
CSCI 4530/6530 Advanced Computer Graphics
https://www.cs.rpi.edu/~cutler/classes/advancedgraphics/S25/

Lecture 1:
Introduction & 

Transformations



Luxo Jr., Pixar Animation Studios, 1986



https://docs.google.com/file/d/1vRyy9O5gBMMfB0Q5XIm8Q0XO1CtJED1J/preview


Topics for the Semester
• Meshes

– representation
– simplification
– subdivision surfaces
– construction/generation
– volumetric modeling

• Simulation
– particle systems, cloth
– rigid body, deformation
– wind/water flows
– collision detection
– weathering

• Rendering
– ray tracing, shadows
– appearance models
– local vs. global illumination
– radiosity, photon mapping, 

subsurface scattering, etc. 
• color theory 
• procedural modeling
• texture synthesis
• non-photorealistic rendering 
• hardware & more …



Mesh Simplification

Hoppe “Progressive Meshes” SIGGRAPH 1996



Mesh Generation & Volumetric Modeling

Cutler et al., “Simplification and Improvement of 
Tetrahedral Models for Simulation”  2004



Modeling – Subdivision Surfaces

Hoppe et al., “Piecewise Smooth Surface Reconstruction” 1994

Geri’s Game Pixar 1997



Particle Systems

Star Trek: 
The Wrath of Khan 1982



• Rigid Body Dynamics
• Collision Detection
• Fracture
• Deformation

Physical Simulation

Müller et al., “Stable Real-Time Deformations” 2002



Fluid Dynamics

Foster & Metaxas, 1996

“Visual Simulation of Smoke”
Fedkiw, Stam & Jensen 

SIGGRAPH 2001



• For every pixel
– Construct a ray from the eye 
– For every object in the scene

• Find intersection with the ray 
• Keep the closest

• Shade (interaction of 
light and material)

• Secondary rays 
(shadows, 
reflection, 
refraction)

Ray Casting/Tracing

“An Improved Illumination 
Model for Shaded Display”

Whitted 1980



Appearance Models

θiθr

φi φr
Henrik 
Wann 

Jensen

Wojciech 
Matusik



Subsurface Scattering

Jensen et al., 
“A Practical Model for 

Subsurface Light Transport”  
SIGGRAPH 2001



Syllabus & Course Website
http://www.cs.rpi.edu/~cutler/classes/advancedgraphics/S25/

• Which version should I register for?
CSCI 6530  :  4 units of graduate credit
CSCI 4530  :  4 units of undergraduate credit

• This is an intensive course aimed at graduate students and 
undergraduates interested in graphics research, involving significant 
reading & programming each week.  

Taking this course in a 5 course / overload semester is discouraged



Grades

• This course counts as “communications intensive” for undergraduates.  
As such, you must satisfactorily complete all readings, presentations, 
project reports to pass the course.

• As this is an elective (not required) course, I expect to grade this course: 

“A”, “A-”, “B+”, “B”, “B-”, or “F”

Don’t expect C or D level work to “pass”
I don’t want to give any “F”s



Lecture Attendance/Participation
• Lecture will be discussion-intensive

– We will discuss research papers
– We will do worksheets in groups of 2 or 3

• You are expected to regularly attend and participate 
during in person lectures
– Recorded lectures from a prior term will be recorded & 

posted on the calendar
– If illness or other appropriate absence force you to miss 

more than 2 lectures throughout the term, 
a formal excused absence will be required



Questions?



Today
• Course Overview

• Classes of Transformations

• Representing Transformations

• Combining Transformations

• Orthographic & Perspective Projections 

• Example: Iterated Function Systems (IFS)



What is a Transformation?
● Maps points (x, y) in one coordinate system to points (x', y' ) in another 

coordinate system

● For example, Iterated Function System (IFS):

x' = ax + by + c
y' = dx + ey + f



Simple Transformations

Yes, except scale = 0

● Can be combined
● Are these operations invertible?



Transformations are used to:
● Position objects in a scene

● Change the shape of objects

● Create 
multiple 
copies of 
objects

● Projection 
for virtual 
cameras

● Describe 
animations



Rigid-Body / Euclidean Transforms 

• Preserves distances
• Preserves angles

Translation
Rotation

Rigid / Euclidean

Identity



Similitudes / Similarity Transforms

• Preserves angles

Translation
Rotation

Rigid / Euclidean

Similitudes

Isotropic Scaling
Identity



Linear Transformations

Translation
Rotation

Rigid / Euclidean
Linear

Similitudes

Isotropic Scaling
Identity

Scaling

Shear

Reflection

L(p + q) = L(p) + L(q)              L(ap) = a L(p)

(Non-Uniform) Scaling ShearReflection



Affine Transformations
• preserves 

parallel lines

Translation
Rotation

Rigid / Euclidean
Linear

Similitudes

Isotropic Scaling

Scaling

Shear

Reflection
Identity

Affine



Projective Transformations
• preserves lines

Translation
Rotation

Rigid / Euclidean
Linear

Affine

Projective

Similitudes

Isotropic Scaling

Scaling

Shear

Reflection

Perspective

Identity



General (Free-Form) Transformation
● Does not preserve lines

● Not as pervasive, computationally more involved

Sederberg and Parry, Siggraph 1986



Today
• Course Overview

• Classes of Transformations

• Representing Transformations

• Combining Transformations

• Orthographic & Perspective Projections 

• Example: Iterated Function Systems (IFS)



How are Transforms Represented?

x' = ax + by + c
y' = dx + ey + f

x'
y'

a    b
d    e

c
f=

x
y

+

p'   =      M p    +   t



Homogeneous Coordinates
● Add an extra dimension

○ in 2D, we use 3 x 3 matrices
○ In 3D, we use 4 x 4 matrices

● Each point has an extra value, w

x'
y'
z'
w'

=

x
y
z
w

a
e
i

m

b
f
j
n

c
g
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o

d
h
l
p

p'  =            M p



Translation in Homogeneous Coordinates

x' = ax + by + c
y' = dx + ey + f

x'
y'
1

a    b
d    e
0  0

c
f
1

=
x
y
1

p'   =      M p

x'
y'

a    b
d    e

c
f=

x
y +

p'   =      M p    +   t

Affine formulation Homogeneous formulation



Homogeneous Coordinates
● Most of the time w = 1, and we can ignore it

● If we multiply a homogeneous coordinate by an affine matrix, 
w is unchanged

x'
y'
z'
1

=
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y
z
1
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i
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j
0
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0
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Homogeneous Visualization
● Divide by w to normalize (homogenize)
● W = 0?  

w = 1

w = 2

(0, 0, 1) == (0, 0, 2) 
(7, 1, 1) == (14, 2, 2) 
(4, 5, 1) == (8, 10, 2) 

Point at infinity (direction)



Translate (tx, ty, tz)
● Why bother with the 

extra dimension?
Because now translations 
can be encoded in the matrix!

=

x
y
z
1

1
0
0
0

0
1
0
0

0
0
1
0

tx
ty
tz
1

Translate(c,0,0)
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y
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c
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Scale (sx, sy, sz)
● Isotropic (uniform) 

scaling:  sx = sy = sz

x'
y'
z'
1

=

x
y
z
1

sx
0
0
0

0
sy
0
0

0
0
sz
0

0
0
0
1

Scale(s,s,s)

x

p

p'

q
q'

y



Rotation
● About z axis

x'
y'
z'
1

=

x
y
z
1

cos θ
sin θ

-sin θ
 cos θ

0
0
1
0

0
0
0
1

ZRotate(θ)

x

y

z

p

p'

θ

0
0

0
0



● About (kx , ky , kz ), a unit 
vector on an arbitrary axis
(Rodrigues Formula)

Rotation

x'
y'
z'
1

=

x
y
z
1

kxkx(1-c)+c
kykx(1-c)+kzs
kzkx(1-c)-kys

0

0
0
0
1

 kzkx(1-c)-kzs
kzkx(1-c)+c

kzkx(1-c)-kxs
0

 kxkz(1-c)+kys
kykz(1-c)-kxs
kzkz(1-c)+c

0

where   c = cos θ   &   s = sin θ 

Rotate(k, θ)

x

y

z

θ
k



Storage
● Often, w is not stored (then we assume it is always 1)
● Needs careful handling of direction vs. point

○ Mathematically, it is simplest is to encode 
directions with w = 0 and
points with w = 1

○ In terms of storage, using a 3-component array for 
both direction and points is more efficient

○ Which requires to have special operation routines 
for points vs. directions



Today
• Course Overview

• Classes of Transformations

• Representing Transformations

• Combining Transformations

• Orthographic & Perspective Projections 

• Example: Iterated Function Systems (IFS)



How are Transforms Combined?
Scale then Translate

Use matrix multiplication:   p'  =  T ( S p )  =  TS p

Caution: matrix multiplication is NOT commutative!

(0,0)
(1,1)

(2,2)

(0,0)

(5,3)
(3,1)

Scale(2,2) Translate(3,1)

TS  =
2
0
0

0
2
0

0
0
1

1
0
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0
1
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3
1
1

2
0
0

0
2
0

3
1
1

=



Non-Commutative Composition

(0,0)
(1,1) (4,2)

(3,1)

(8,4)

(6,2)

(0,0)
(1,1)

(2,2)

(0,0)

(5,3)
(3,1)

Scale(2,2) Translate(3,1)

Translate(3,1) Scale(2,2)

Scale then Translate:   p'  =  T ( S p )  =  TS p

Translate then Scale:   p'  =  S ( T p )  =  ST p
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1

Non-Commutative Composition
Scale then Translate:   p'  =  T ( S p )  =  TS p

2
0
0

0
2
0

3
1
1

2
0

0
2

6
2

=

=

Translate then Scale:   p'  =  S ( T p )  =  ST p

0 0 1 0 0 1 0 0 1
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• Orthographic & Perspective Projections 

• Example: Iterated Function Systems (IFS)



● Orthographic

● Perspective

Orthographic vs. Perspective Projection



Simple Orthographic Projection
● Project all points along the z axis to the z = 0 plane
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● Project all points along the z axis to 
the z = d plane, eyepoint at the origin:

Simple Perspective Projection
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By similar triangles:
       x’/x = d/z
          x’ = (x*d)/z

(x’,y’,z’)

’homogenize



Alternate Perspective Projection
● Project all points along the z axis to 

the z = 0 plane, eyepoint at the (0,0,-d):
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(x’,y’,z’)

By similar triangles:
       x’/x = d/(z+d)
          x’ = (x*d)/(z+d)



In the limit, as d → ∞
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… is simply an 
orthographic projection

this perspective 
projection matrix ...



Today
• Course Overview

• Classes of Transformations

• Representing Transformations

• Combining Transformations

• Orthographic & Perspective Projections 

• Example: Iterated Function Systems (IFS)



● Capture self-similarity

● Contraction 
(reduce distances)

● An attractor is a 
fixed point:

A = Υ fi (A)

Iterated Function Systems (IFS)



● Described by a set of n affine transformations 
● In this case, n = 3

○ translate & scale by 0.5 

Example: Sierpinski Triangle



Example: Sierpinski Triangle
for “lots” of random input points (x0, y0)

for j=0 to num_iters
randomly pick one of the transformations
(xk+1, yk+1) = fi (xk, yk)

display (xk, yk)

Increasing the number of iterations



Another IFS: The Dragon



3D IFS in OpenGL / Apple Metal



● Get familiar with:
○ C++ environment
○ OpenGL / Metal
○ Transformations
○ Simple Vector & 

Matrix  classes

● Have Fun!
● Due ASAP (start it today!)
● ¼ of the points of the other HWs

(but you should still do it and submit it!)

Homework 0:  OpenGL/Metal Warmup



Questions?

Henrik 
Wann 

Jensen



For Next Time:
● Read Hugues Hoppe “Progressive Meshes” SIGGRAPH 1996

● Everyone will a comment or question on the course Submitty discussion 
forum before 10am on Friday

We need 2 volunteers to be Discussants      IMPORTANT:  Read 
course webpage “Assigned Readings” & “Tips for Discussants”



58

● How do we represent meshes?

● How to automatically decide 
what parts of the mesh are 
important / worth preserving?

● Algorithm performance: 

○ memory? 

○ speed?

● What were the original target applications? 
Are those applications still valid?  
Are there other modern applications that can leverage this technique?

Initial Questions about the Reading…


