CSCI 4530/6530 Advanced Computer Graphics

https://www.cs.rpi.edu/~cutler/classes/advancedgraphics/S25/

Lecture 1: Introduction & Transformations

Luxo Jr., Pixar Animation Studios, 1986

Topics for the Semester

- Meshes
 - representation
 - simplification
 - subdivision surfaces
 - construction/generation
 - volumetric modeling
- Simulation
 - particle systems, cloth
 - rigid body, deformation
 - wind/water flows
 - collision detection
 - weathering

- Rendering
 - ray tracing, shadows
 - appearance models
 - local vs. global illumination
 - radiosity, photon mapping, subsurface scattering, etc.
- color theory
- procedural modeling
- texture synthesis
- non-photorealistic rendering
- hardware & more …

Mesh Simplification

Hoppe "Progressive Meshes" SIGGRAPH 1996

Mesh Generation & Volumetric Modeling

Cutler et al., "Simplification and Improvement of Tetrahedral Models for Simulation" 2004

Modeling – Subdivision Surfaces

Hoppe et al., "Piecewise Smooth Surface Reconstruction" 1994

Geri's Game Pixar 1997

Particle Systems

Star Trek: The Wrath of Khan 1982

Physical Simulation

- Rigid Body Dynamics
- Collision Detection
- Fracture
- Deformation

Müller et al., "Stable Real-Time Deformations" 2002

Fluid Dynamics

E E S E S E Ε F F S' Ε E

Foster & Metaxas, 1996

"Visual Simulation of Smoke" Fedkiw, Stam & Jensen SIGGRAPH 2001

Ray Casting/Tracing

- For every pixel
 - Construct a ray from the eye
 - For every object in the scene
 - Find intersection with the ray
 - Keep the closest
- Shade (interaction of light and material)
- Secondary rays (shadows, reflection, refraction)

"An Improved Illumination Model for Shaded Display" Whitted 1980

Appearance Models

Henrik Wann Jensen

Wojciech Matusik

Subsurface Scattering

Jensen et al., "A Practical Model for Subsurface Light Transport" SIGGRAPH 2001

Syllabus & Course Website

http://www.cs.rpi.edu/~cutler/classes/advancedgraphics/S25/

Which version should I register for?
 CSCI 6530 : 4 units of graduate credit
 CSCI 4530 : 4 units of undergraduate credit

 This is an intensive course aimed at graduate students and undergraduates interested in graphics research, involving significant reading & programming each week.

Taking this course in a 5 course / overload semester is discouraged

Grades

- This course counts as "communications intensive" for undergraduates. As such, you must satisfactorily complete all readings, presentations, project reports to pass the course.
- As this is an elective (not required) course, I expect to grade this course:

```
"A", "A-", "B+", "B", "B-", or "F"
```

Don't expect C or D level work to "pass" I don't want to give any "F"s

Lecture Attendance/Participation

- Lecture will be discussion-intensive
 - We will discuss research papers
 - We will do worksheets in groups of 2 or 3
- You are expected to regularly attend and participate during *in person* lectures
 - Recorded lectures from a prior term will be recorded & posted on the calendar
 - If illness or other appropriate absence force you to miss more than 2 lectures throughout the term, a formal excused absence will be required

Questions?

Today

- Course Overview
- Classes of Transformations
- Representing Transformations
- Combining Transformations
- Orthographic & Perspective Projections
- Example: Iterated Function Systems (IFS)

What is a Transformation?

 Maps points (x, y) in one coordinate system to points (x', y') in another coordinate system

$$x' = ax + by + c$$
$$y' = dx + ey + f$$

• For example, Iterated Function System (IFS):

Simple Transformations

- Can be combined
- Are these operations invertible?
 Yes, except scale = 0

Transformations are used to:

- Position objects in a scene
- Change the shape of objects
- Create multiple copies of objects
- Projection for virtual cameras
- Describe animations

Rigid-Body / Euclidean Transforms

Linear Transformations

General (Free-Form) Transformation

- Does not preserve lines
- Not as pervasive, computationally more involved

Fig 1. Undeformed Plastic

Fig 2. Deformed Plastic

Sederberg and Parry, Siggraph 1986

Today

- Course Overview
- Classes of Transformations
- Representing Transformations
- Combining Transformations
- Orthographic & Perspective Projections
- Example: Iterated Function Systems (IFS)

How are Transforms Represented?

$$x' = ax + by + c$$
$$y' = dx + ey + f$$

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} a & b \\ d & e \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} c \\ f \end{pmatrix}$$

p' = Mp + t

Homogeneous Coordinates

- Add an extra dimension
 - \circ in 2D, we use 3 x 3 matrices
 - In 3D, we use 4 x 4 matrices
- Each point has an extra value, w

$$\begin{pmatrix} x' \\ y' \\ z' \\ w' \end{pmatrix} = \begin{pmatrix} a & b & c & d \\ e & f & g & h \\ i & j & k & l \\ m & n & o & p \end{pmatrix} \begin{pmatrix} x \\ y \\ z \\ w \end{pmatrix}$$

$$p' = Mp$$

Translation in Homogeneous Coordinates

$$x' = ax + by + c$$
$$y' = dx + ey + f$$

Homogeneous Coordinates

• Most of the time w = 1, and we can ignore it

 If we multiply a homogeneous coordinate by an affine matrix, w is unchanged

Homogeneous Visualization

Translate (*tx, ty, tz*)

 Why bother with the extra dimension?
 Because now translations can be encoded in the matrix!

$$\begin{pmatrix} x' \\ y' \\ z' \\ 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & tx \\ 0 & 1 & 0 & ty \\ 0 & 0 & 1 & tz \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix}$$

Scale (sx, sy, sz)

Isotropic (uniform)
 scaling: sx = sy = sz

$$\begin{pmatrix} x' \\ y' \\ z' \\ 1 \end{pmatrix} = \begin{pmatrix} sx & 0 & 0 & 0 \\ 0 & sy & 0 & 0 \\ 0 & 0 & sz & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix}$$

Rotation

• About z axis

Rotation

 About (k_x, k_y, k_z), a unit vector on an arbitrary axis (Rodrigues Formula)

where $c = \cos \theta$ & $s = \sin \theta$

Storage

- Often, *w* is not stored (then we assume it is always 1)
- Needs careful handling of direction vs. point
 - Mathematically, it is simplest is to encode directions with *w* = 0 and points with *w* = 1
 - In terms of storage, using a 3-component array for both direction and points is more efficient
 - Which requires to have special operation routines for points vs. directions

Today

- Course Overview
- Classes of Transformations
- Representing Transformations
- Combining Transformations
- Orthographic & Perspective Projections
- Example: Iterated Function Systems (IFS)

How are Transforms Combined?

Use matrix multiplication: p' = T(Sp) = TSp

$$TS = \begin{pmatrix} 1 & 0 & 3 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 2 & 0 & 3 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

Caution: matrix multiplication is NOT commutative!

Non-Commutative Composition

Translate then Scale: p' = S(Tp) = STp

Non-Commutative Composition

Scale then Translate: p' = T(Sp) = TSp

$$TS = \begin{pmatrix} 1 & 0 & 3 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 2 & 0 & 3 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

Translate then Scale: p' = S(Tp) = STp

$$ST = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 3 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 2 & 0 & 6 \\ 0 & 2 & 2 \\ 0 & 0 & 1 \end{pmatrix}$$

Today

- Course Overview
- Classes of Transformations
- Representing Transformations
- Combining Transformations
- Orthographic & Perspective Projections
- Example: Iterated Function Systems (IFS)

Orthographic vs. Perspective Projection

• Orthographic

• Perspective

Simple Orthographic Projection

• Project all points along the z axis to the z = 0 plane

Simple Perspective Projection

Alternate Perspective Projection

In the limit, as $d \rightarrow \infty$

this perspective projection matrix ...

... is simply an orthographic projection

Today

- Course Overview
- Classes of Transformations
- Representing Transformations
- Combining Transformations
- Orthographic & Perspective Projections
- Example: Iterated Function Systems (IFS)

Iterated Function Systems (IFS)

• Capture self-similarity Contraction (reduce distances) An attractor is a fixed point: $A = Y f_i(A)$

Example: Sierpinski Triangle

- Described by a set of *n* affine transformations
- In this case, n = 3
 - $\circ~$ translate & scale by 0.5

Example: Sierpinski Triangle

for "lots" of random input points
$$(x_0, y_0)$$

for j=0 to num_iters
randomly pick one of the transformations
 $(x_{k+1}, y_{k+1}) = f_i (x_k, y_k)$
display (x_k, y_k)

Increasing the number of iterations

Another IFS: The Dragon

3D IFS in OpenGL / Apple Metal

Homework 0: OpenGL/Metal Warmup

- Get familiar with:
 - C++ environment
 - OpenGL / Metal
 - Transformations
 - Simple Vector & Matrix classes
- Have Fun!
- Due ASAP (start it today!)
- 1⁄4 of the points of the other HWs
 (but you should still do it and submit it!)

Questions?

Henrik Wann Jensen

For Next Time:

- Read Hugues Hoppe "Progressive Meshes" SIGGRAPH 1996
- Everyone will a comment or question on the course Submitty discussion forum before 10am on Friday

Initial Questions about the Reading...

- How do we represent meshes?
- How to automatically decide what parts of the mesh are important / worth preserving?
- Algorithm performance:
 - \circ memory?
 - \circ speed?

 What were the original target applications? Are those applications still valid?

Are there other modern applications that can leverage this technique?