
CSCI 4530/6530 Advanced Computer Graphics
https://www.cs.rpi.edu/~cutler/classes/advancedgraphics/S25/

Lecture 2:
Adjacency

Data Structures
includes material from Justin Legakis

Worksheet: Transformations!

Write down the 3x3 matrix that transforms this set of 4 points:
 A: (0,0) B: (1,0) C: (1,1) D: (0,1)

to these new positions:
 A’: (-1, 1) B’: (-1, 0) C’: (0, 0) D’: (0, 1)

Show your work.

If you finish early…
Solve the problem using a different technique.

NOTE: We’ll be doing pair worksheets
throughout the term. Bonus points if you work

with a different partner for every worksheet!

Cubic Tragedy Ming-Yuan Chuan & Chun-Wang Sun, SIGGRAPH 2005

https://docs.google.com/file/d/1SX_d-YSuL5S_U4MfeUYKOTwK71xs12nn/preview

● Simple Transformations

● Classes of Transformations
● Representation

○ homogeneous coordinates
● Composition

○ not commutative
● Orthographic &

Perspective Projections

Last Time?

● Get familiar with:
○ C++ environment
○ OpenGL / Metal
○ Transformations
○ Simple Vector &

Matrix classes

● Due ASAP…
● ¼ of the points of the other HWs

(but you should still do it and submit it!)
● Any Questions?

Homework 0: OpenGL/Metal Warmup

Reminder: Participation/Laptops in Class Policy
● Lecture is intended to be discussion-intensive
● Laptops, tablet computers, smart phones, and other internet-connected

devices are not allowed
○ Except during the discussion of the day's assigned paper: students

may use their laptop/tablet to view an electronic version of the paper.
○ Other exceptions to this policy are negotiable; please see the

instructor in office hours

Today
• Worksheet: Transformations
• Surface Definitions
• Simple Data Structures
• Fixed Storage Data Structures
• Fixed Computation Data Structures
• Today’s Reading: “Progressive Meshes”
• Reading for Tuesday & Homework 1 Preview

Today
• Worksheet: Transformations
• Surface Definitions

– Well-Formed Surfaces
– Orientable Surfaces
– Computational Complexity

• Simple Data Structures
• Fixed Storage Data Structures
• Fixed Computation Data Structures
• Today’s Reading: “Progressive Meshes”
• Reading for Tuesday & Homework 1 Preview

Well-Formed Surfaces
● Components Intersect "Properly"

○ Any pair of Faces are: disjoint, share single Vertex,
or share 2 Vertices and the Edge joining them

○ Every edge is incident to exactly 2 vertices
○ Every edge is incident to exactly 2 faces

● Local Topology is "Proper"
○ Neighborhood of a vertex is homeomorphic to a disk

(permits stretching and bending, but not tearing)
○ Also called a 2-manifold
○ If boundaries are allowed, points on the boundary

are homeomorphic to a half-disk, called a "manifold
with boundaries"

● Global Topology is "Proper"
○ Connected, Closed, & Bounded

Orientable Surfaces?

mathworld.wolfram.com

Closed Surfaces and Refraction
● Original Teapot model is not "watertight":

○ intersecting surfaces at spout & handle, no bottom,
a hole at the spout tip, a gap between lid & base

● Requires repair before ray tracing with refraction

Henrik Wann Jensen

Computational Complexity
● Adjacent Element Access Time

○ linear, constant time average case, or constant time?
○ requires loops/recursion/if ?

● Memory
○ variable size arrays or constant size?

● Maintenance
○ ease of editing
○ ensuring consistency

Questions?

Today
• Worksheet: Transformations
• Surface Definitions
• Simple Data Structures

– List of Polygons
– List of Edges
– List of Unique Vertices & Indexed Faces:
– Simple Adjacency Data Structure

• Fixed Storage Data Structures
• Fixed Computation Data Structures
• Today’s Reading: “Progressive Meshes”
• Reading for Tuesday & Homework 1 Preview

List of Polygons:

(3,-2,5), (3,6,2), (-6,2,4)

(2,2,4), (0,-1,-2), (9,4,0), (4,2,9)

(1,2,-2), (8,8,7), (-4,-5,1)

(-8,2,7), (-2,3,9), (1,2,-7)

How do you identify/count the triangles vs. the quads?
How do you identify which vertices are shared by one or more elements?
Can you find the elements that share an edge with a specific triangle?
Are there any concerns with using floating point / decimal coordinates?

List of Edges:

 (3,6,2), (-6,2,4)
(2,2,4), (0,-1,-2)

(9,4,0), (4,2,9)

(8,8,7), (-4,-5,1)

(-8,2,7), (1,2,-7)

(3,0,-3), (-7,4,-3)

(9,4,0), (4,2,9)

(3,6,2), (-6,2,4)

(-3,0,-4), (7,-3,-4) Which vertex has the highest valence? (valence = # of edges)
Which edges are boundary edges? (Used by only 1 element)
Do any of the edges cross?

List of Unique Vertices & Indexed Faces:
(-1, -1, -1)
(-1, -1, 1)
(-1, 1, -1)
(-1, 1, 1)
(1, -1, -1)
(1, -1, 1)
(1, 1, -1)
(1, 1, 1)

1 2 4 3
5 7 8 6
1 5 6 2
3 4 8 7
1 3 7 5
2 6 8 4

Vertices:

Faces:

Does this use more or less memory than a simple list of polygons?

Primary advantage? Eliminates concerns about floating point
rounding/imprecision when comparing point values.

Problems with Simple Data Structures
● No Adjacency information
● Linear-time searches for neighbors

● Adjacency is implicit for structured meshes, but what do we do for
unstructured meshes?

Mesh Data
● So, in addition to:

○ Geometric Information (position)
○ Attribute Information

(color, texture, temperature, population density, etc.)
● Let’s store:

○ Topological Information
(adjacency / connectivity / neighbors)

Simple Adjacency
● Each element (vertex, edge, and face)

has a list of pointers to all incident elements
● Queries depend only on local complexity of mesh
● Data structures do not have fixed size
● Slow! Big! Too much work to maintain!

Questions?

Today
• Worksheet: Transformations
• Surface Definitions
• Simple Data Structures
• Fixed Storage Data Structures

– Winged Edge (Baumgart, 1975)
• Fixed Computation Data Structures
• Today’s Reading: “Progressive Meshes”
• Reading for Tuesday & Homework 1 Preview

● Each edge stores pointers
to 4 Adjacent Edges,
2 Face & 2 Vertex neighbors

● Vertices and Faces
have a single pointer
to one incident Edge

● Data Structure Size?

● How do we gather all faces
surrounding one vertex?

Fixed/constant number of bytes!

Messy, because there is no
consistent way to order pointers

Winged Edge (Baumgart, 1975)

VERTEX

EDGE

FACE

Today
• Worksheet: Transformations
• Surface Definitions
• Simple Data Structures
• Fixed Storage Data Structures
• Fixed Computation Data Structures

– HalfEdge (Eastman 1982)
– SplitEdge
– Corner
– QuadEdge (Guibas and Stolfi 1985)
– FacetEdge (Dobkin and Laszlo 1987)

• Today’s Reading: “Progressive Meshes”
• Reading for Tuesday & Homework 1 Preview

HalfEdge (Eastman 1982)
● Every edge is represented by two directed HalfEdge structures
● Each HalfEdge stores:

○ vertex at end of directed edge
○ symmetric half edge
○ face to left of edge
○ next points to the HalfEdge

counter-clockwise around
face on left

● Orientation is essential, but
can be done consistently!

HalfEdge (Eastman 1982)
● Starting at a half edge, how do we find:

○ the other vertex of the edge?
○ the other face of the edge?
○ the clockwise edge around

the face at the left?
○ all the edges surrounding

the face at the left?
○ all the faces surrounding

the vertex?

HalfEdge (Eastman 1982)
● Loop around a Face:

HalfEdgeMesh::FaceLoop(HalfEdge *HE) {
 HalfEdge *loop = HE;
 do {
 loop = loop->Next;
 } while (loop != HE);
}

● Loop around a Vertex:

HalfEdgeMesh::VertexLoop(HalfEdge *HE) {
 HalfEdge *loop = HE;
 do {
 loop = loop->Next->Sym;
 } while (loop != HE);
}

HalfEdge (Eastman 1982)
● Data Structure Size?

● Data:
○ geometric information stored at Vertices
○ attribute information in Vertices, HalfEdges, and/or Faces
○ topological information in HalfEdges only!

● Orientable surfaces only (no Mobius Strips!)
● Local consistency everywhere implies global consistency
● Time Complexity?

Fixed/constant number of bytes

Linear in the amount of information gathered

SplitEdge Data Structure

HalfEdge and SplitEdge are dual structures!
SplitEdgeMesh::FaceLoop() = HalfEdgeMesh::VertexLoop()

SplitEdgeMesh::VertexLoop() = HalfEdgeMesh::FaceLoop()

Corner Data Structure
The Corner Data Structure is its own dual!

Questions?

Today
• Worksheet: Transformations
• Surface Definitions
• Simple Data Structures
• Fixed Storage Data Structures
• Fixed Computation Data Structures

– HalfEdge (Eastman, 1982)
– SplitEdge
– Corner
– QuadEdge (Guibas and Stolfi, 1985)
– FacetEdge (Dobkin and Laszlo, 1987)

• Today’s Reading: “Progressive Meshes”
• Reading for Tuesday & Homework 1 Preview

● Consider the Mesh and its Dual Mesh simultaneously
○ Vertices and Faces switch roles, we just re-label them
○ Edges remain Edges

● Classic dual mesh example:
○ Delaunay Triangulation*
○ Voronoi Diagram*

* has other special properties

QuadEdge (Guibas and Stolfi, 1985)

Today
• Worksheet: Transformations
• Surface Definitions
• Simple Data Structures
• Fixed Storage Data Structures
• Fixed Computation Data Structures
• Today’s Reading: “Progressive Meshes”
• Reading for Tuesday & Homework 1 Preview

● Eight ways to look at each edge
○ Four ways to look at primal edge
○ Four ways to look at dual edge

QuadEdge (Guibas and Stolfi, 1985)

QuadEdge (Guibas and Stolfi, 1985)

● Operators in Edge Algebra:
○ Rot: Bug rotates 90 degrees to its left

(switches to/from dual graph)
○ Sym: Bug turns around 180 degrees
○ Flip: Bug flips upside down

(other side of the leaf)
○ Onext: Bug rotates CCW to next edge with

same origin (either Vertex or Face)

Note: different authors use different terminology...

QuadEdge (Guibas and Stolfi, 1985)
● Some Properties of Flip, Sym, Rot, and Onext:

○ e Rot4 = e
○ e Rot2 ≠ e
○ e Flip2 = e
○ e Flip Rot Flip Rot = e
○ e Rot Flip Rot Flip = e
○ e Rot Onext Rot Onext = e
○ e Flip Onext Flip Onext = e
○ e Flip-1 = e Flip
○ e Sym = e Rot2
○ e Rot-1 = e Rot3
○ e Rot-1 = e Flip Rot Flip
○ e Onext-1 = e Rot Onext Rot
○ e Onext-1 = e Flip Onext Flip
○ e Lnext = e Rot-1 Onext Rot
○ e Rnext = e Rot Onext Rot-1
○ e Dnext = e Sym Onext Sym-1
○ e Oprev = e Onext-1 = e Rot Onext Rot
○ e Lprev = e Lnext-1 = e Onext Sym
○ e Rprev = e Rnext-1 = e Sym Onext
○ e Dprev = e Dnext-1 = e Rot-1 Onext Rot

All of these functions can be expressed as a
constant number of Rot, Sym, Flip, and Onext
operations independent of the local topology and
the global size and complexity of the mesh.

FacetEdge (Dobkin and Laszlo, 1987)
● QuadEdge (2D / surface) → FacetEdge (3D / volume)
● Faces → Polyhedra / Cells
● Edge → Polygon & Edge pair

Questions?

Today
• Worksheet: Transformations
• Surface Definitions
• Simple Data Structures
• Fixed Storage Data Structures
• Fixed Computation Data Structures
• Today’s Reading: “Progressive Meshes”
• Reading for Tuesday & Homework 1 Preview

Today’s Reading:
● Hugues Hoppe “Progressive Meshes” SIGGRAPH 1996

Progressive Meshes
● Mesh Simplification

○ vertex split / edge collapse
○ geometry & discrete/scalar attributes
○ priority queue

● Level of Detail
○ geomorphs

● Progressive Transmission
● Mesh Compression
● Selective Refinement

○ view dependent

Selective Refinement

Preserving Discontinuity Curves

• Problematic / visible “popping” between LODs, geomorphing
• Discrete vs continuous LOD – is continuous necessary?

Progressive transmission, progressive refinement
• Lossless / invertible
• Research: appreciate original context, iterating/extending prior work,

hybrid techniques, future work
• Research directly used by / influencing games/other industry?
• Triangles vs quads, collapse vs. other ops (split, swap, etc)
• Expensive cost? Precompute vs on-the fly?

Can we reduce this by approximation? Or parallelize it?
• Mesh formalism, Energy function (springs?) to select edge

– how it works not immediately intuitive
• Limitations? Incorrectly, preserve unimportant details,

store unnecessary high resolution? Can’t use on animated meshes

● Remove a vertex & surrounding triangles, re-triangulate the hole

● Merge Nearby Vertices (will likely change the topology)

Other Simplification Strategies

Garland & Heckbert,
“Surface Simplification

Using Quadric Error Metrics”
SIGGRAPH 1997

Is it Important to Preserve Original Topology?

Garland & Heckbert,
“Surface Simplification

Using Quadric Error Metrics”
SIGGRAPH 1997

Questions?

Today
• Worksheet: Transformations
• Surface Definitions
• Simple Data Structures
• Fixed Storage Data Structures
• Fixed Computation Data Structures
• Today’s Reading: “Progressive Meshes”
• Reading for Tuesday & Homework 1 Preview

"Teddy:
A Sketching
Interface for
3D Freeform
Design",
Igarashi et al.,
SIGGRAPH
1999

How do we represent objects that don’t have flat polygonal faces & sharp corners?
What are the right tools to design/construct digital models of blobby, round, or soft things?
What makes a user interface intuitive, quick, and easy-to-use for beginners?

Reading for Tuesday Need 2 volunteers to be “Discussants”

Homework 1 Coming Soon!

