFlip’=e

o eFlipRotFlipRot=e

o eRotFlipRotFlip=e

o e Rot Onext Rot Onext = e

o e Flip Onext Flip Onext = e

o eFlip"=eFlip

o e Sym=e Rot?

o eRot'=eRot?

o e Rot' = e Flip Rot Flip

o e Onext' = e Rot Onext Rot

o e Onext' = e Flip Onext Flip

o e Lnext=e Rot" Onext Rot All of these functions can be expressed as a

o e Rnext = e Rot Onext Rot™ constant number of Rot, Sym, Flip, and Onext
o e Dnext=e Sym Onext Sym™’ operations independent of the local topology and
o e Oprev = e Onext' = e Rot Onext Rot the global size and complexity of the mesh.

O

O

O

FacetEdge (Dobkin and Laszlo, 1987)

e QuadEdge (2D / surface) — FacetEdge (3D / volume)
e Faces — Polyhedra/ Cells
e Edge — Polygon & Edge pair

81 aDest

=

a (o
<0 aFlip
() aSym

aOnext

Questions?

Today

« Worksheet: Transformations

« Surface Definitions

« Simple Data Structures

« Fixed Storage Data Structures

» Fixed Computation Data Structures

« Today’'s Reading: “Progressive Meshes”

« Reading for Tuesday & Homework 1 Preview

Today’s Reading:

e Hugues Hoppe “Progressive Meshes” SIGGRAPH 1996

(a) Base mesh M” (150 faces) (b) Mesh M'™ (500 faces) (¢c) Mesh M** (1,000 faces) (d) Original M=M" (13.546 faces)
>

Progressive Meshes

Mesh Simplification

o vertex split / edge collapse

o geometry & discrete/scalar attributes
o priority queue

Level of Detail

o geomorphs

Progressive Transmission

Mesh Compression

Selective Refinement

o view dependent

Selective Refinement

’Hﬂnn a
\;{;ﬂnnﬂ 7 Ve Vi

WKAAAAT
WA TAVAVAVAVAV RV

A ”WAvA"" ""}:A

ZAVAVAVAVAVATA
Y SYAVAVATAY K
NYOOG AN
AN CRIERCOCRRS
7,7 AV A v AVAVATAY)
SOk

Figure 10: Selective refinement of a terrain mesh taking into account view frustum, silhou-
ette regions, and projected screen size of faces (7,438 faces).

Preserving Discontinuity Curves

(c) M*™ (1.000 faces)

(d) € = 9.0 (192 faces) (e) € = 2.75 (1,070 faces) () e = 0.1 (15.842 faces)
Figure 12: Approximations of a mesh M using (b—¢) the PM representation, and (d—f) the MRA scheme of Eck et al. [7]. As demonstrated,
MRA cannot recover M exactly, cannot deal effectively with surface creases, and produces approximating meshes of inferior quality.

Problematic / visible “popping” between LODs, geomorphing
Discrete vs continuous LOD - is continuous necessary?
Progressive transmission, progressive refinement

Lossless / invertible

Research: appreciate original context, iterating/extending prior work,
hybrid techniques, future work

Research directly used by / influencing games/other industry?
Triangles vs quads, collapse vs. other ops (split, swap, etc)
Expensive cost? Precompute vs on-the fly?

Can we reduce this by approximation? Or parallelize it?

Mesh formalism, Energy function (springs?) to select edge

— how it works not immediately intuitive

Limitations? Incorrectly, preserve unimportant details,

store unnecessary high resolution? Can’t use on animated meshes

Other Simplification Strategies

e Remove a vertex & surrounding triangles, re-triangulate the hole

e Merge Nearby Vertices (will likely change the topology)

contract
.--- Vv, Y
v, 2 ¥

Before After

Garland & Heckbert,
“Surface Simplification
Using Quadric Error Metrics”

Figure 2: Non-edge contraction. When non-edge pairs are con- SIGGRAPH 1997
tracted, unconnected sections of the model are joined. The dashed
line indicates the two vertices being contracted together.

Is it Important to Preserve Original Topology?

Garland & Heckbert,
“Surface Simplification
Using Quadric Error Metrics”
SIGGRAPH 1997

Figure 3: On the left 1s a regular grid of 100 closely spaced cubes.
In the middle, an approximation built using only edge contractions
demonstrates unacceptable fragmentation. On the right, the result

of using more general pair contractions to achieve aggregation 1s an
approximation much closer to the original.

Questions?

Today

« Worksheet: Transformations

« Surface Definitions

« Simple Data Structures

« Fixed Storage Data Structures

» Fixed Computation Data Structures

« Today’'s Reading: “Progressive Meshes”

« Reading for Tuesday & Homework 1 Preview

Reading for TU esd ay Need 2 volunteers to be “Discussants”

"Teddy: "
A Sketching “EXTRUSION
Interface for
3D Freeform
Design”,
|lgarashi et al.,
SIGGRAPH
1999

Init| Undo| Bend| Load| Save |[teddy

How do we represent objects that don’t have flat polygonal faces & sharp corners?
What are the right tools to design/construct digital models of blobby, round, or soft things?
What makes a user interface intuitive, quick, and easy-to-use for beginners?

Homework 1 Coming Soon!

