
CSCI 4530/6530 Advanced Computer Graphics
https://www.cs.rpi.edu/~cutler/classes/advancedgraphics/S25/

Lecture 1:
Introduction &

Transformations

Luxo Jr., Pixar Animation Studios, 1986

https://docs.google.com/file/d/1vRyy9O5gBMMfB0Q5XIm8Q0XO1CtJED1J/preview

Topics for the Semester
• Meshes

– representation
– simplification
– subdivision surfaces
– construction/generation
– volumetric modeling

• Simulation
– particle systems, cloth
– rigid body, deformation
– wind/water flows
– collision detection
– weathering

• Rendering
– ray tracing, shadows
– appearance models
– local vs. global illumination
– radiosity, photon mapping,

subsurface scattering, etc.
• color theory
• procedural modeling
• texture synthesis
• non-photorealistic rendering
• hardware & more …

Mesh Simplification

Hoppe “Progressive Meshes” SIGGRAPH 1996

Mesh Generation & Volumetric Modeling

Cutler et al., “Simplification and Improvement of
Tetrahedral Models for Simulation” 2004

Modeling – Subdivision Surfaces

Hoppe et al., “Piecewise Smooth Surface Reconstruction” 1994

Geri’s Game Pixar 1997

Particle Systems

Star Trek:
The Wrath of Khan 1982

• Rigid Body Dynamics
• Collision Detection
• Fracture
• Deformation

Physical Simulation

Müller et al., “Stable Real-Time Deformations” 2002

Fluid Dynamics

Foster & Metaxas, 1996

“Visual Simulation of Smoke”
Fedkiw, Stam & Jensen

SIGGRAPH 2001

• For every pixel
– Construct a ray from the eye
– For every object in the scene

• Find intersection with the ray
• Keep the closest

• Shade (interaction of
light and material)

• Secondary rays
(shadows,
reflection,
refraction)

Ray Casting/Tracing

“An Improved Illumination
Model for Shaded Display”

Whitted 1980

Appearance Models

θiθr

φi φr
Henrik
Wann

Jensen

Wojciech
Matusik

Subsurface Scattering

Jensen et al.,
“A Practical Model for

Subsurface Light Transport”
SIGGRAPH 2001

Syllabus & Course Website
http://www.cs.rpi.edu/~cutler/classes/advancedgraphics/S25/

• Which version should I register for?
CSCI 6530 : 4 units of graduate credit
CSCI 4530 : 4 units of undergraduate credit

• This is an intensive course aimed at graduate students and
undergraduates interested in graphics research, involving significant
reading & programming each week.

Taking this course in a 5 course / overload semester is discouraged

Grades

• This course counts as “communications intensive” for undergraduates.
As such, you must satisfactorily complete all readings, presentations,
project reports to pass the course.

• As this is an elective (not required) course, I expect to grade this course:

“A”, “A-”, “B+”, “B”, “B-”, or “F”

Don’t expect C or D level work to “pass”
I don’t want to give any “F”s

Lecture Attendance/Participation
• Lecture will be discussion-intensive

– We will discuss research papers
– We will do worksheets in groups of 2 or 3

• You are expected to regularly attend and participate
during in person lectures
– Recorded lectures from a prior term will be recorded &

posted on the calendar
– If illness or other appropriate absence force you to miss

more than 2 lectures throughout the term,
a formal excused absence will be required

Questions?

Today
• Course Overview

• Classes of Transformations

• Representing Transformations

• Combining Transformations

• Orthographic & Perspective Projections

• Example: Iterated Function Systems (IFS)

What is a Transformation?
● Maps points (x, y) in one coordinate system to points (x', y') in another

coordinate system

● For example, Iterated Function System (IFS):

x' = ax + by + c
y' = dx + ey + f

Simple Transformations

Yes, except scale = 0

● Can be combined
● Are these operations invertible?

Transformations are used to:
● Position objects in a scene

● Change the shape of objects

● Create
multiple
copies of
objects

● Projection
for virtual
cameras

● Describe
animations

Rigid-Body / Euclidean Transforms

• Preserves distances
• Preserves angles

Translation
Rotation

Rigid / Euclidean

Identity

Similitudes / Similarity Transforms

• Preserves angles

Translation
Rotation

Rigid / Euclidean

Similitudes

Isotropic Scaling
Identity

Linear Transformations

Translation
Rotation

Rigid / Euclidean
Linear

Similitudes

Isotropic Scaling
Identity

Scaling

Shear

Reflection

L(p + q) = L(p) + L(q) L(ap) = a L(p)

(Non-Uniform) Scaling ShearReflection

Affine Transformations
• preserves

parallel lines

Translation
Rotation

Rigid / Euclidean
Linear

Similitudes

Isotropic Scaling

Scaling

Shear

Reflection
Identity

Affine

Projective Transformations
• preserves lines

Translation
Rotation

Rigid / Euclidean
Linear

Affine

Projective

Similitudes

Isotropic Scaling

Scaling

Shear

Reflection

Perspective

Identity

General (Free-Form) Transformation
● Does not preserve lines

● Not as pervasive, computationally more involved

Sederberg and Parry, Siggraph 1986

Today
• Course Overview

• Classes of Transformations

• Representing Transformations

• Combining Transformations

• Orthographic & Perspective Projections

• Example: Iterated Function Systems (IFS)

How are Transforms Represented?

x' = ax + by + c
y' = dx + ey + f

x'
y'

a b
d e

c
f=

x
y

+

p' = M p + t

Homogeneous Coordinates
● Add an extra dimension

○ in 2D, we use 3 x 3 matrices
○ In 3D, we use 4 x 4 matrices

● Each point has an extra value, w

x'
y'
z'
w'

=

x
y
z
w

a
e
i

m

b
f
j
n

c
g
k
o

d
h
l
p

p' = M p

Translation in Homogeneous Coordinates

x' = ax + by + c
y' = dx + ey + f

x'
y'
1

a b
d e
0 0

c
f
1

=
x
y
1

p' = M p

x'
y'

a b
d e

c
f=

x
y +

p' = M p + t

Affine formulation Homogeneous formulation

Homogeneous Coordinates
● Most of the time w = 1, and we can ignore it

● If we multiply a homogeneous coordinate by an affine matrix,
w is unchanged

x'
y'
z'
1

=

x
y
z
1

a
e
i
0

b
f
j
0

c
g
k
0

d
h
l
1

Homogeneous Visualization
● Divide by w to normalize (homogenize)
● W = 0?

w = 1

w = 2

(0, 0, 1) == (0, 0, 2)
(7, 1, 1) == (14, 2, 2)
(4, 5, 1) == (8, 10, 2)

Point at infinity (direction)

Translate (tx, ty, tz)
● Why bother with the

extra dimension?
Because now translations
can be encoded in the matrix!

=

x
y
z
1

1
0
0
0

0
1
0
0

0
0
1
0

tx
ty
tz
1

Translate(c,0,0)

x

y

p p'

c

x'
y'
z'
1

Scale (sx, sy, sz)
● Isotropic (uniform)

scaling: sx = sy = sz

x'
y'
z'
1

=

x
y
z
1

sx
0
0
0

0
sy
0
0

0
0
sz
0

0
0
0
1

Scale(s,s,s)

x

p

p'

q
q'

y

Rotation
● About z axis

x'
y'
z'
1

=

x
y
z
1

cos θ
sin θ

-sin θ
 cos θ

0
0
1
0

0
0
0
1

ZRotate(θ)

x

y

z

p

p'

θ

0
0

0
0

● About (kx , ky , kz), a unit
vector on an arbitrary axis
(Rodrigues Formula)

Rotation

x'
y'
z'
1

=

x
y
z
1

kxkx(1-c)+c
kykx(1-c)+kzs
kzkx(1-c)-kys

0

0
0
0
1

 kzkx(1-c)-kzs
kzkx(1-c)+c

kzkx(1-c)-kxs
0

 kxkz(1-c)+kys
kykz(1-c)-kxs
kzkz(1-c)+c

0

where c = cos θ & s = sin θ

Rotate(k, θ)

x

y

z

θ
k

Storage
● Often, w is not stored (then we assume it is always 1)
● Needs careful handling of direction vs. point

○ Mathematically, it is simplest is to encode
directions with w = 0 and
points with w = 1

○ In terms of storage, using a 3-component array for
both direction and points is more efficient

○ Which requires to have special operation routines
for points vs. directions

Today
• Course Overview

• Classes of Transformations

• Representing Transformations

• Combining Transformations

• Orthographic & Perspective Projections

• Example: Iterated Function Systems (IFS)

How are Transforms Combined?
Scale then Translate

Use matrix multiplication: p' = T (S p) = TS p

Caution: matrix multiplication is NOT commutative!

(0,0)
(1,1)

(2,2)

(0,0)

(5,3)
(3,1)

Scale(2,2) Translate(3,1)

TS =
2
0
0

0
2
0

0
0
1

1
0
0

0
1
0

3
1
1

2
0
0

0
2
0

3
1
1

=

Non-Commutative Composition

(0,0)
(1,1) (4,2)

(3,1)

(8,4)

(6,2)

(0,0)
(1,1)

(2,2)

(0,0)

(5,3)
(3,1)

Scale(2,2) Translate(3,1)

Translate(3,1) Scale(2,2)

Scale then Translate: p' = T (S p) = TS p

Translate then Scale: p' = S (T p) = ST p

TS =
2
0
0

0
2
0

0
0
1

1
0
0

0
1
0

3
1
1

ST =
2
0

0
2

0
0

1
0

0
1

3
1

Non-Commutative Composition
Scale then Translate: p' = T (S p) = TS p

2
0
0

0
2
0

3
1
1

2
0

0
2

6
2

=

=

Translate then Scale: p' = S (T p) = ST p

0 0 1 0 0 1 0 0 1

Today
• Course Overview

• Classes of Transformations

• Representing Transformations

• Combining Transformations

• Orthographic & Perspective Projections

• Example: Iterated Function Systems (IFS)

● Orthographic

● Perspective

Orthographic vs. Perspective Projection

Simple Orthographic Projection
● Project all points along the z axis to the z = 0 plane

x
y
0
1

=

x
y
z
1

1
0
0
0

0
1
0
0

0
0
0
0

0
0
0
1

● Project all points along the z axis to
the z = d plane, eyepoint at the origin:

Simple Perspective Projection

x
y
z

z / d

=

x
y
z
1

1
0
0
0

0
1
0
0

0
0
1
1/d

0
0
0
0

x * d / z
y * d / z

d
1

=

By similar triangles:
 x’/x = d/z
 x’ = (x*d)/z

(x’,y’,z’)

’homogenize

Alternate Perspective Projection
● Project all points along the z axis to

the z = 0 plane, eyepoint at the (0,0,-d):

x
y
0

(z + d)/ d

=

x
y
z
1

1
0
0
0

0
1
0
0

0
0
0
1/d

0
0
0
1

x * d / (z + d)
y * d / (z + d)

0
1

=

homogenize

(x’,y’,z’)

By similar triangles:
 x’/x = d/(z+d)
 x’ = (x*d)/(z+d)

In the limit, as d → ∞

1
0
0
0

0
1
0
0

0
0
0
1/d

0
0
0
1

1
0
0
0

0
1
0
0

0
0
0
0

0
0
0
1

→

… is simply an
orthographic projection

this perspective
projection matrix ...

Today
• Course Overview

• Classes of Transformations

• Representing Transformations

• Combining Transformations

• Orthographic & Perspective Projections

• Example: Iterated Function Systems (IFS)

● Capture self-similarity

● Contraction
(reduce distances)

● An attractor is a
fixed point:

A = Υ fi (A)

Iterated Function Systems (IFS)

● Described by a set of n affine transformations
● In this case, n = 3

○ translate & scale by 0.5

Example: Sierpinski Triangle

Example: Sierpinski Triangle
for “lots” of random input points (x0, y0)

for j=0 to num_iters
randomly pick one of the transformations
(xk+1, yk+1) = fi (xk, yk)

display (xk, yk)

Increasing the number of iterations

Another IFS: The Dragon

3D IFS in OpenGL / Apple Metal

● Get familiar with:
○ C++ environment
○ OpenGL / Metal
○ Transformations
○ Simple Vector &

Matrix classes

● Have Fun!
● Due ASAP (start it today!)
● ¼ of the points of the other HWs

(but you should still do it and submit it!)

Homework 0: OpenGL/Metal Warmup

Questions?

Henrik
Wann

Jensen

For Next Time:
● Read Hugues Hoppe “Progressive Meshes” SIGGRAPH 1996

● Everyone will a comment or question on the course Submitty discussion
forum before 10am on Friday

We need 2 volunteers to be Discussants IMPORTANT: Read
course webpage “Assigned Readings” & “Tips for Discussants”

58

● How do we represent meshes?

● How to automatically decide
what parts of the mesh are
important / worth preserving?

● Algorithm performance:

○ memory?

○ speed?

● What were the original target applications?
Are those applications still valid?
Are there other modern applications that can leverage this technique?

Initial Questions about the Reading…

