
EÆ
ient Optimisti
 Parallel Simulations UsingReverse ComputationChristopher D. CarothersRensselaer Polyte
hni
 InstituteandKalyan S. Perumalla and Ri
hard M. FujimotoGeorgia Institute of Te
hnologyIn optimisti
 parallel simulations, state-saving te
hniques have been traditionally used to realizerollba
k. In this arti
le, we propose reverse
omputation as an alternative approa
h, and
ompareits exe
ution performan
e against that of state-saving. Using
ompiler te
hniques, we des
ribe anapproa
h to automati
ally generate reversible
omputations, and to optimize them to transpar-ently reap the performan
e bene�ts of reverse
omputation. For
ertain �ne-grain models, su
h asqueuing network models, we show that reverse
omputation
an yield signi�
ant improvement inexe
ution speed
oupled with signi�
ant redu
tion in memory utilization, as
ompared to tradi-tional state-saving. On sample models using reverse
omputation, we observe as mu
h as six-foldimprovement in exe
ution speed over traditional state-saving.Categories and Subje
t Des
riptors: B.3.2 [Memory Stru
tures℄: Shared Memory; C.1.2 [Pro-
ess Ar
hite
tures℄: Multipro
essors; I.6.1 [Simulation and Modeling℄: Types of Simula-tion|dis
rete-event, parallelGeneral Terms: Algorithms, Performan
eAdditional Key Words and Phrases: reverse
omputation, parallel dis
rete event simulation, state-saving, rollba
kA preliminary version of this arti
le appeared in the 13th Workshop on Parallel and DistributedSimulation (PADS '99).This work was supported in part by U.S. Army Contra
t DASG60-95-C-0103 funded by theBallisti
 Missile Defense Organization, and in part by DARPA Contra
t N66001-96-C-8530.Name: Christopher D. CarothersAddress: Department of Computer S
ien
e, 110 8th Street, Troy, New York 12180-3590, e-mail:
hris
�
s.rpi.eduAÆliation: Rensselaer Polyte
hni
 InstituteName: Kalyan S. Perumalla and Ri
hard M. FujimotoAddress: College of Computing, 801 Atlanti
 Drive, Atlanta, Georgia 30332-280, e-mail:fkalyan,fujimotog�

.gate
h.eduAÆliation: Georgia Institute of Te
hnologyPermission to make digital or hard
opies of part or all of this work for personal or
lassroom use isgranted without fee provided that
opies are not made or distributed for pro�t or dire
t
ommer
ialadvantage and that
opies show this noti
e on the �rst page or initial s
reen of a display alongwith the full
itation. Copyrights for
omponents of this work owned by others than ACM mustbe honored. Abstra
ting with
redit is permitted. To
opy otherwise, to republish, to post onservers, to redistribute to lists, or to use any
omponent of this work in other works, requires priorspe
i�
 permission and/or a fee. Permissions may be requested from Publi
ations Dept, ACMIn
., 1515 Broadway, New York, NY 10036 USA, fax +1 (212) 869-0481, or permissions�a
m.org.

2 � C. D. Carothers, K. S. Perumalla and R. M. Fujimoto
1. INTRODUCTIONParallel simulation approa
hes
an be broadly
ategorized as optimisti
 or
onser-vative, depending on whether (transient) in
orre
t
omputation is ever permittedto o

ur during the exe
ution. Optimisti
 parallel simulations permit potential-ly in
orre
t
omputation to o

ur, but undo or roll ba
k su
h
omputation afterrealizing that it was in fa
t in
orre
t. The \
omputation" in simulation appli
a-tions is one in whi
h a set of operations,
alled the event
omputation, modi�esa set of memory items,
alled the state. Hen
e, in order to roll ba
k a
omputa-tion, it is suÆ
ient to restore the modi�ed memory items to their values before the
omputation.The most
ommon te
hnique for realizing rollba
k is state-saving . In this te
h-nique, the original value of the state is saved before it is modi�ed by the event
omputation. Upon rollba
k, the state is restored by
opying ba
k the saved val-ue. An alternative te
hnique for realizing rollba
k is reverse
omputation. In thiste
hnique, rollba
k is realized by performing the inverses of the individual opera-tions that are exe
uted in the event
omputation. The system guarantees that theinverse operations re
reate the appli
ation's state to the same value as before the
omputation.To our knowledge, reverse
omputation has not been previously explored as aviable alternative to traditional state-saving. In this paper, we demonstrate thatusing reverse
omputation for realizing rollba
k
an lead to mu
h more eÆ
ientexe
utions
ompared to state-saving. Fine-grain appli
ations (i.e., those with verysmall amount of
omputation per event) are examples in whi
h the performan
eimprovement
an be most pronoun
ed. This is due to the fa
t that traditional state-saving operations
onstitute signi�
ant overheads in �ne-grain simulations. Also, byredu
ed memory requirements of the exe
ution, reverse
omputation leads to moreeÆ
ient use of storage hierar
hies. Reverse
omputation
an greatly redu
e theforward
omputation overheads by transferring most of the traditional overheadsto the reverse
omputation path.Here, we demonstrate that the reverse
omputation approa
h has insigni�
antforward
omputation overheads and low state memory requirements in �ne-grainmodels. The parallel simulation performan
e of reverse
omputation is observed toa
hieve better
a
hing e�e
ts, with as mu
h as two to three-fold speedup in severalmodel
on�gurations when
ompared to
opy state-saving, periodi
 state-savingand in
remental state-saving. Finally, we demonstrate that this approa
h
an beautomated using
ompiler-based te
hniques that
an automati
ally generate botha reversible version of the event
omputation
ode and its reverse, from a model'shigh-level des
ription.When reverse
omputation is used to simulate
oarse-grain models, it is un
learif the improvement in exe
ution speed
an be as pronoun
ed, be
ause state-savingoverheads are not so high in
oarse-grain models. However,
oarse-grain model-s still stand to bene�t from redu
tion in state memory utilization when reverse
omputation is used.

EÆ
ient Optimisti
 Parallel Simulations Using Reverse Computation � 3The reverse
omputation approa
h presented here is not meant as a blanketrepla
ement for
lassi
 state-saving approa
hes, but instead to
omplement or sup-plement them. Our view is that for many
omplex appli
ations, no single rollba
ksolution will suÆ
e and that a marriage of this te
hnique and others will be requiredto yield the most eÆ
ient exe
ution of the simulation model.In Se
tion 2, we present the details of the reverse
omputation te
hnique using asimple illustrative appli
ation, followed in Se
tion 3 by the automation te
hniquesfor applying to more
omplex appli
ations. In Se
tion 4, we present the performan
e
omparison between reverse
omputation and state-saving. In order to pla
e ourwork in
ontext, in Se
tion 5, we identify work related to general reverse
omputingin theory and pra
ti
e. This work opens several interesting
hallenges and questions,whi
h we identify in Se
tion 6.2. REVERSE COMPUTATIONIn this se
tion, we illustrate the reverse
omputation approa
h with a simple exam-ple. For simpli
ity, we postpone the generalized treatment of more
omplex modelsuntil Se
tion 3.2.1 Motivating Example: ATM MultiplexorConsider a simple model in Figure 1 of a non-preemptive ATM multiplexor,
on-taining a bu�er of size B. Suppose we are interested in measuring the
ell lossprobability, and the delay distributions on the queue [Perumalla et al. 1996℄.The state of the system might be as shown in Figure 1 (a). The qlen variableis used to keep tra
k of the
urrent bu�er o

upan
y; sent and lost are variablesthat a

umulate statisti
s respe
tively of the total number of
ells transferred tothe output link and the total number of
ells dropped be
ause of a full bu�er. Thearray delays measures the number of
ells experien
ing a given amount of delay,whi
h in
ombination with the sent
ounter gives the
ell delay distribution.In order to model the behavior of the ATM multiplexor, two types of eventhandlers are used in the model. The
ell arrival event handler pro
esses newlyarriving
ells, as shown in Figure 1 (b). Upon a
ell arrival, if the queue has nomore room, then the
ounter lost is in
remented representing that the
ell has beendropped. Otherwise, the array element delay[qlen℄ is in
remented representingthat one more
ell experien
ed a delay of qlen emission time units followed by anin
rement to qlen whi
h represents that a
ell has been added to the queue. The
ell transfer event handler pro
esses
ell departure events, as shown in Figure 1 (
).Here, if the queue is not empty, then a
ell is dequeued (i.e., qlen is de
remented)and sent over the output link (i.e., sent is in
remented).Note that, for both event handlers, the
ode to s
hedule the
ell arrival and
elldeparture events is not shown.2.2 Approa
hNow
onsider the model shown in Figure 2, whi
h is obtained by slightly modifyingthe original model of Figure 1. The di�eren
e between the two models is that twoadditional bit variables have been added to the state of the original model, andthese variables are used to note whether the if statements were exe
uted or not.The two bit-variables
orrespond to the two if statements in the model, su
h that

4 � C. D. Carothers, K. S. Perumalla and R. M. Fujimotob1 = 1 if qlen < B and 0 otherwise. Likewise, b2 = 1 if qlen > 0 and 0 otherwise1.If we look
arefully at the model, we
an see that the state of the original model isfully
aptured by the bit variables b1 and b2. In other words, the state-traje
tory ofthe set S of the variables fqlen; sent; lost; delaysg has a one-to-one
orresponden
ewith that of the set S0 = fb1; b2g. The point here is that the values of the variablesin S
an be easily re
overed based only on the values of S0. To re
over, we
an runthe event
omputations ba
kwards, whi
h will restore the variables of S to theirbefore-
omputation values. More abstra
tly, the bit variables b1 and b2 are usedto make the original model reversible. Indeed, it is easy to �nd the reverse
odefor ea
h of the event handlers of the modi�ed model, whi
h is shown in Figure 3.For example, the reverse
ode shown in Figure 3 (a) performs a perfe
t undo ofthe operations of the
ell arrival event handler given in Figure 1 (b). Thus, it issuÆ
ient to maintain the history of the bits b1 and b2, instead of the whole set ofstate variables S of the original model.It is
lear that the size of the state to be saved is dramati
ally redu
ed, fromseveral hundreds of bytes (for S) to just 2 bits (for S'), whi
h
an be saved withnegligible overhead in the forward
omputation. As an example, assuming one fullword is needed to represent 2 bits on most ma
hines, and if B = 100, then the stateis redu
ed by a fa
tor of (100 + 3)=1 = 103 when
ompared to
opy state-saving.Even if in
remental state-saving te
hniques are applied to this model, several bytesare needed for saving the
hanged data values, whereas two bits are suÆ
ient forreverse
omputation.2.3 Appli
ation PropertiesWe
an make some observations to understand some of the properties of the modelthat allowed us to redu
e the state so dramati
ally.|Property 1 The majority of the operations that modify the state variables are\
onstru
tive" in nature. That is, the undo operation for su
h operations requiresno history. Only the most
urrent values of the variables are required to undothe operation. For example, operators su
h as ++, ��, + =, � =, � = and = =belong to this
ategory2. More
omplex operations su
h as
ir
ular shift (swapbeing a spe
ial
ase), and random number generation also belong here.In the multiplexor model, all the assignment operations are
onstru
tive. Hen
e,little extra information is needed to reverse those operations.|Property 2 The
omplexity of the
ode is su
h that the \
ontrol state" of the
ode o

upies less memory than the \data state" of the variables.In the multiplexor model, only two bits were ne
essary to re
ord the
ontrol
owinformation. In
ontrast, the data state that is modi�ed is mu
h larger.If property 1 is not satis�ed in the model be
ause of the presen
e of non-
onstru
tive operations su
h as plain assignment or modulo
omputation, the re-verse
omputation method
an in fa
t degenerate to the
onventional state-saving1In fa
t, only one bit variable would be suÆ
ient in this model, sin
e the event handlers aremutually ex
lusive; but we shall use two variables for
larity in the dis
ussion.2The � = and = = operators require spe
ial treatment in the
ase of multiply or divide by zero,and over
ow/under
ow
onditions.

EÆ
ient Optimisti
 Parallel Simulations Using Reverse Computation � 5operations. We
all su
h non-
onstru
tive operations destru
tive assignments . Astraightforward method to reverse a destru
tive assignment is to save the old
on-tents of the left-hand-side as a re
ord of the \
ontrol information" for that as-signment statement, whi
h makes it degenerate to state-saving. However, laterin the dis
ussion, we shall present optimizations that are possible to prevent thedegeneration of destru
tive assignments to traditional state-saving.If property 2 is not satis�ed be
ause the
ode is \too
omplex" (i.e., the amountof
ontrol state is more than the data state), we
an fall ba
k to traditional state-saving te
hniques. On the other hand, property 2 suggests that this me
hanism iswell-suited for simulation models in whi
h the event
omputations are small.Queuing network models are an ex
ellent example of the domain of models inwhi
h the pre
eding two properties are satis�ed to a large extent. Consequently,we believe that reverse
omputation is well suited for the optimisti
 simulation ofqueuing network models.3. AUTOMATIONIn the
ase of the multiplexor example, the
ode is small enough to
ome up withits reverse
ode by inspe
tion. We will now
onsider the more general
ase in whi
hthe
ode is
omplex, requiring a methodi
al, automated solution for generating thereverse
ode and for redu
ing the state size.3.1 Code GenerationWe propose
ompiler-based te
hniques to be used to generate the reverse
omputa-tion
ode for the simulation model. In our approa
h, the sour
e
ode of the originalmodel is fed through a spe
ial
ompiler. From the input model, the
ompiler gener-ates two separate outputs. The �rst output is an instrumented version of the inputmodel, whi
h
ontains the ne
essary
ode to make the input
ode reversible (e.g.,the
ode in Figure 2). The se
ond output is the reversing
ode that serves to undothe e�e
ts of the input model (e.g., the
ode in Figure 3). In the a
tual simulation,the instrumented
ode is used in pla
e of the original
ode. The reversing
ode isinvoked to roll ba
k an event. The goal of the
ompiler is to generate the mosteÆ
ient versions of both the instrumented
ode and the reverse
ode su
h thatthe state size is minimized while simultaneously redu
ing the runtime exe
utionoverhead.A simple set of translation rules that
an be used by the
ompiler are shown inTable 1. We list the most
ommon types of statements used in high-level languages,and their
orresponding instrumented and reverse
ode outputs. Against ea
h ofthe statements, we list the state size a
hievable for that statement type. Sin
e notall operations of the input model are perfe
tly reversible, it is ne
essary to add
ontrol state information to be able to reverse them. However, as we shall see inSe
tion 3.3, the better the understanding of the semanti
s of the
ode, the betterthe ability to redu
e the state size. Hen
e, the redu
tion in state size
an varydepending on the sophisti
ation of the
ompiler. The translation rules of Table 1thus pla
e an upper bound on the state size, whi
h
ould potentially be improved viaoptimizations. We have implemented a reverse C
ompiler
alled r

 that realizesthese upper bounds for the C language[Perumalla and Fujimoto 1999℄.The instrumented forward
omputation
ode, as well as reverse
ode, are gener-

6 � C. D. Carothers, K. S. Perumalla and R. M. Fujimotoated by re
ursively applying the rules of Table 1 to the input model. The signi�
antparts of these rules are their state bit size requirements, and the reuse of the statebits for mutually ex
lusive
ode segments. We explain ea
h of the rules in detailnext.|T0: The if statement
an be reversed by keeping note of whi
h bran
h is ex-e
uted in the forward
omputation. This is done using a single bit variable b,whi
h is set to 1 or 0 depending on whether the predi
ate evaluated to true orfalse in the forward
omputation. The reverse
ode
an then use the value of bto de
ide whether to reverse the if part or the else part when trying to reversethe if statement.Sin
e the bodies of the if part and the else part are exe
uted mutually ex
lu-sively, the state bits used for one part
an also be used for the other part. Hen
e,the state bit size required for the if statement is one plus the larger of the statebit sizes, x1, of the if part and x2 of the else part, i.e., 1 +max(x1; x2).|T1: Similar to the simple if statement (T0), an n-way if statement
an behandled using a variable b of size lg(n) bits. Thus, the state size of the entire ifstatement is lg(n) for b, plus the largest of the state bit sizes, x1 : : : xn, of the
omponent bodies, i.e., lg(n) +max(x1 : : : xn) (sin
e the
omponent bodies aremutually ex
lusive).|T2: Consider an n iteration loop, su
h as a for statement, whose body requiresx state bits for reversibility. Then n instan
es of the x bits
an be used to keeptra
k of the n instan
es of invo
ations of the body, giving a total of n � x bitrequirement for the loop statement. The inverse of the body is invoked n timesin order to reverse the loop statement.|T3: A loop with variable number of iterations, su
h as a while statement,
anbe treated the same as a �xed iteration loop, but the a
tual number of iterationsexe
uted
an be noted at runtime in a variable b. The state bits for the body
an be allo
ated based on an upper limit n on the number of iterations. Thus,the total state size added for this statement is lg(n)+n �x. If an upper limit onthe number of iterations is unknown, alternative approa
hes
an be used, su
has des
ribed in [Perumalla and Fujimoto 1999℄.|T4: For a fun
tion
all, no instrumentation is added. For reversing it, its inverseis invoked. The inverse is easily generated using the rules for T7 des
ribed later.The state bit size, x, is the same as for T7.In the simple
ase in whi
h the fun
tion
all graph is a tree, the state bit sizes
an be
ompletely determined stati
ally , and hen
e the state bits
an be stati-
ally allo
ated to the statements in all the fun
tions. In the
ase of models inwhi
h the fun
tion
all graph is a dire
ted a
y
li
 graph (DAG), the (maximum)state bit size requirements
an still be stati
ally determined, but the referen
esto the state bits, both in the forward and reverse event
omputation, need indi-re
tion via a frame o�set variable generated by the
ompiler. The frame o�setdenotes the position in the bit ve
tor from where a forward fun
tion
an beginstoring its own reversibility state. This variable is analogous to a frame pointerin a fun
tion
all sta
k. In the more general
ase of an arbitrary fun
tion
allgraph (implying the presen
e of dire
t and/or indire
t re
ursion), it is diÆ
ultto stati
ally determine the maximum state bit sizes. However, the frame o�set

EÆ
ient Optimisti
 Parallel Simulations Using Reverse Computation � 7approa
h of DAGs
an still be used to refer to the state bits
orresponding tothe
urrently a
tive fun
tion invo
ation.|T5: Constru
tive assignments, su
h as ++, --, += and so on, do not need anyinstrumentation. The reverse
ode uses the inverse operator, su
h as --, ++,-= respe
tively. These
onstru
tive statements do not require any state bits forreversibility.|T6: Ea
h destru
tive assignment, su
h as =, %= and so on,
an be instrumented tosave a
opy of its left hand side into a variable b before the assignment takes pla
e.The size of b is 8k bits for assignment to a k-byte left hand side variable (lvalue).This is similar to Steinman's in
remental state-saving te
hnique [Steinman 1993℄.|T7: In a sequen
e of statements, ea
h statement is instrumented depending onits type, using the previous rules. For the reverse
ode, the sequen
e is reversed,and ea
h statement is repla
ed by its inverse, again using the
orrespondinggeneration rules from the pre
eding list. The state bit size for the entire sequen
eis the sum of the bit sizes of ea
h statement in the sequen
e.|T8: Jump instru
tions (su
h as goto, break and
ontinue)
an be treated indi�erent ways, depending on whether or not inter-mixing sets of jumps are presentin the
ode. In the simple
ase, no goto label in the model is rea
hed more thanon
e during an event
omputation. Su
h use of jump instru
tions o

urs, forexample, to jump out of a deeply nested if statement, or as
onvenient errorhandling
ode at the end of a fun
tion. Su
h models are easy to reverse, asfollows: for every label that is the target of one or more goto statements, itsgoto statements are indexed. The forward
ode is instrumented to re
ord theindex of a goto statement whenever that goto statement is exe
uted. In thereverse
ode, ea
h of the goto statements is repla
ed by a goto label. The original(forward) goto label is repla
ed with a swit
h statement that uses the index savedin forward
omputation to jump ba
k to the
orresponding new (reverse) gotolabel. Sin
e at most one index per goto label is stored, the bit size requirementof this s
heme is lg(n + 1) where n is the number of goto statements that arethe sour
es of that single target label. Note that even if a label is the target ofonly one jump instru
tion, at least one bit is required, to distinguish betweenrea
hing the label normally (falling-through) and rea
hing the label as a resultof the jump instru
tion.The more general
ase of models
ontaining arbitrarily
omplex use of jumpinstru
tions is treated in [Perumalla and Fujimoto 1999℄.|T9: Any legal nesting of the previous types of statements
an be treated byre
ursively applying the
orresponding generation rules. The state bit size is alsoobtained by the
orresponding state-bit
omposition rule.State Size Determination. To determine the amount of state needed to reversean event
omputation, the following pro
edure is used. Sin
e the model
ode is asequen
e of statements, start with T7 (or, alternatively, T4), and re
ursively applythe rules of Table 1. This is done while reusing the bits on
ode segments that aremutually ex
lusive (as indi
ated by the MAX() operation in the table). The analogyof register allo
ation is appli
able here. The state
an be seen as a sequen
e of bits,whi
h
orrespond to registers of a
omputer. The bits are allo
ated to the state thatis required to re
ord
ontrol-
ow information. Just like registers, these bits
an be

8 � C. D. Carothers, K. S. Perumalla and R. M. Fujimotoallo
ated in an intelligent manner so that mutually ex
lusive statements
an reusethe same bits. For registers in general
omputing, the savings are in
omputationtime; for
ontrol bits in optimisti
 simulations, the savings are in state
opyingoperations and in state size redu
tion.It is easily observed that the statements with potentially higher state bit sizesare destru
tive assignments, nestings of
onditional statements within loops, nest-ed loops inside loops, and destru
tive operations among inter-dependent jump in-stru
tions. In �ne-grain models, it is unlikely that
omplex
ode involving nestedor
omplex loops will arise. Hen
e, the higher state requirements of su
h
omplex
ode is not a serious problem for these models. However, destru
tive assignmentsare not un
ommon. The most
ommon o

urren
e of destru
tive assignments is inrandom number generation, whi
h is addressed in the next se
tion, followed by adis
ussion on other eÆ
ien
y issues in a
hieving reversibility.3.2 Reversible Random Number GenerationRandom number generation is
entral to all simulation models. Several randomnumber streams may be used in the same simulation, to model various phenomena.A random number stream is generated by repeatedly invoking a spe
i�ed fun
tionon a seed variable. The fun
tion modi�es the value of the seed every time thefun
tion is invoked. Thus, a seed variable is needed for every random numberstream used in the simulation model. The size of the seed variable varies with thetype and quality of the random number generator (RNG).In optimisti
 simulations, if an event
omputation invokes an RNG, and even-tually the event is rolled ba
k, it is ne
essary to roll ba
k the random numbergeneration. Otherwise, the simulation results
an be unpredi
table and unrepeat-able. In order to be able to roll ba
k the random number generation, traditionally,the seed value is state-saved. In
remental state-saving te
hniques are used in
asethe model
ontains many seeds.However, if the reverse
omputation approa
h is used in order to avoid state-saving, we qui
kly en
ounter the following problem|RNGs rely on lossy/destru
tiveassignments su
h as modulo operations. This implies that a straight-forward ap-pli
ation of reverse
omputation te
hniques
an degenerate to in
remental state-saving, as the generation rule for type T6 in Table 1 suggests. To get around thisproblem, we essentially need RNGs whi
h do not rely on state-saving to reverse. Onan abstra
t level, we
an reasonably expe
t RNGs to be reversible without the needfor state-saving, sin
e, after all, random number streams are nothing but stati
allylaid out
y
li
 sequen
es of numbers. It should be possible to traverse forward andba
kward along the
y
les with the same ease.More
on
retely,
onsider the
ode to generate a uniform random number usingL'E
uyer's Combined Linear Congruential RNG [L'E
uyer and Andres 1997℄. ThisRNG is based on a
ombination of four linear
ongruential generators (LCGs) andhas a period of 2121. This generator produ
es a uniform [0; 1℄ double. Here, srepresents the seed of an LCG. When trying to \undo" or reverse this
omputationas suggested in Se
tion 3, we immediately run into several destru
tive assignments.In parti
ular, this generator performs the following assignment:s = 45991 � (s� k � 46693)� k � 25884

EÆ
ient Optimisti
 Parallel Simulations Using Reverse Computation � 9where k = s=46693. Be
ause integer division is being used (and in fa
t the algorith-m depends on the semanti
s of integer division), k does not a

urately represents=46693 whi
h means that one
annot determine the original value of s from thenew value of s. Essentially, there is an apparent loss of information, making it ir-reversible. Using the step-wise te
hnique of reversing a
omputation, the only wayone
ould reprodu
e the original value of s from the previous value is to store theloss of information due to the integer division (and due to other operations like it)and use that information in the reverse
omputation. However, this degenerates tostate-saving, whi
h is exa
tly what we are trying to avoid.Now, let us examine the mathemati
s behind this RNG from a higher level. ThisRNG is based on the following re
urren
e:xi;n = aixi;n�1 mod miwhere xi;nj1 � i � 4 is nth set of four seed values
omputed from the n�1 set of fourseed values,mij1 � i � 4 are the primes numbers 231�2; 231�106; 231�226; 231�326respe
tively, and aij1 � i � 4 is a primitive root for mi. Based on well-knownnumber theory, the above re
urren
e form is in fa
t reversible. First, the inverse ofai modulo mi, bi is de�ned to be:bi = ami�2i mod miwhere
al
ulation of bi is a

omplished using the method for
omputing large pow-ers [Vanden Eynden 1987℄. Using the bi, we
an generate the reverse sequen
e ofseed values as follows: xi;n�1 = bixi;n mod miwhi
h has the same
omputational requirements as the forward exe
ution of theRNG.Signi�
an
e of Reversible RNG. The reversibility of RNGs is not new. However,when applied to the
ontext of parallel simulation, the work des
ribed here is the�rst to exploit this property. As the gap between memory laten
y and pro
es-sor speed in
reases, we believe this approa
h will be of greater bene�t, as fasterpro
essors will result in larger, more
omplex simulation appli
ations. These sim-ulation appli
ations will in turn require RNGs with stronger statisti
al propertiesand longer periods, whi
h together will in
rease the seed size of the RNG. For ex-ample, in [Matsumoto and Nishimura 1998℄, the \Mersenne Twister" (MT19937)RNG is presented. This RNG is of the twisted feedba
k shift-register
lass and hasan extremely long period of 219937 � 1. However, it requires 624 words of spa
efor seeds. For a
lassi
al Time Warp system using this generator, 2496 bytes ofstate would need to be saved per event just to support the \undo" operation forthe RNG. This assumes MT19937 would be
alled at least on
e per event. Onemight think that in
remental state-saving
ould be employed here, but the waythis RNG is stru
tured, some bits from ea
h word are subje
t to
hange every timea random number is generated, thus making it diÆ
ult to optimize using in
re-mental state-saving te
hniques. Assuming the reverse re
urren
e
an be found forMT19937, whi
h its
reators believe is possible, the amount of memory saved usingreversing
omputation is even mu
h greater than previously dis
ussed. Be
ause ofthe redu
tion in state-saving overheads, system performan
e will improve as well.

10 � C. D. Carothers, K. S. Perumalla and R. M. Fujimoto3.3 Reverse Code EÆ
ien
yThe reversibility of random number generators, even though they
ontain destru
-tive assignments, leads to the following third property of the models that
an helpprevent reverse
omputation from degenerating to state-saving:|Property 3: The non-reversibility of the individual steps that
ompose a
om-putation do not ne
essarily imply that the
omputation, when taken as a whole,is not reversible.Property 3 suggests that even if the individual steps of a
omputation are noteÆ
iently reversible (i.e., either property 1 or 2 is violated), then one should lookto a higher-level to see if the
omputation is not reversible from that level. An in-teresting question we plan to
onsider in the future is the de�nition of an automati
me
hanism for identifying
ode sequen
es whi
h are individually not reversible, butfor whi
h a reversible
ode sequen
e
an be determined when
onsidered in a larger
ontext.This observation holds for several other
ommon operations that
ontain de-stru
tive assignments. For example, a shift operation on an array of n elements
anrequire n state-saving operations using in
remental state-saving te
hniques. Thesame operation requires saving only one element using reverse
omputation. Infa
t, a
ir
ular shift requires no state when reverse
omputation is used, whereasin
remental state-saving
an require n state-saving operations (the
ommonly usedswap operation is only a spe
ial
ase of
ir
ular shift). Similarly, insertion or dele-tion operations (whi
h
ontain destru
tive assignments su
h as pointer assignments)into tree data stru
tures (e.g., priority queues)
an require several state-saving op-erations using in
remental state-saving, whereas, no state is needed when reverse
omputation is used. This is be
ause those operations naturally possess perfe
tinverses (e.g., delete and insert are inverses of ea
h other).An important out
ome of this work is the re
ognition that reverse
omputationis well-suited for queuing network models. Many of the operations in queuingnetwork models are either
onstru
tive operations (in
rement, de
rement, et
.), orreversible groups of destru
tive assignments (random number generators, queueoperations, et
.). Also, the event
omputations in these models tend to be of �ne-granularity. This implies that reverse
omputation is an ex
ellent approa
h foroptimisti
 parallel simulation of queuing network models.4. PERFORMANCE EVALUATIONIn order to study the performan
e of reverse
omputation relative to state-saving,we
ompare two
avors of reverse
omputation with three variants of state-saving.All the variants have been implemented using the Georgia Te
h Time Warp (GTW)optimisti
 parallel simulator for shared memory multipro
essors[Das et al. 1994℄:|GTW-RC: GTW with reverse
omputation, in whi
h the reverse
ode for theappli
ation models is generated manually and optimized by inspe
tion|GTW-RCC: GTW with reverse
omputation, in whi
h the reverse
ode for theappli
ation models is automati
ally generated using a spe
ial reverse
ompiler|GTW-CSS: GTW with
opy state-saving, in whi
h a
opy of the entire state ismade before every event

EÆ
ient Optimisti
 Parallel Simulations Using Reverse Computation � 11|GTW-PSS: GTW with periodi
 state-saving, in whi
h a
opy of the entire stateis made every pth event|GTW-ISS: GTW with in
remental state-saving, in whi
h a
opy of only themodi�ed portions of the state is made during every event.In addition, the following two sequential versions of GTW are used for
omparisonpurposes:|GTW-SEQ: Optimized sequential simulator with GTW interfa
e|GTW-NONE: Parallel version of GTW, with rollba
k support turned o� (i.e.,with neither state-saving nor reverse
omputation), so that it
an be run sequen-tially, but not in parallel.We �rst present the details of these variants, followed by the details of our studyto
ompare their performan
e
hara
teristi
s. All the experiments were performedon a 16 pro
essor, SGI Origin2000, shared-memory multipro
essor, with 8 MB oflevel-two
a
he per pro
essor, and 4 GB of total memory. In all
ases, the totalnumber of events
ommitted was deterministi
 and
onsistent with sequential runs,and the performan
e was found to be repeatable.4.1 Reverse ComputationWe have implemented the reverse
omputation in GTW, whi
h is originally basedon state-saving to realize rollba
k. To use reverse
omputation for rollba
k, threesigni�
ant modi�
ations were made to the GTW kernel.First, we extended the GTW appli
ation programmer interfa
e to support amethod for reversing the forward pro
essing of an event. In GTW, the appli
ationsprogrammer must spe
ify methods (i.e., pointer to a fun
tion) for ea
h logi
al pro-
ess (LP) to (i) initialize an LP (TWLP[i℄.IPro
) (ii) primary event handler for anLP (TWLP[i℄.Pro
), (iii) a \wrap-up" method for an LP that
olle
ts appli
ation-spe
i�
 statisti
s (TWLP[i℄.FPro
). Note that the TWLP array is indexed by theLP number. We added support for reversing
omputation by introdu
ing a newmethod, TWLP[i℄.RevPro
, whi
h performs the pre
ise reverse
omputation of theevent handler pro
edure, TWLP[i℄.Pro
. The arguments to TWLP[i℄.RevPro
 in-
lude the
urrent state of the LP, and any events sent during the forward
ompu-tation.Next, GTW's
ore rollba
k me
hanism required some signi�
ant
hanges as well.GTW uses a te
hnique
alled dire
t
an
ellation [Fujimoto 1989℄ to support the \de-s
heduling" of previously s
heduled events by an event that was rolled ba
k. Thiste
hnique allows one to keep a dire
t pointer to the event that needs to be
an
eled.Be
ause of this, an optimized rollba
k me
hanism
an be supported that doesn'trequire one to sear
h though the pro
essed event-list of an LP. Instead, if the eventthat is to be
an
eled has been pro
essed, the rollba
k me
hanism simply restoresthe version of LP state that was made prior to pro
essing this event. The otherpro
essed events that
ome after the
an
eled event are marked as unpro
essed andpla
ed ba
k into pending event-list. For supporting reversing
omputations
ausedby se
ondary rollba
ks (i.e., rollba
ks
aused by event
an
ellations), this optimizedte
hnique is unsuitable. To \undo" a sequen
e of event
omputations using reverse
omputation requires that ea
h event be \unpro
essed" in the pre
ise reverse or-der in whi
h it was pro
essed. Consequently, we modi�ed the dire
t
an
ellation

12 � C. D. Carothers, K. S. Perumalla and R. M. Fujimotome
hanism so that it starts with the last event pro
essed by the LP and movesthrough the LP's pro
essed event-list in reverse time stamp order, invoking theTWLP[i℄.RevPro
method for ea
h event to undo its
hanges to state. The
hangesto the primary rollba
k me
hanism (i.e., rollba
ks
aused by straggler events) toin
orporate reverse
omputation were straight-forward, sin
e the pro
essed eventlist for an LP is s
anned in reverse time stamp order.The last major
hange to the GTW system was that all memory allo
ation forsaving state (both
opy state and in
remental state-saving) was turned o�. Also,the
opy-state operation during forward event pro
essing was turned o� as well.Instead, a small bit ve
tor was added to every event, whi
h served as the workingbits needed for saving the state information
reated by the instrumented model
ode, as des
ribed in Se
tion 3. For example, the two bits, b1 and b2 of themultiplexor model in Se
tion 2.2 are in fa
t mapped to the lower order bits of thisevent bit ve
tor. The appli
ation
an de
lare and use additional bits by spe
ifyingthem as appli
ation-spe
i�
 event data.4.2 Reverse Code GenerationIn order to use the reverse
omputation support in GTW, it is ne
essary to de�nethe reverse fun
tion for every appli
ation fun
tion that is invoked during event pro-
essing. To this end, �rst, we manually wrote the reverse fun
tions by inspe
tion,following the rules in Table 1 (the appli
ations are des
ribed later in this se
tion).We will refer to this manual
on�guration for reverse
omputation as GTW-RC.Next, we used a reverse C
ompiler
alled r

, whi
h we implemented to automat-i
ally generate reverse fun
tions from C fun
tions[Perumalla and Fujimoto 1999℄.We will refer to this automated
on�guration for reverse
omputation as GTW-RCC.4.3 State-SavingThe default state-saving te
hnique in GTW is
opy state-saving, in whi
h a
opyof the entire state is made before an event is exe
uted. In CSS, the state is savedevery time an event is pro
essed. A variation of
opy state-saving is
alled periodi
state saving[Fujimoto 1990℄. Periodi
 state-saving is a generalized te
hnique inwhi
h state is saved only periodi
ally, say, every pth event, instead of every eventas is done with
opy state-saving. This implies that some events save state beforepro
essing, and others do not. The former set of events
an be rolled ba
k easilyby restoring the state to the saved values. The latter set of events need spe
ialtreatment, sin
e they do not have saved state. The state restoration for theseevents is a
hieved by starting with a past pro
essed event that does have savedstate, and then re-exe
uting the sequen
e of events from that past event to theevent just before the rolled ba
k event.We in
orporated periodi
 state-saving into GTW as a generalization of
opystate-saving. The appli
ation
an
hoose between
opy and periodi
 state-saving byspe
ifying its state-saving period to be equal to or greater than unity, respe
tively.The implementation is optimized for
opy state-saving when the period equals unity.No sour
e
ode
hanges are ne
essary in the appli
ation models to swit
h between
opy and periodi
 state-saving. We shall refer to the
opy and periodi
 state-saving
on�gurations as GTW-CSS and GTW-PSS respe
tively.

EÆ
ient Optimisti
 Parallel Simulations Using Reverse Computation � 13In
remental state-saving is an alternative state-saving te
hnique in whi
h onlythe modi�ed portions are saved just before modi�
ation. GTW in
ludes an imple-mentation of in
remental state-saving in whi
h the modi�
ations are logged as pairsof integral address-value pairs, and stored in a log array for ea
h LP. We shall referto this state-saving
on�guration as GTW-ISS. Although GTW allows both
opystate-saving and in
remental state-saving to be used simultaneously together inthe same appli
ation, we used them mutually ex
lusively, be
ause of the uniformlysmall state sizes in our appli
ations.4.4 Appli
ationsFor the performan
e study, we use two appli
ations: (i) a
as
ading network ofAsyn
hronous Transfer Mode (ATM) multiplexors (ii) a Personal Communi
ationsServi
es (PCS) network.|ATM Multiplexor Cas
ade: The �rst appli
ation
onsists of a 3-level
as
adeof ATM multiplexors, as des
ribed in [Poplawski and Ni
ol 1998℄. The model isparameterized by a fa
tor n, su
h that n3
ell sour
es feed into n2 multiplexorswhi
h in turn feed into n multiplexors, whi
h �nally feed into one multiplexor.The fa
tor n is the number of inputs of ea
h multiplexor. The GTW sour
e
ode for the ATM multiplexor model was obtained from the Northern ParallelSimulator (Nops) group at Dartmouth [Poplawski and Ni
ol 1998℄. Their imple-mentation on GTW realizes ea
h network element as an LP. The state size ofea
h LP is 112 bytes. The appli
ation data
ontained within ea
h message is 8bytes. The event granularity of this appli
ation is very low (a few mi
rose
ondsfor small n).|PCS Network: In the se
ond appli
ation, a PCS network is simulated as de-s
ribed in [Carothers et al. 1995℄. The servi
e area of the network is populatedwith a set of geographi
ally distributed transmitters and re
eivers
alled radioports. A set of radio
hannels are assigned to ea
h radio port, and the user inthe
overage area sends and re
eives phone
alls using the radio
hannels. Whena user moves from one
ell to another during a phone
all a hand-o� is said too

ur. In this
ase the PCS network attempts to allo
ate a radio
hannel in thenew
ell to allow the phone
all
onne
tion to
ontinue. If all
hannels in thenew
ell are busy, then the phone
all is for
ed to terminate. For all experimentshere, the portable-initiated PCS model was used, whi
h dis
ounts busy-lines inthe overall
all blo
king statisti
s. Here,
ells are modeled as LPs, and PCS sub-s
ribers are modeled as messages that travel among LPs. PCS subs
ribers
antravel in one of 4 dire
tions: north, south, east or west. The sele
tion of dire
tionis based on a uniform distribution. The state size for this appli
ation is 80 byteswith a message size of 40 bytes and the minimum lookahead for this model is zerodue to the exponential distribution being used to
ompute
all inter-arrivals,
all
ompletion and mobility.The
omputation granularity of the ATM multiplexor model is very small, but,the
ommuni
ation among the LPs is feed-forward in nature, yielding ex
ellentlookahead properties. The PCS network, on the other hand, has medium eventgranularity and possesses more
omplex
ommuni
ation patterns with mu
h largermessage sizes and a zero lookahead. Consequently, PCS is a more representative ex-

14 � C. D. Carothers, K. S. Perumalla and R. M. Fujimotoample of how a \real-world" simulation model would exer
ise the rollba
k dynami
sof reverse
omputation.4.5 Forward
omputationIn pra
ti
e, one would like the serial performan
e of the parallel simulator to be as
lose to the optimized sequential as possible. With that in mind, our �rst set ofexperiments uses the ATM multiplexor model and
ompares the serial performan
eof GTW-NONE3, GTW-RC, and GTW-CSS against GTW-SEQ on this modelto determine the impa
t these di�erent approa
hes have on forward
omputationrates. We did not use in
remental state-saving in this
omparison sin
e it resultedin slower performan
e than full
opy saving-saving. The
ause of low performan
eof in
remental state-saving was a
onsequen
e of the LP state being so small (only112 bytes)[Gomes 1996℄. We did not use the PCS network model, sin
e it is of ahigher granularity than the ATM multiplexor model, and hen
e less stringent thanthe ATM multiplexor model on the forward
omputation overheads.Figure 4 shows the event rate as a fun
tion of fan-in for the four simulators.There are several key observations based on this performan
e data. First, we ob-serve that the performan
e of GTW-RC is equal to GTW-NONE. The reason thesetwo systems perform equivalently is be
ause the few extra bits stored in the forward
omputation to support reverse
omputation has negligible impa
t on the overallevent granularity of the ATM Multiplexor appli
ation. However, if we
ompareGTW-RC with GTW-CSS, a mu
h di�erent pi
ture emerges | GTW-RC is
on-sistently faster than GTW-CSS, the primary reason being that we have
ompletelyeliminated the overhead of state-saving.If one were to eliminate state-saving overheads in an optimisti
 simulator, as wea
hieved in GTW-RC, we may expe
t to observe performan
e that is about equalto that of the optimized sequential simulator. But,
learly that is not the
ase here| a
ross all fan-in values, the sequential simulator is faster, and, in one
ase, asmu
h as 30% faster. To investigate this phenomenon, we pro�led GTW-RC andGTW-SEQ to see where these two systems were spending most of their CPU
y
les.Pro�ling revealed that the memory footprint of GTW-RC is mu
h larger than thatof GTW-SEQ. This is be
ause the sequential simulator
ommits and immediatelyreuses an event memory bu�er upon pro
essing that event. But, GTW-RC (andGTW-CSS) only
ommits an event memory bu�er when global virtual time (GVT)sweeps past the event time-stamp, whi
h is approximately on
e every 1000 events.The
onsequen
e of waiting for GVT is that GTW-RC \tou
hes" more pages ofmemory than GTW-SEQ, whi
h results in more �rst and se
ondary data
a
hemisses, as well as translation look-aside bu�er (TLB) misses and page faults.Finally, we observe that as the fan-in in
reases, the performan
e of the di�erentsimulators begins to
onverge. To explain this phenomenon, we need to understandhow an in
rease in fan-in e�e
ts the system. Re
all, there are n3 sour
es in the mul-tiplexor network. Ea
h sour
e generates two messages | one for self res
heduling,and the other when a
ell is generated to send to the target multiplexor. Conse-quently, there are, at any one instan
e, at least n3 events in the system. Thus,the event population grows as the
ube of the fan-in, n. As we approa
h fan-ins3GTW-NONE is very mu
h like a
onservative parallel simulator being run serially.

EÆ
ient Optimisti
 Parallel Simulations Using Reverse Computation � 15of 48 and above, the event-list management overheads begin to dominate, whi
hde
reases the impa
t state-saving overhead has on overall system performan
e.In summary, in the �ne-grained multiplexor model, we observe that reverse
om-putation almost
ompletely eliminates the state-saving overheads from the forward
omputation.4.6 Parallel Simulation Performan
eIn this next series of experiments, we
ompare the parallel simulation performan
ea
hieved by reverse
omputation and state-saving on the ATM multiplexor modeland on the PCS network model.|ATM Multiplexor: For the experiments with the ATM multiplexor model,we
hose a representative fan-in of 16 (to get a non-trivial network size that stillkeeps the event granularity suÆ
iently small) and varied the number of pro
essors(2, 4, 8, 12 and 16). The experiments were performed separately for ea
h of theGTW
on�gurations { GTW-RC, GTW-RCC, GTW-CSS, GTW-PSS and GTW-ISS. Figure 5
ompares the event rate obtained with all the
on�gurations, on avarying number of pro
essors.|PCS Network: We also simulated the PCS model in parallel, and
ompared theparallel performan
e of state-saving and reverse
omputation, using the di�erentGTW
on�gurations on a varying number of pro
essors. For these experimentsthe following PCS network settings were used. The PCS model was
on�guredwith a 64x64 LP grid for 8 pro
essors, a 72x72 LP grid for 12 pro
essors, and a60x60 LP grid on 15 pro
essors. For all LP
on�gurations, the number of initialevents per LP was 25. These LP
on�gurations were
hosen be
ause they allowedan even number of LPs to be mapped to ea
h pro
essor to pre
lude introdu
ingan unbalan
ed workload. The event rate performan
e for this set of experimentsis shown in Figure 9.Given the modest, nevertheless good, improvement in serial performan
e whenusing reverse
omputation, we expe
ted to see a similar modest enhan
ement withrespe
t to parallel simulation performan
e. However, we were surprised to see thatreverse
omputation improved GTW's performan
e on the ATM Multiplexor modelby up to 300% as
ompared to state-staving, and up to 500% on the PCS networkmodel. We observe that in the 16 pro
essor
ase of the ATM Multiplexor model,GTW-RC in
reased the event rate by a fa
tor of more than 4
ompared to GTW-CSS4. Similarly, in the 15 pro
essor
ase of the PCS network model, GTW-RCin
reased the event rate by a fa
tor of more than 5
ompared to GTW-CSS. Allthe performan
e data were obtained by repeating the simulation runs several times.The performan
e results were found to be repeatable, with negligible varian
e. Inall
ases, we observe that GTW-RC is
onsistently and signi�
antly faster thanGTW-CSS, GTW-PSS and GTW-ISS.These observations raised the next question, namely, why does reverse
ompu-tation improve performan
e by su
h a large fa
tor? We hypothesized that it ismemory system related, assuming that reverse
omputation has a smaller memo-ry footprint than state-saving and hen
e requires fewer resour
es to be expended4The raw event rate using reverse
omputation for that
ase was over 1.6 million events per se
ond!

16 � C. D. Carothers, K. S. Perumalla and R. M. Fujimotoby the memory subsystem. To verify our hypothesis and to pre
isely identify thesour
e of the performan
e variation, we used the perfex performan
e tool. Here,we
on�gured perfex to make use of the hardware
ounters internal to the MIPSR10000 pro
essor to obtain extremely a

urate performan
e statisti
s. We notethat be
ause the hardware
ounters were used, we observed neither slow down inperforman
e, nor perturbation in the model performan
e due to the perfex moni-toring software.Figures 6 { 8 show the primary data
a
he misses, se
ondary data
a
he missesand TLB misses for the ATM Multiplexor model. Figures 9 { 12 show the
or-responding statisti
s for the PCS network model. In these �gures, the number ofmisses is normalized by a
onstant, whi
h is the total number of events
ommittedby the simulation. We observe that GTW-RC in
urs signi�
antly fewer numberof primary and se
ondary data
a
he misses and TLB misses per event,
omparedto GTW-CSS, GTW-PSS and GTW-ISS. The net e�e
t of the poor memory sub-system behavior of the state-saving variants is that the event rate degrades as thenumber of pro
essors is in
reased. Some of the fa
tors behind the low performan
eof state saving are explained next. More detailed analysis of the detrimental e�e
tof state-saving on the simulation performan
e on shared memory multipro
essorsis presented in [Carothers et al. 1999℄.Copy State-Saving. When
opy state-saving is used, the footprint of the simula-tion is in
reased be
ause of the additional memory required for state maintenan
efor ea
h event. The in
rease in the additional memory size manifests itself in termsof an in
rease in the number of TLB misses in
urred by the simulation per event.Furthermore, the simulation tou
hes more memory pages per event, due to the a
tof making a
opy of the state. This further in
reases the
han
e of
a
he misses andTLB misses. The misses
ontribute to
ontention at the shared memory, with thenet e�e
t of rapidly redu
ing the performan
e as the number of pro
essors in
reas-es. These phenomena are indi
ated by the rapid in
rease in the number of primarydata
a
he misses in the ATM Multiplexor simulation, as shown in Figure 6. Simi-larly, in the
ase of PCS network simulation, the number of primary and se
ondarydata
a
he misses, along with the number of TLB misses steadily in
rease as thenumber of pro
essors in
reases, as shown in Figures 10 { 12. The net e�e
t is thatthe event rate of the simulation deteriorates as more pro
essors are added to thesimulation.Periodi
 State-Saving. Sin
e periodi
 state-saving avoids saving state too often, itis fair to expe
t that its performan
e would be better than that of
opy state-saving.This is be
ause periodi
 state-saving
an potentially redu
e the overhead during theforward
omputation, and redu
e the memory
onsumed for state-saving. This isespe
ially true in appli
ations in whi
h the state size is signi�
antly greater thanthe event size[Bellenot 1992; Press and Ma
Intyre 1992℄. However, in appli
ations{su
h as used in this study{in whi
h event size is
omparable to (or greater than)state size, periodi
 state-saving
an have the
ounter-e�e
t of a
tually in
reasingthe memory utilization relative to
opy state-saving. This is attributable to thefa
t that events
annot be re
laimed until global virtual time (GVT) goes pastthe earliest among all logi
al pro
esses of their latest state-saved event. With
opy state-saving, events
an be re
laimed as soon as GVT sweeps past their time

EÆ
ient Optimisti
 Parallel Simulations Using Reverse Computation � 17stamps, whi
h allows them to be reused immediately thereafter. In
ontrast, withperiodi
 state-saving, a pro
essed event
an be re
laimed only if there exists anotherpro
essed event with saved state whose timestamp is less than GVT. Hen
e, theworking set of simulations using periodi
 state-saving is greater in size relative tothat of
opy state-saving, due to a greater number of events maintained betweenGVT
omputations. (In fa
t, this relation is preserved independent of the frequen
ywith whi
h GVT is
omputed.). The net result is that periodi
 state saving doesnot help in signi�
antly redu
ing the state-saving overheads relative to
opy state-saving. This is
on�rmed by the similarity of the memory subsystem performan
eof GTW-CSS and GTW-PSS, as shown in Figures 6 { 8, and in Figures 10 { 12.In
remental State-Saving. Sin
e in
remental state-saving avoids
opying the en-tire state, and
opies instead only the pie
es that have been modi�ed, it
an nor-mally be expe
ted to in
ur less overhead than
opy state-saving. This is be
ause,in
remental state-saving
an potentially
onsume less memory than
opy state-saving in appli
ations with large state sizes. If only a small portion of the state ismodi�ed per event, then in
remental state-saving
an result in signi�
ant redu
-tion in state-saving overheads per event relative to
opy state-saving. However, inappli
ations{su
h as used in this study{in whi
h the state size is small, the over-heads of maintaining a log of
hanges (lists of address-value pairs) is signi�
ant,making it no better than
opy state-saving. This is
on�rmed by the similarityof the memory subsystem performan
e of GTW-CSS and GTW-ISS, as shown inFigures 6 { 8 and in Figures 10 { 12.Automated Reverse Code. Finally, we note that the hand-
oded reverse
ode(GTW-RC) performs slightly better than the automated reverse
ode (GTW-RCC).This is be
ause the hand-
oded reverse
ode in
orporates more optimizations thanthe automati
ally generated reverse
ode. For example, bit operations are more
ustomized for ea
h appli
ation in the hand-
oded version, whereas the automatedversion uses more generalized bit operations. Consequently, the automated versionadds a slight amount of additional
omputational overhead over that of hand-
odedversion. This is evident in the slightly redu
ed event rates for GTW-RCC relativeto GTW-RC, as shown in Figures 5 and 9. The fa
t that the memory
hara
teristi
sof GTW-RC and GTW-RCC remain the same is indi
ated by the similarity of theirmemory performan
e results, as shown in Figures 6 { 8 and in Figures 10 { 12.4.7 Performan
e SummaryThe results presented here, when
onsidered in their totality, indi
ate that theperforman
e of optimisti
 parallel simulation has rea
hed an a

eptable level forthis
lass of extremely low event granularity appli
ations. Previously, resear
her-s in the area of parallel and distributed simulation have indi
ated diÆ
ulty ina
hieving a

eptable levels of performan
es from Time Warp systems with smallevent-granularity (e.g., [Xiao et al. 1999℄). They observed that state-saving
ostswere dominating and sti
ing performan
e. Now, with reverse
omputation it ap-pears that arguments against using optimisti
 approa
hes on su
h appli
ations areebbing away.As future generations of pro
essors be
ome faster and the performan
e gapbetween memory and pro
essors widens, we anti
ipate reverse
omputation
an

18 � C. D. Carothers, K. S. Perumalla and R. M. Fujimotoa
hieve even higher performan
e
ompared to state-saving.5. RELATED WORKReverse
omputation has been previously studied in various
ontexts. Resear
hinto reversible
omputing is aimed at realizing reversible versions of
onventional
omputations in order to redu
e power
onsumption [Bennet 1982; MIT ReversibleComputing Group 1999℄. The R language is a high-level language with spe
ial
on-stru
ts to enfor
e reversibility so that programs written in that language
an betranslated to ma
hine
ode of reversible
omputers [Frank 1999℄. Another interest-ing appli
ation of reversible
omputation is in garbage
olle
tion. The Psi-Lisplanguage presented in [Baker 1992℄ uses reversible
onstru
ts to eÆ
iently imple-ment garbage
olle
tion. Other appli
ations for reversible exe
ution are in theareas of database transa
tion support, debugging support and
he
kpointing forhigh-availability software [Leeman 1986; Sosi
 1994; Biswas and Mall 1999℄. Morere
ent work is
on
erned with sour
e to sour
e translation of popular high-levellanguages, su
h as C, to realize reversible programs. However, almost all of thesolutions suggested in these appli
ation areas translate either to
onstraints on lan-guage semanti
s to disallow irreversible
omputations, or to te
hniques analogousto state-saving te
hniques (spe
i�
ally,
opy-on-write te
hniques) of optimisti
 par-allel simulations. Some of them operate at a
oarse level of virtual memory pages.The optimizations are roughly analogous to those used in in
remental state-savingapproa
hes in parallel simulations. Moreover, sin
e these solutions are not spe
i�-
ally geared towards parallel simulations, they are not optimized for minimizing thestate size, and do not adequately exploit the semanti
s of
onstru
tive operations.In [Bishop 1997℄, reversible
omputing has been suggested as a method for test-ing failures in real-time systems, but with admittedly high forward and reverse
omputing overheads, and without treatment of
omplex instru
tions su
h as inter-mixing jumps. An initial attempt at automati
ally generating symboli
 inversesof reversible fun
tions is made in [Eppstein 1985℄, but it relies on heuristi
s for
orre
tness. A more theoreti
al approa
h is taken in [Chen and Udding 1990℄, byusing inversion of invariants to prove the
orre
tness of inverse programs. A debug-ging system is des
ribed in [Biswas and Mall 1999℄ that exe
utes C programs ininterpreted mode in forward and reverse dire
tions. Although their approa
h usinginterpretation is well suited for debugging systems, the performan
e
hara
teris-ti
s of their te
hniques are un
lear when applied to high-performan
e simulations.An interesting use of reversible
omputing is in its appli
ation to the automat-i
 di�erentiation of fun
tions expressed in a high-level
omputer language, su
has C/C++[Griewant et al. 1996; Grimm et al. 1996℄. For this, reverse exe
utionof
ertain intermediate
omputations is ne
essary, whi
h is a
hieved via operator-overloading te
hniques of C++.The state-saving te
hniques presented in [Gomes 1996℄ utilize a limited form ofoptimization using the reverse
omputation approa
h and is the �rst work we areaware of to spe
i�
ally dis
uss reverse
omputation for simulation, but no perfor-man
e results are provided. Our work starts where [Gomes 1996℄ ends, and is
on-
erned with te
hniques for minimizing the state size for realizing reversibility, andsimultaneously minimizing the runtime exe
ution overheads. Finally, in [Umam-ageswaran et al. 1998℄, a rollba
k relaxation s
heme is presented that automati
ally

EÆ
ient Optimisti
 Parallel Simulations Using Reverse Computation � 19identi�es
ertain types of history-independent logi
al pro
esses and optimizes theperforman
e of rollba
k a
tivity for those pro
esses. Our approa
h is di�erent inthat it addresses logi
al pro
esses whi
h are not ne
essarily stateless, and seeks tooptimize run-time performan
e and memory utilization by minimizing the essentialstate required by su
h pro
esses.6. REMARKS AND CONCLUSIONSReverse
omputation is well suited for models
ontaining
onstru
tive assignments.However, without adequate
are, it
an degenerate to traditional state-saving ifa suÆ
iently large number of destru
tive assignments, whi
h are hard to reverse,are present in the model. In fa
t, in
ertain
ases, it
an perform worse thanin
remental state-saving, due to the fa
t that optimizations, su
h as the mergingof multiple writes to the same variable into a single save operation, are possibleusing in
remental state-saving te
hniques, but not readily possible with reverse
omputation.There is a
ommonly implemented optimization in
opy state-saving: when a roll-ba
k spans several pro
essed events, it is suÆ
ient to merely swit
h a few pointersin order to restore the entire state to its value
orresponding to the earliest rolledba
k event. This helps in
onsiderably redu
ing the rollba
k
ost. In
ontrast, whenreverse
omputation is used, ea
h one of the rolled ba
k events must be reversedone at at time, in the reverse order of pro
essing. This
an potentially make therollba
k
ost mu
h higher than that of
opy state-saving. Advan
ed inter-eventanalysis is ne
essary in order to redu
e su
h overhead in reverse
omputation.On the other hand, previously, optimisti
 simulations were
onsidered to be un-suitable for �ne-grain appli
ations be
ause of the high state saving overheads. Wehave shown that reverse
omputation is an appealing alternative approa
h thatmakes eÆ
ient optimisti
 simulation of �ne-grain appli
ations feasible.We also identify some
lasses of appli
ations in whi
h reverse
omputation is nat-ural. In these appli
ations, automati
 te
hniques are easily found that essentiallyexploit the sour
e
ode as state. Examples in
lude quantum
omputer simulation,and queuing network simulation. In the
ase of queuing network models, we iden-tify that a majority of the
ommon operations are indeed reversible. In parti
ular,we have addressed the reversibility of the most
ommon operation, namely, ran-dom number generation. In addition, we make the observation that other queuemanipulation operations, su
h as insert, delete and shift, are in fa
t more memoryeÆ
ient with reverse
omputation than with state-saving.In other
lasses of appli
ations, this approa
h also serves as an automati

ompiler-based state-
ompression te
hnique. State
ompression is useful for enhan
ing theperforman
e of optimisti
 simulations in limited memory environments. Consider-ing that CPU resour
es are
heaper and more abundant than memory resour
es,we
an hope to exe
ute
ertain important
lasses of appli
ations (su
h as queu-ing networks) using optimisti
 parallel simulation on a network of, say, palm-top
omputers. The state-
ompression is useful even in the
ontext of state-logging
onservative parallel simulations and sequential simulations. For intera
tive (play-log-replay) appli
ations, there
an be signi�
ant bene�ts in terms of redu
tion inmemory requirements of the state log. Sin
e the appli
ations tend to be simulatedfor long times, an order of magnitude di�eren
e in the size
an be quite signi�
ant.

20 � C. D. Carothers, K. S. Perumalla and R. M. Fujimoto(In this
ase, we are still investigating the gains of state-
ompression as opposed tousing standard
ompression programs, su
h as gzip, on the log of regular un
om-pressed state.)Most importantly, the redu
ed memory requirements due to state-
ompressionallow us to explore new appli
ations that were
onsidered too expensive to simu-late using state-saving-based optimisti
 simulations. However, several open issuesremain to be explored. A few of them are dis
ussed next.Open IssuesIn general, reverse
omputation redu
es the overhead in the forward
omputationpath, but potentially in
reases the rollba
k
ost. Additional work is needed tobetter understand the rollba
k dynami
s of reverse
omputation on a wider rangeof appli
ations.Algorithms to automati
ally identify the naturally reversible patterns in the mod-el
ode are important to prevent reverse
omputation from degenerating to state-saving. Perhaps a library of forward{inverse pairs of fun
tions
an help in thisdire
tion.Sin
e
oating point arithmeti
 is subje
t to roundo�, arithmeti
 operations
anresult in roundo� errors during the reverse exe
ution. Solution approa
hes exist(for example, by emulating a pre
ision that is higher than the highest pre
isionsupported by the modeling language), but the performan
e impli
ations are un
lear.An interesting theoreti
al problem is to �nd whether there exist data types,for whi
h the state-saving
ost for their operations widely di�ers when reverse
omputation is used instead of state-saving. To illustrate,
onsider a
ir
ular shiftoperation on an array of n elements. This operation requires no state for reverse
omputation. But it appears to require O(n) state size using state-saving, if afor loop is used for shifting. However, by using a pointer{based implementationfor the array, and shifting the \start" and \end" pointers of the array instead ofthe a
tual elements, the pointers
an be state-saved instead of the entire arrayof elements, redu
ing the size of saved state to the size of two pointers. Thisimplies that for
ir
ular shift, the memory requirement for state-saving is only a
onstant fa
tor away from reverse
omputation. It is un
lear if this is true in general.For example, an interesting sub-problem
on
erns the insert and delete-minoperations on a priority queue. We are not aware of any theoreti
al result thatproves or disproves that only a
onstant number of state modi�
ations is suÆ
ientfor arbitrary
ombination of insert and delete-min operations on the queue,without sa
ri�
ing the asymptoti
 average time
omplexity of O(logn) for insertionand deletion. Reverse
omputation, on the other hand, requires no state historydespite state modi�
ations, be
ause, insert
an be reversed using delete, andvi
e versa.A
knowledgementsThe authors would like to thank P. L'E
uyer for his insights on the reversibilityof random number generators, David Ni
ol and the Nops group at Dartmouthfor providing us with the sour
e
ode for the ATM Multiplexor model spe
i�
allywritten for GTW, and Rajive Bagrodia for his te
hni
al
omments on making aperforman
e
omparison between reverse
omputation and periodi
 state-saving.

EÆ
ient Optimisti
 Parallel Simulations Using Reverse Computation � 21REFERENCESBennett, C. 1982. Thermodynami
s of
omputation. International Journal of Physi
s,21 , 905{940.Biswas, B. and Mall, R. 1999. Reverse exe
ution of programs. ACM SIGPLAN Noti
es,34 , 4 (April), 61{69.Bishop, P. 1997. Using reversible
omputing to a
hieve fail-safety. In Pro
eedings of the8th Internal Symposium on Software Reliability Engineering (ISSRE 97), 182{191.Bellenot, S. 1992. State skipping performan
e with the Time Warp Operating System.In Pro
eedings of the 6th Workshop on Parallel and Distributed Simulation (PADS '92),53{64.Baker, H. G. 1992. NReversal of fortune{the thermodynami
s of garbage
olle
tion. InPro
eedings of the International Workshop on Memory Management, Springer Verlag Le
-ture Notes in Computer S
ien
e 637, 507{524.Carothers, C. D., Fujimoto, R. M. and Lin, Y-B. 1995. A
ase study in simulating PCSnetworks using Time Warp. In Pro
eedings of the 9th Workshop on Parallel and DistributedSimulation (PADS '95), 87{94.Carothers, C. D., Perumalla, K. S. and Fujimoto, R. M. 1999. The e�e
t of state-saving in optimisti
 simulation on a
a
he-
oherent non-uniform memory a

ess ar
hite
-ture. In Pro
eedings of the 1999 Winter Simulation Conferen
e, to appear.Chen, W. and Udding, J. 1990. Program inversion: more than fun. S
ien
e of ComputerProgramming, 15 , 1 (January), 1{13.Das, D., Fujimoto, R. M., Panesar, K., Allison, D. and Hybinette, M. 1994. GTW: aTime Warp system for shared memory multipro
essors. In Pro
eedings of the 1994 WinterSimulation Conferen
e, 1332{1339.Eppstein, D. 1985. A heuristi
 approa
h to program inversion. In Pro
eedings of the 9thInternational Joint Conferen
e on Arti�
ial Intelligen
e, 219{221.Frank, M. 1999. The R programming language and
ompiler.http://www.ai.mit.edu/~mpf/r
/home.htmlFujimoto, R. M. 1989. Time Warp on a shared memory multipro
essor. In Pro
eedings ofthe 1989 International Conferen
e on Parallel Pro
essing (ICPP '89), 242{249.Fujimoto, R. M. 1990. Parallel dis
rete event simulation. Communi
ations of the ACM,33 , 10 (O
tober), pages 30{53.Gomes, F. 1996. Optimizing in
remental state-saving and restoration. Ph.D. thesis, Dept.of Computer S
ien
e, University of Calgary.Griewant, A., Juedos, D., Mitev, H., Utke, J., Vogel O. and Walther, A. 1996.ADOL-C: A pa
kage for the automati
 di�erentiation of algorithms written in C/C++.ACM Transa
tions on Mathemati
al Software, 22 , 2 (February), 131{167.Grimm, J, Pottier, L. and Rostiang-S
hmidt, N. 1996. Optimal time and minimumspa
e-time produ
t for reversing a
ertain
lass of programs. Resear
h Report, InstitutNational de Re
her
he en Informatique et en Automatique (INRIA),Leeman, G. 1986. A formal approa
h to undo operations in programming languages. ACMTransa
tions on Programming Languages and Systems, 8 , 1 (January), 50{87.L'E
uyer, P. and Andres, T. H. 1997. A random number generator based on the
ombi-nation of four LCGs. Mathemati
s and Computers in Simulation, 44 , 99{107.Matsumoto, M and Nishimura, T. 1998. Mersenne twister: a 623-dimensionally equidis-tributed uniform pseudo-random number generator. ACM Transa
tions on Modeling andComputer Simulation (TOMACS), 8 , 1 (January), 3{30.Perumalla, K. S. Cooper, C. A. and Fujimoto, R. M. 1996. An eÆ
ien
y predi
tionmethod for ATM multiplexers. In Pro
eedings of Pro
eedings of the International IFIP-IEEE Conferen
e on Broadband Communi
ations, 477{488.Perumalla, K. S. and Fujimoto, R. M. 1999. Sour
e
ode transformations for eÆ
ientreversibility. Te
hni
al Report, GIT-CC-99-21 , College of Computing, Georgia Institute ofTe
hnology.

22 � C. D. Carothers, K. S. Perumalla and R. M. FujimotoPress, B. and Ma
Intyre, I. 1992. On the trade-o� between time and spa
e in optimisti
parallel dis
rete event simulation. In Pro
eedings of the 6th Workshop on Parallel andDistributed Simulation (PADS '92), 33{42.Poplawski, A. and Ni
ol, D. M. 1998. Nops: A
onservative parallel simulation engine forTeD. In Pro
eedings of the 12th Workshop on Parallel and Distributed Simulation (PADS'98), 180{187.The reversible
omputing home page at MIT 1999.http://www.ai.mit.edu/~
vieri/reversible.htmlSosi
, R. 1994. History
a
he: hardware support for reverse exe
ution. Computer Ar
hi-te
ture News, 22 , 5 , 11{18.Steinman, J. S. 1993. In
remental state-saving in SPEEDES using C++. In Pro
eedingsof the 1993 Winter Simulation Conferen
e, 687{696.Umamageswaran, K., Subramani, K., Wilsey, P. A. and Alexander, P. 1998. Formalveri�
ation and empiri
al analysis of rollba
k relaxation. The Elsevier S
ien
e Journal ofSystems Ar
hite
ture, 44 , 473{495.Vanden Eynden, C. 1987. Elementary Number Theory, Random House, New York.Xiao, Z., Unger, B., Simmonds R. and Cleary, J. 1999. S
heduling
riti
al
hannels in
onservative parallel dis
rete event simulation. In Pro
eedings of the 13th Workshop onParallel and Distributed Simulation (PADS '99), 20{28.

EÆ
ient Optimisti
 Parallel Simulations Using Reverse Computation � 23int qlen;int sent;int lost;int delays[B℄; if(qlen < B){delays[qlen℄++;qlen++;}else{lost++;}
if(qlen > 0){qlen--;sent++;}

(a) state (b)
ell arrival (
)
ell transferFig. 1. A simple ATM multiplexor model.

24 � C. D. Carothers, K. S. Perumalla and R. M. Fujimotoint qlen;int sent;int lost;int delays[B℄;bit b1;bit b2;
if(qlen < B){b1 = 1;delays[qlen℄++;qlen++;}else{b1 = 0;lost++;}

if(qlen > 0){b2 = 1;qlen--;sent++;}else{b2 = 0;}(a) state (b)
ell arrival (
)
ell transferFig. 2. Modi�ed ATM multiplexor model.

EÆ
ient Optimisti
 Parallel Simulations Using Reverse Computation � 25if(b1 == 1){--qlen;--delays[qlen℄;}else{--lost;}
if(b2 == 1){--sent;++qlen;}

(a) Reverse
ell arrival (b) Reverse
ell transferFig. 3. Reverse
ode for ATM multiplexor model.

26 � C. D. Carothers, K. S. Perumalla and R. M. FujimotoTable 1. Summary of treatment of various statement typesGeneration rules and upper bounds on state size requirements for supporting reverse
om-putation. s, or s1::sn are any of the statements of types T0..T7. inv(s) is the
orrespondingreverse
ode of the statement s. b is the
orresponding state-saved bits \belonging" tothe given statement. The operator = � is the inverse operator of a
onstru
tive operator� =, (e.g., � = for + =).Type Des
ription Appli
ation Code Bit RequirementsOriginal Instrumented Reverse Self Child TotalT0 simple
hoi
e if()s1;elses2; if()fs1;b=1;gelsefs2;b=0;g if(b==1)finv(s1);gelsefinv(s2);g 1 x1; x2 1 +max(x1; x2)T1
ompound
hoi
e (n-way) if()s1;elsif()s2;elsif()s3;else()sn; if() fs1;b=1;gelsif()fs2;b=2;gelsif()fs3;b=3;gelse fsn;b=n;g
if(b==1)finv(s1);gelsif(b==2)finv(s2);gelsif(b==3)finv(s3);gelsefinv(sn);g lg(n) x1; x2;:::; xn lg(n)+max(x1; :::xn)

T2 �xed itera-tions (n) for(n)s; for(n)s; for(n)inv(s); 0 x n � xT3 variable it-erations(maximum n) while()s; b=0;while()fs;b++;g for(b) in-v(s); lg(n) x lg(n) +n � xT4 fun
tion
all foo(); foo(); inv(foo)(); 0 x xT5
onstru
tiveassignment v� =w; v� =w; v =�w; 0 0 0T6 k-byte de-stru
tiveassignment v =w; fb =v; v =w; g v = b; 8k 0 8kT7 sequen
e s1;s2;sn; s1;s2;sn; inv(sn);inv(s2);inv(s1); 0 x1+::: +xn x1 + :::+ xnT8 jump (label lblas target of ngoto's) gotolbl;s1;gotolbl;sn;lbl:s; b=1; go-to lbl;s1;b=n; go-to lbl;sn;b=0; la-bel:s;
inv(s);swit
h(b)f
ase 1:gotolabel1;
ase n:gotolabeln;ginv(sn);labeln:inv(s1);label1:

lg(n+1) 0 lg(n+1)
T9 Nestings ofT0-T8 Apply the above re
ursively Apply the above re
ursively

EÆ
ient Optimisti
 Parallel Simulations Using Reverse Computation � 27

0

50000

100000

150000

200000

250000

300000

0 10 20 30 40 50 60 70

E
ve

nt
 R

at
e

(e
ve

nt
s

pe
r

se
c)

Fanin

Comparing Forward Computation Costs of Reverse Computation and State Saving

GTW-SEQ
GTW-NONE on 1 PE

GTW-RC on 1 PE
GTW-SS on 1 PE

Fig. 4. Comparison of forward
omputation performan
e to determine overheads in state-savingand reverse
omputation approa
hes using the ATM multiplexor.

28 � C. D. Carothers, K. S. Perumalla and R. M. Fujimoto

0

200000

400000

600000

800000

1e+06

1.2e+06

1.4e+06

1.6e+06

1.8e+06

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

E
ve

nt
 R

at
e

Number of Processors

GTW-RC
GTW-RCC
GTW-PSS
GTW-CSS
GTW-ISS

Fig. 5. Event Rate: reverse
omputation vs. state-saving on the ATM Multiplexor model withfan-in 16 (4,369 LPs).

EÆ
ient Optimisti
 Parallel Simulations Using Reverse Computation � 29

30

40

50

60

70

80

90

100

110

120

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

P
rim

ar
y

D
at

a
C

ac
he

 m
is

se
s

pe
r

co
m

m
itt

ed
 e

ve
nt

Number of Processors

GTW-RC
GTW-RCC
GTW-PSS
GTW-CSS
GTW-ISS

Fig. 6. Primary Data Ca
he Miss Rate: reverse
omputation vs. state-saving on the ATMMultiplexor model with fan-in 16 (4,369 LPs).

30 � C. D. Carothers, K. S. Perumalla and R. M. Fujimoto

0

2

4

6

8

10

12

14

16

18

20

22

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

S
ec

on
da

ry
 D

at
a

C
ac

he
 m

is
se

s
pe

r
co

m
m

itt
ed

 e
ve

nt

Number of Processors

GTW-RC
GTW-RCC
GTW-PSS
GTW-CSS
GTW-ISS

Fig. 7. Se
ondary Data Ca
he Miss Rate: reverse
omputation vs. state-saving on the ATMMultiplexor model with fan-in 16 (4,369 LPs).

EÆ
ient Optimisti
 Parallel Simulations Using Reverse Computation � 31

6

8

10

12

14

16

18

20

22

24

26

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

T
LB

 m
is

se
s

pe
r

co
m

m
itt

ed
 e

ve
nt

Number of Processors

GTW-RC
GTW-RCC
GTW-PSS
GTW-CSS
GTW-ISS

Fig. 8. TLB Miss Rate: rerse
omputation vs. state-saving on the ATM Multiplexor model withfan-in 16 (4,369 LPs).

32 � C. D. Carothers, K. S. Perumalla and R. M. Fujimoto

0

100000

200000

300000

400000

500000

600000

700000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

E
ve

nt
 R

at
e

Number of Processors

GTW-RC
GTW-RCC
GTW-PSS
GTW-CSS
GTW-ISS

Fig. 9. Event Rate: reverse
omputation vs. state-saving on the PCS network model with 40,000LPs.

EÆ
ient Optimisti
 Parallel Simulations Using Reverse Computation � 33

40

60

80

100

120

140

160

180

200

220

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

P
rim

ar
y

D
at

a
C

ac
he

 M
is

se
s

pe
r

co
m

m
itt

ed
 e

ve
nt

Number of Processors

GTW-RC
GTW-RCC
GTW-PSS
GTW-CSS
GTW-ISS

Fig. 10. Primary Data Ca
he Miss Rate: reverse
omputation vs. state-saving on the PCSnetwork model with 40,000 LPs.

34 � C. D. Carothers, K. S. Perumalla and R. M. Fujimoto

10

20

30

40

50

60

70

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

S
ec

on
da

ry
 D

at
a

C
ac

he
 M

is
se

s
pe

r
co

m
m

itt
ed

 e
ve

nt

Number of Processors

GTW-RC
GTW-RCC
GTW-PSS
GTW-CSS
GTW-ISS

Fig. 11. Se
ondary Data Ca
he Miss Rate: reverse
omputation vs. state-saving on the PCSnetwork model with 40,000 LPs.

EÆ
ient Optimisti
 Parallel Simulations Using Reverse Computation � 35

10

20

30

40

50

60

70

80

90

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

T
LB

 M
is

se
s

pe
r

co
m

m
itt

ed
 e

ve
nt

Number of Processors

GTW-RC
GTW-RCC
GTW-PSS
GTW-CSS
GTW-ISS

Fig. 12. TLB Miss Rate: reverse
omputation vs. state-saving on the PCS network model with40,000 LPs.

