
EÆient Optimisti Parallel Simulations UsingReverse ComputationChristopher D. CarothersRensselaer Polytehni InstituteandKalyan S. Perumalla and Rihard M. FujimotoGeorgia Institute of TehnologyIn optimisti parallel simulations, state-saving tehniques have been traditionally used to realizerollbak. In this artile, we propose reverse omputation as an alternative approah, and ompareits exeution performane against that of state-saving. Using ompiler tehniques, we desribe anapproah to automatially generate reversible omputations, and to optimize them to transpar-ently reap the performane bene�ts of reverse omputation. For ertain �ne-grain models, suh asqueuing network models, we show that reverse omputation an yield signi�ant improvement inexeution speed oupled with signi�ant redution in memory utilization, as ompared to tradi-tional state-saving. On sample models using reverse omputation, we observe as muh as six-foldimprovement in exeution speed over traditional state-saving.Categories and Subjet Desriptors: B.3.2 [Memory Strutures℄: Shared Memory; C.1.2 [Pro-ess Arhitetures℄: Multiproessors; I.6.1 [Simulation and Modeling℄: Types of Simula-tion|disrete-event, parallelGeneral Terms: Algorithms, PerformaneAdditional Key Words and Phrases: reverse omputation, parallel disrete event simulation, state-saving, rollbakA preliminary version of this artile appeared in the 13th Workshop on Parallel and DistributedSimulation (PADS '99).This work was supported in part by U.S. Army Contrat DASG60-95-C-0103 funded by theBallisti Missile Defense Organization, and in part by DARPA Contrat N66001-96-C-8530.Name: Christopher D. CarothersAddress: Department of Computer Siene, 110 8th Street, Troy, New York 12180-3590, e-mail:hris�s.rpi.eduAÆliation: Rensselaer Polytehni InstituteName: Kalyan S. Perumalla and Rihard M. FujimotoAddress: College of Computing, 801 Atlanti Drive, Atlanta, Georgia 30332-280, e-mail:fkalyan,fujimotog�.gateh.eduAÆliation: Georgia Institute of TehnologyPermission to make digital or hard opies of part or all of this work for personal or lassroom use isgranted without fee provided that opies are not made or distributed for pro�t or diret ommerialadvantage and that opies show this notie on the �rst page or initial sreen of a display alongwith the full itation. Copyrights for omponents of this work owned by others than ACM mustbe honored. Abstrating with redit is permitted. To opy otherwise, to republish, to post onservers, to redistribute to lists, or to use any omponent of this work in other works, requires priorspei� permission and/or a fee. Permissions may be requested from Publiations Dept, ACMIn., 1515 Broadway, New York, NY 10036 USA, fax +1 (212) 869-0481, or permissions�am.org.

2 � C. D. Carothers, K. S. Perumalla and R. M. Fujimoto
1. INTRODUCTIONParallel simulation approahes an be broadly ategorized as optimisti or onser-vative, depending on whether (transient) inorret omputation is ever permittedto our during the exeution. Optimisti parallel simulations permit potential-ly inorret omputation to our, but undo or roll bak suh omputation afterrealizing that it was in fat inorret. The \omputation" in simulation applia-tions is one in whih a set of operations, alled the event omputation, modi�esa set of memory items, alled the state. Hene, in order to roll bak a omputa-tion, it is suÆient to restore the modi�ed memory items to their values before theomputation.The most ommon tehnique for realizing rollbak is state-saving . In this teh-nique, the original value of the state is saved before it is modi�ed by the eventomputation. Upon rollbak, the state is restored by opying bak the saved val-ue. An alternative tehnique for realizing rollbak is reverse omputation. In thistehnique, rollbak is realized by performing the inverses of the individual opera-tions that are exeuted in the event omputation. The system guarantees that theinverse operations rereate the appliation's state to the same value as before theomputation.To our knowledge, reverse omputation has not been previously explored as aviable alternative to traditional state-saving. In this paper, we demonstrate thatusing reverse omputation for realizing rollbak an lead to muh more eÆientexeutions ompared to state-saving. Fine-grain appliations (i.e., those with verysmall amount of omputation per event) are examples in whih the performaneimprovement an be most pronouned. This is due to the fat that traditional state-saving operations onstitute signi�ant overheads in �ne-grain simulations. Also, byredued memory requirements of the exeution, reverse omputation leads to moreeÆient use of storage hierarhies. Reverse omputation an greatly redue theforward omputation overheads by transferring most of the traditional overheadsto the reverse omputation path.Here, we demonstrate that the reverse omputation approah has insigni�antforward omputation overheads and low state memory requirements in �ne-grainmodels. The parallel simulation performane of reverse omputation is observed toahieve better ahing e�ets, with as muh as two to three-fold speedup in severalmodel on�gurations when ompared to opy state-saving, periodi state-savingand inremental state-saving. Finally, we demonstrate that this approah an beautomated using ompiler-based tehniques that an automatially generate botha reversible version of the event omputation ode and its reverse, from a model'shigh-level desription.When reverse omputation is used to simulate oarse-grain models, it is unlearif the improvement in exeution speed an be as pronouned, beause state-savingoverheads are not so high in oarse-grain models. However, oarse-grain model-s still stand to bene�t from redution in state memory utilization when reverseomputation is used.

EÆient Optimisti Parallel Simulations Using Reverse Computation � 3The reverse omputation approah presented here is not meant as a blanketreplaement for lassi state-saving approahes, but instead to omplement or sup-plement them. Our view is that for many omplex appliations, no single rollbaksolution will suÆe and that a marriage of this tehnique and others will be requiredto yield the most eÆient exeution of the simulation model.In Setion 2, we present the details of the reverse omputation tehnique using asimple illustrative appliation, followed in Setion 3 by the automation tehniquesfor applying to more omplex appliations. In Setion 4, we present the performaneomparison between reverse omputation and state-saving. In order to plae ourwork in ontext, in Setion 5, we identify work related to general reverse omputingin theory and pratie. This work opens several interesting hallenges and questions,whih we identify in Setion 6.2. REVERSE COMPUTATIONIn this setion, we illustrate the reverse omputation approah with a simple exam-ple. For simpliity, we postpone the generalized treatment of more omplex modelsuntil Setion 3.2.1 Motivating Example: ATM MultiplexorConsider a simple model in Figure 1 of a non-preemptive ATM multiplexor, on-taining a bu�er of size B. Suppose we are interested in measuring the ell lossprobability, and the delay distributions on the queue [Perumalla et al. 1996℄.The state of the system might be as shown in Figure 1 (a). The qlen variableis used to keep trak of the urrent bu�er oupany; sent and lost are variablesthat aumulate statistis respetively of the total number of ells transferred tothe output link and the total number of ells dropped beause of a full bu�er. Thearray delays measures the number of ells experiening a given amount of delay,whih in ombination with the sent ounter gives the ell delay distribution.In order to model the behavior of the ATM multiplexor, two types of eventhandlers are used in the model. The ell arrival event handler proesses newlyarriving ells, as shown in Figure 1 (b). Upon a ell arrival, if the queue has nomore room, then the ounter lost is inremented representing that the ell has beendropped. Otherwise, the array element delay[qlen℄ is inremented representingthat one more ell experiened a delay of qlen emission time units followed by aninrement to qlen whih represents that a ell has been added to the queue. Theell transfer event handler proesses ell departure events, as shown in Figure 1 ().Here, if the queue is not empty, then a ell is dequeued (i.e., qlen is deremented)and sent over the output link (i.e., sent is inremented).Note that, for both event handlers, the ode to shedule the ell arrival and elldeparture events is not shown.2.2 ApproahNow onsider the model shown in Figure 2, whih is obtained by slightly modifyingthe original model of Figure 1. The di�erene between the two models is that twoadditional bit variables have been added to the state of the original model, andthese variables are used to note whether the if statements were exeuted or not.The two bit-variables orrespond to the two if statements in the model, suh that

4 � C. D. Carothers, K. S. Perumalla and R. M. Fujimotob1 = 1 if qlen < B and 0 otherwise. Likewise, b2 = 1 if qlen > 0 and 0 otherwise1.If we look arefully at the model, we an see that the state of the original model isfully aptured by the bit variables b1 and b2. In other words, the state-trajetory ofthe set S of the variables fqlen; sent; lost; delaysg has a one-to-one orrespondenewith that of the set S0 = fb1; b2g. The point here is that the values of the variablesin S an be easily reovered based only on the values of S0. To reover, we an runthe event omputations bakwards, whih will restore the variables of S to theirbefore-omputation values. More abstratly, the bit variables b1 and b2 are usedto make the original model reversible. Indeed, it is easy to �nd the reverse odefor eah of the event handlers of the modi�ed model, whih is shown in Figure 3.For example, the reverse ode shown in Figure 3 (a) performs a perfet undo ofthe operations of the ell arrival event handler given in Figure 1 (b). Thus, it issuÆient to maintain the history of the bits b1 and b2, instead of the whole set ofstate variables S of the original model.It is lear that the size of the state to be saved is dramatially redued, fromseveral hundreds of bytes (for S) to just 2 bits (for S'), whih an be saved withnegligible overhead in the forward omputation. As an example, assuming one fullword is needed to represent 2 bits on most mahines, and if B = 100, then the stateis redued by a fator of (100 + 3)=1 = 103 when ompared to opy state-saving.Even if inremental state-saving tehniques are applied to this model, several bytesare needed for saving the hanged data values, whereas two bits are suÆient forreverse omputation.2.3 Appliation PropertiesWe an make some observations to understand some of the properties of the modelthat allowed us to redue the state so dramatially.|Property 1 The majority of the operations that modify the state variables are\onstrutive" in nature. That is, the undo operation for suh operations requiresno history. Only the most urrent values of the variables are required to undothe operation. For example, operators suh as ++, ��, + =, � =, � = and = =belong to this ategory2. More omplex operations suh as irular shift (swapbeing a speial ase), and random number generation also belong here.In the multiplexor model, all the assignment operations are onstrutive. Hene,little extra information is needed to reverse those operations.|Property 2 The omplexity of the ode is suh that the \ontrol state" of theode oupies less memory than the \data state" of the variables.In the multiplexor model, only two bits were neessary to reord the ontrol owinformation. In ontrast, the data state that is modi�ed is muh larger.If property 1 is not satis�ed in the model beause of the presene of non-onstrutive operations suh as plain assignment or modulo omputation, the re-verse omputation method an in fat degenerate to the onventional state-saving1In fat, only one bit variable would be suÆient in this model, sine the event handlers aremutually exlusive; but we shall use two variables for larity in the disussion.2The � = and = = operators require speial treatment in the ase of multiply or divide by zero,and overow/underow onditions.

EÆient Optimisti Parallel Simulations Using Reverse Computation � 5operations. We all suh non-onstrutive operations destrutive assignments . Astraightforward method to reverse a destrutive assignment is to save the old on-tents of the left-hand-side as a reord of the \ontrol information" for that as-signment statement, whih makes it degenerate to state-saving. However, laterin the disussion, we shall present optimizations that are possible to prevent thedegeneration of destrutive assignments to traditional state-saving.If property 2 is not satis�ed beause the ode is \too omplex" (i.e., the amountof ontrol state is more than the data state), we an fall bak to traditional state-saving tehniques. On the other hand, property 2 suggests that this mehanism iswell-suited for simulation models in whih the event omputations are small.Queuing network models are an exellent example of the domain of models inwhih the preeding two properties are satis�ed to a large extent. Consequently,we believe that reverse omputation is well suited for the optimisti simulation ofqueuing network models.3. AUTOMATIONIn the ase of the multiplexor example, the ode is small enough to ome up withits reverse ode by inspetion. We will now onsider the more general ase in whihthe ode is omplex, requiring a methodial, automated solution for generating thereverse ode and for reduing the state size.3.1 Code GenerationWe propose ompiler-based tehniques to be used to generate the reverse omputa-tion ode for the simulation model. In our approah, the soure ode of the originalmodel is fed through a speial ompiler. From the input model, the ompiler gener-ates two separate outputs. The �rst output is an instrumented version of the inputmodel, whih ontains the neessary ode to make the input ode reversible (e.g.,the ode in Figure 2). The seond output is the reversing ode that serves to undothe e�ets of the input model (e.g., the ode in Figure 3). In the atual simulation,the instrumented ode is used in plae of the original ode. The reversing ode isinvoked to roll bak an event. The goal of the ompiler is to generate the mosteÆient versions of both the instrumented ode and the reverse ode suh thatthe state size is minimized while simultaneously reduing the runtime exeutionoverhead.A simple set of translation rules that an be used by the ompiler are shown inTable 1. We list the most ommon types of statements used in high-level languages,and their orresponding instrumented and reverse ode outputs. Against eah ofthe statements, we list the state size ahievable for that statement type. Sine notall operations of the input model are perfetly reversible, it is neessary to addontrol state information to be able to reverse them. However, as we shall see inSetion 3.3, the better the understanding of the semantis of the ode, the betterthe ability to redue the state size. Hene, the redution in state size an varydepending on the sophistiation of the ompiler. The translation rules of Table 1thus plae an upper bound on the state size, whih ould potentially be improved viaoptimizations. We have implemented a reverse C ompiler alled r that realizesthese upper bounds for the C language[Perumalla and Fujimoto 1999℄.The instrumented forward omputation ode, as well as reverse ode, are gener-

6 � C. D. Carothers, K. S. Perumalla and R. M. Fujimotoated by reursively applying the rules of Table 1 to the input model. The signi�antparts of these rules are their state bit size requirements, and the reuse of the statebits for mutually exlusive ode segments. We explain eah of the rules in detailnext.|T0: The if statement an be reversed by keeping note of whih branh is ex-euted in the forward omputation. This is done using a single bit variable b,whih is set to 1 or 0 depending on whether the prediate evaluated to true orfalse in the forward omputation. The reverse ode an then use the value of bto deide whether to reverse the if part or the else part when trying to reversethe if statement.Sine the bodies of the if part and the else part are exeuted mutually exlu-sively, the state bits used for one part an also be used for the other part. Hene,the state bit size required for the if statement is one plus the larger of the statebit sizes, x1, of the if part and x2 of the else part, i.e., 1 +max(x1; x2).|T1: Similar to the simple if statement (T0), an n-way if statement an behandled using a variable b of size lg(n) bits. Thus, the state size of the entire ifstatement is lg(n) for b, plus the largest of the state bit sizes, x1 : : : xn, of theomponent bodies, i.e., lg(n) +max(x1 : : : xn) (sine the omponent bodies aremutually exlusive).|T2: Consider an n iteration loop, suh as a for statement, whose body requiresx state bits for reversibility. Then n instanes of the x bits an be used to keeptrak of the n instanes of invoations of the body, giving a total of n � x bitrequirement for the loop statement. The inverse of the body is invoked n timesin order to reverse the loop statement.|T3: A loop with variable number of iterations, suh as a while statement, anbe treated the same as a �xed iteration loop, but the atual number of iterationsexeuted an be noted at runtime in a variable b. The state bits for the bodyan be alloated based on an upper limit n on the number of iterations. Thus,the total state size added for this statement is lg(n)+n �x. If an upper limit onthe number of iterations is unknown, alternative approahes an be used, suhas desribed in [Perumalla and Fujimoto 1999℄.|T4: For a funtion all, no instrumentation is added. For reversing it, its inverseis invoked. The inverse is easily generated using the rules for T7 desribed later.The state bit size, x, is the same as for T7.In the simple ase in whih the funtion all graph is a tree, the state bit sizesan be ompletely determined statially , and hene the state bits an be stati-ally alloated to the statements in all the funtions. In the ase of models inwhih the funtion all graph is a direted ayli graph (DAG), the (maximum)state bit size requirements an still be statially determined, but the referenesto the state bits, both in the forward and reverse event omputation, need indi-retion via a frame o�set variable generated by the ompiler. The frame o�setdenotes the position in the bit vetor from where a forward funtion an beginstoring its own reversibility state. This variable is analogous to a frame pointerin a funtion all stak. In the more general ase of an arbitrary funtion allgraph (implying the presene of diret and/or indiret reursion), it is diÆultto statially determine the maximum state bit sizes. However, the frame o�set

EÆient Optimisti Parallel Simulations Using Reverse Computation � 7approah of DAGs an still be used to refer to the state bits orresponding tothe urrently ative funtion invoation.|T5: Construtive assignments, suh as ++, --, += and so on, do not need anyinstrumentation. The reverse ode uses the inverse operator, suh as --, ++,-= respetively. These onstrutive statements do not require any state bits forreversibility.|T6: Eah destrutive assignment, suh as =, %= and so on, an be instrumented tosave a opy of its left hand side into a variable b before the assignment takes plae.The size of b is 8k bits for assignment to a k-byte left hand side variable (lvalue).This is similar to Steinman's inremental state-saving tehnique [Steinman 1993℄.|T7: In a sequene of statements, eah statement is instrumented depending onits type, using the previous rules. For the reverse ode, the sequene is reversed,and eah statement is replaed by its inverse, again using the orrespondinggeneration rules from the preeding list. The state bit size for the entire sequeneis the sum of the bit sizes of eah statement in the sequene.|T8: Jump instrutions (suh as goto, break and ontinue) an be treated indi�erent ways, depending on whether or not inter-mixing sets of jumps are presentin the ode. In the simple ase, no goto label in the model is reahed more thanone during an event omputation. Suh use of jump instrutions ours, forexample, to jump out of a deeply nested if statement, or as onvenient errorhandling ode at the end of a funtion. Suh models are easy to reverse, asfollows: for every label that is the target of one or more goto statements, itsgoto statements are indexed. The forward ode is instrumented to reord theindex of a goto statement whenever that goto statement is exeuted. In thereverse ode, eah of the goto statements is replaed by a goto label. The original(forward) goto label is replaed with a swith statement that uses the index savedin forward omputation to jump bak to the orresponding new (reverse) gotolabel. Sine at most one index per goto label is stored, the bit size requirementof this sheme is lg(n + 1) where n is the number of goto statements that arethe soures of that single target label. Note that even if a label is the target ofonly one jump instrution, at least one bit is required, to distinguish betweenreahing the label normally (falling-through) and reahing the label as a resultof the jump instrution.The more general ase of models ontaining arbitrarily omplex use of jumpinstrutions is treated in [Perumalla and Fujimoto 1999℄.|T9: Any legal nesting of the previous types of statements an be treated byreursively applying the orresponding generation rules. The state bit size is alsoobtained by the orresponding state-bit omposition rule.State Size Determination. To determine the amount of state needed to reversean event omputation, the following proedure is used. Sine the model ode is asequene of statements, start with T7 (or, alternatively, T4), and reursively applythe rules of Table 1. This is done while reusing the bits on ode segments that aremutually exlusive (as indiated by the MAX() operation in the table). The analogyof register alloation is appliable here. The state an be seen as a sequene of bits,whih orrespond to registers of a omputer. The bits are alloated to the state thatis required to reord ontrol-ow information. Just like registers, these bits an be

8 � C. D. Carothers, K. S. Perumalla and R. M. Fujimotoalloated in an intelligent manner so that mutually exlusive statements an reusethe same bits. For registers in general omputing, the savings are in omputationtime; for ontrol bits in optimisti simulations, the savings are in state opyingoperations and in state size redution.It is easily observed that the statements with potentially higher state bit sizesare destrutive assignments, nestings of onditional statements within loops, nest-ed loops inside loops, and destrutive operations among inter-dependent jump in-strutions. In �ne-grain models, it is unlikely that omplex ode involving nestedor omplex loops will arise. Hene, the higher state requirements of suh omplexode is not a serious problem for these models. However, destrutive assignmentsare not unommon. The most ommon ourrene of destrutive assignments is inrandom number generation, whih is addressed in the next setion, followed by adisussion on other eÆieny issues in ahieving reversibility.3.2 Reversible Random Number GenerationRandom number generation is entral to all simulation models. Several randomnumber streams may be used in the same simulation, to model various phenomena.A random number stream is generated by repeatedly invoking a spei�ed funtionon a seed variable. The funtion modi�es the value of the seed every time thefuntion is invoked. Thus, a seed variable is needed for every random numberstream used in the simulation model. The size of the seed variable varies with thetype and quality of the random number generator (RNG).In optimisti simulations, if an event omputation invokes an RNG, and even-tually the event is rolled bak, it is neessary to roll bak the random numbergeneration. Otherwise, the simulation results an be unpreditable and unrepeat-able. In order to be able to roll bak the random number generation, traditionally,the seed value is state-saved. Inremental state-saving tehniques are used in asethe model ontains many seeds.However, if the reverse omputation approah is used in order to avoid state-saving, we quikly enounter the following problem|RNGs rely on lossy/destrutiveassignments suh as modulo operations. This implies that a straight-forward ap-pliation of reverse omputation tehniques an degenerate to inremental state-saving, as the generation rule for type T6 in Table 1 suggests. To get around thisproblem, we essentially need RNGs whih do not rely on state-saving to reverse. Onan abstrat level, we an reasonably expet RNGs to be reversible without the needfor state-saving, sine, after all, random number streams are nothing but statiallylaid out yli sequenes of numbers. It should be possible to traverse forward andbakward along the yles with the same ease.More onretely, onsider the ode to generate a uniform random number usingL'Euyer's Combined Linear Congruential RNG [L'Euyer and Andres 1997℄. ThisRNG is based on a ombination of four linear ongruential generators (LCGs) andhas a period of 2121. This generator produes a uniform [0; 1℄ double. Here, srepresents the seed of an LCG. When trying to \undo" or reverse this omputationas suggested in Setion 3, we immediately run into several destrutive assignments.In partiular, this generator performs the following assignment:s = 45991 � (s� k � 46693)� k � 25884

EÆient Optimisti Parallel Simulations Using Reverse Computation � 9where k = s=46693. Beause integer division is being used (and in fat the algorith-m depends on the semantis of integer division), k does not aurately represents=46693 whih means that one annot determine the original value of s from thenew value of s. Essentially, there is an apparent loss of information, making it ir-reversible. Using the step-wise tehnique of reversing a omputation, the only wayone ould reprodue the original value of s from the previous value is to store theloss of information due to the integer division (and due to other operations like it)and use that information in the reverse omputation. However, this degenerates tostate-saving, whih is exatly what we are trying to avoid.Now, let us examine the mathematis behind this RNG from a higher level. ThisRNG is based on the following reurrene:xi;n = aixi;n�1 mod miwhere xi;nj1 � i � 4 is nth set of four seed values omputed from the n�1 set of fourseed values,mij1 � i � 4 are the primes numbers 231�2; 231�106; 231�226; 231�326respetively, and aij1 � i � 4 is a primitive root for mi. Based on well-knownnumber theory, the above reurrene form is in fat reversible. First, the inverse ofai modulo mi, bi is de�ned to be:bi = ami�2i mod miwhere alulation of bi is aomplished using the method for omputing large pow-ers [Vanden Eynden 1987℄. Using the bi, we an generate the reverse sequene ofseed values as follows: xi;n�1 = bixi;n mod miwhih has the same omputational requirements as the forward exeution of theRNG.Signi�ane of Reversible RNG. The reversibility of RNGs is not new. However,when applied to the ontext of parallel simulation, the work desribed here is the�rst to exploit this property. As the gap between memory lateny and proes-sor speed inreases, we believe this approah will be of greater bene�t, as fasterproessors will result in larger, more omplex simulation appliations. These sim-ulation appliations will in turn require RNGs with stronger statistial propertiesand longer periods, whih together will inrease the seed size of the RNG. For ex-ample, in [Matsumoto and Nishimura 1998℄, the \Mersenne Twister" (MT19937)RNG is presented. This RNG is of the twisted feedbak shift-register lass and hasan extremely long period of 219937 � 1. However, it requires 624 words of spaefor seeds. For a lassial Time Warp system using this generator, 2496 bytes ofstate would need to be saved per event just to support the \undo" operation forthe RNG. This assumes MT19937 would be alled at least one per event. Onemight think that inremental state-saving ould be employed here, but the waythis RNG is strutured, some bits from eah word are subjet to hange every timea random number is generated, thus making it diÆult to optimize using inre-mental state-saving tehniques. Assuming the reverse reurrene an be found forMT19937, whih its reators believe is possible, the amount of memory saved usingreversing omputation is even muh greater than previously disussed. Beause ofthe redution in state-saving overheads, system performane will improve as well.

10 � C. D. Carothers, K. S. Perumalla and R. M. Fujimoto3.3 Reverse Code EÆienyThe reversibility of random number generators, even though they ontain destru-tive assignments, leads to the following third property of the models that an helpprevent reverse omputation from degenerating to state-saving:|Property 3: The non-reversibility of the individual steps that ompose a om-putation do not neessarily imply that the omputation, when taken as a whole,is not reversible.Property 3 suggests that even if the individual steps of a omputation are noteÆiently reversible (i.e., either property 1 or 2 is violated), then one should lookto a higher-level to see if the omputation is not reversible from that level. An in-teresting question we plan to onsider in the future is the de�nition of an automatimehanism for identifying ode sequenes whih are individually not reversible, butfor whih a reversible ode sequene an be determined when onsidered in a largerontext.This observation holds for several other ommon operations that ontain de-strutive assignments. For example, a shift operation on an array of n elements anrequire n state-saving operations using inremental state-saving tehniques. Thesame operation requires saving only one element using reverse omputation. Infat, a irular shift requires no state when reverse omputation is used, whereasinremental state-saving an require n state-saving operations (the ommonly usedswap operation is only a speial ase of irular shift). Similarly, insertion or dele-tion operations (whih ontain destrutive assignments suh as pointer assignments)into tree data strutures (e.g., priority queues) an require several state-saving op-erations using inremental state-saving, whereas, no state is needed when reverseomputation is used. This is beause those operations naturally possess perfetinverses (e.g., delete and insert are inverses of eah other).An important outome of this work is the reognition that reverse omputationis well-suited for queuing network models. Many of the operations in queuingnetwork models are either onstrutive operations (inrement, derement, et.), orreversible groups of destrutive assignments (random number generators, queueoperations, et.). Also, the event omputations in these models tend to be of �ne-granularity. This implies that reverse omputation is an exellent approah foroptimisti parallel simulation of queuing network models.4. PERFORMANCE EVALUATIONIn order to study the performane of reverse omputation relative to state-saving,we ompare two avors of reverse omputation with three variants of state-saving.All the variants have been implemented using the Georgia Teh Time Warp (GTW)optimisti parallel simulator for shared memory multiproessors[Das et al. 1994℄:|GTW-RC: GTW with reverse omputation, in whih the reverse ode for theappliation models is generated manually and optimized by inspetion|GTW-RCC: GTW with reverse omputation, in whih the reverse ode for theappliation models is automatially generated using a speial reverse ompiler|GTW-CSS: GTW with opy state-saving, in whih a opy of the entire state ismade before every event

EÆient Optimisti Parallel Simulations Using Reverse Computation � 11|GTW-PSS: GTW with periodi state-saving, in whih a opy of the entire stateis made every pth event|GTW-ISS: GTW with inremental state-saving, in whih a opy of only themodi�ed portions of the state is made during every event.In addition, the following two sequential versions of GTW are used for omparisonpurposes:|GTW-SEQ: Optimized sequential simulator with GTW interfae|GTW-NONE: Parallel version of GTW, with rollbak support turned o� (i.e.,with neither state-saving nor reverse omputation), so that it an be run sequen-tially, but not in parallel.We �rst present the details of these variants, followed by the details of our studyto ompare their performane harateristis. All the experiments were performedon a 16 proessor, SGI Origin2000, shared-memory multiproessor, with 8 MB oflevel-two ahe per proessor, and 4 GB of total memory. In all ases, the totalnumber of events ommitted was deterministi and onsistent with sequential runs,and the performane was found to be repeatable.4.1 Reverse ComputationWe have implemented the reverse omputation in GTW, whih is originally basedon state-saving to realize rollbak. To use reverse omputation for rollbak, threesigni�ant modi�ations were made to the GTW kernel.First, we extended the GTW appliation programmer interfae to support amethod for reversing the forward proessing of an event. In GTW, the appliationsprogrammer must speify methods (i.e., pointer to a funtion) for eah logial pro-ess (LP) to (i) initialize an LP (TWLP[i℄.IPro) (ii) primary event handler for anLP (TWLP[i℄.Pro), (iii) a \wrap-up" method for an LP that ollets appliation-spei� statistis (TWLP[i℄.FPro). Note that the TWLP array is indexed by theLP number. We added support for reversing omputation by introduing a newmethod, TWLP[i℄.RevPro, whih performs the preise reverse omputation of theevent handler proedure, TWLP[i℄.Pro. The arguments to TWLP[i℄.RevPro in-lude the urrent state of the LP, and any events sent during the forward ompu-tation.Next, GTW's ore rollbak mehanism required some signi�ant hanges as well.GTW uses a tehnique alled diret anellation [Fujimoto 1989℄ to support the \de-sheduling" of previously sheduled events by an event that was rolled bak. Thistehnique allows one to keep a diret pointer to the event that needs to be aneled.Beause of this, an optimized rollbak mehanism an be supported that doesn'trequire one to searh though the proessed event-list of an LP. Instead, if the eventthat is to be aneled has been proessed, the rollbak mehanism simply restoresthe version of LP state that was made prior to proessing this event. The otherproessed events that ome after the aneled event are marked as unproessed andplaed bak into pending event-list. For supporting reversing omputations ausedby seondary rollbaks (i.e., rollbaks aused by event anellations), this optimizedtehnique is unsuitable. To \undo" a sequene of event omputations using reverseomputation requires that eah event be \unproessed" in the preise reverse or-der in whih it was proessed. Consequently, we modi�ed the diret anellation

12 � C. D. Carothers, K. S. Perumalla and R. M. Fujimotomehanism so that it starts with the last event proessed by the LP and movesthrough the LP's proessed event-list in reverse time stamp order, invoking theTWLP[i℄.RevPromethod for eah event to undo its hanges to state. The hangesto the primary rollbak mehanism (i.e., rollbaks aused by straggler events) toinorporate reverse omputation were straight-forward, sine the proessed eventlist for an LP is sanned in reverse time stamp order.The last major hange to the GTW system was that all memory alloation forsaving state (both opy state and inremental state-saving) was turned o�. Also,the opy-state operation during forward event proessing was turned o� as well.Instead, a small bit vetor was added to every event, whih served as the workingbits needed for saving the state information reated by the instrumented modelode, as desribed in Setion 3. For example, the two bits, b1 and b2 of themultiplexor model in Setion 2.2 are in fat mapped to the lower order bits of thisevent bit vetor. The appliation an delare and use additional bits by speifyingthem as appliation-spei� event data.4.2 Reverse Code GenerationIn order to use the reverse omputation support in GTW, it is neessary to de�nethe reverse funtion for every appliation funtion that is invoked during event pro-essing. To this end, �rst, we manually wrote the reverse funtions by inspetion,following the rules in Table 1 (the appliations are desribed later in this setion).We will refer to this manual on�guration for reverse omputation as GTW-RC.Next, we used a reverse C ompiler alled r, whih we implemented to automat-ially generate reverse funtions from C funtions[Perumalla and Fujimoto 1999℄.We will refer to this automated on�guration for reverse omputation as GTW-RCC.4.3 State-SavingThe default state-saving tehnique in GTW is opy state-saving, in whih a opyof the entire state is made before an event is exeuted. In CSS, the state is savedevery time an event is proessed. A variation of opy state-saving is alled periodistate saving[Fujimoto 1990℄. Periodi state-saving is a generalized tehnique inwhih state is saved only periodially, say, every pth event, instead of every eventas is done with opy state-saving. This implies that some events save state beforeproessing, and others do not. The former set of events an be rolled bak easilyby restoring the state to the saved values. The latter set of events need speialtreatment, sine they do not have saved state. The state restoration for theseevents is ahieved by starting with a past proessed event that does have savedstate, and then re-exeuting the sequene of events from that past event to theevent just before the rolled bak event.We inorporated periodi state-saving into GTW as a generalization of opystate-saving. The appliation an hoose between opy and periodi state-saving byspeifying its state-saving period to be equal to or greater than unity, respetively.The implementation is optimized for opy state-saving when the period equals unity.No soure ode hanges are neessary in the appliation models to swith betweenopy and periodi state-saving. We shall refer to the opy and periodi state-savingon�gurations as GTW-CSS and GTW-PSS respetively.

EÆient Optimisti Parallel Simulations Using Reverse Computation � 13Inremental state-saving is an alternative state-saving tehnique in whih onlythe modi�ed portions are saved just before modi�ation. GTW inludes an imple-mentation of inremental state-saving in whih the modi�ations are logged as pairsof integral address-value pairs, and stored in a log array for eah LP. We shall referto this state-saving on�guration as GTW-ISS. Although GTW allows both opystate-saving and inremental state-saving to be used simultaneously together inthe same appliation, we used them mutually exlusively, beause of the uniformlysmall state sizes in our appliations.4.4 AppliationsFor the performane study, we use two appliations: (i) a asading network ofAsynhronous Transfer Mode (ATM) multiplexors (ii) a Personal CommuniationsServies (PCS) network.|ATM Multiplexor Casade: The �rst appliation onsists of a 3-level asadeof ATM multiplexors, as desribed in [Poplawski and Niol 1998℄. The model isparameterized by a fator n, suh that n3 ell soures feed into n2 multiplexorswhih in turn feed into n multiplexors, whih �nally feed into one multiplexor.The fator n is the number of inputs of eah multiplexor. The GTW soureode for the ATM multiplexor model was obtained from the Northern ParallelSimulator (Nops) group at Dartmouth [Poplawski and Niol 1998℄. Their imple-mentation on GTW realizes eah network element as an LP. The state size ofeah LP is 112 bytes. The appliation data ontained within eah message is 8bytes. The event granularity of this appliation is very low (a few miroseondsfor small n).|PCS Network: In the seond appliation, a PCS network is simulated as de-sribed in [Carothers et al. 1995℄. The servie area of the network is populatedwith a set of geographially distributed transmitters and reeivers alled radioports. A set of radio hannels are assigned to eah radio port, and the user inthe overage area sends and reeives phone alls using the radio hannels. Whena user moves from one ell to another during a phone all a hand-o� is said toour. In this ase the PCS network attempts to alloate a radio hannel in thenew ell to allow the phone all onnetion to ontinue. If all hannels in thenew ell are busy, then the phone all is fored to terminate. For all experimentshere, the portable-initiated PCS model was used, whih disounts busy-lines inthe overall all bloking statistis. Here, ells are modeled as LPs, and PCS sub-sribers are modeled as messages that travel among LPs. PCS subsribers antravel in one of 4 diretions: north, south, east or west. The seletion of diretionis based on a uniform distribution. The state size for this appliation is 80 byteswith a message size of 40 bytes and the minimum lookahead for this model is zerodue to the exponential distribution being used to ompute all inter-arrivals, allompletion and mobility.The omputation granularity of the ATM multiplexor model is very small, but,the ommuniation among the LPs is feed-forward in nature, yielding exellentlookahead properties. The PCS network, on the other hand, has medium eventgranularity and possesses more omplex ommuniation patterns with muh largermessage sizes and a zero lookahead. Consequently, PCS is a more representative ex-

14 � C. D. Carothers, K. S. Perumalla and R. M. Fujimotoample of how a \real-world" simulation model would exerise the rollbak dynamisof reverse omputation.4.5 Forward omputationIn pratie, one would like the serial performane of the parallel simulator to be aslose to the optimized sequential as possible. With that in mind, our �rst set ofexperiments uses the ATM multiplexor model and ompares the serial performaneof GTW-NONE3, GTW-RC, and GTW-CSS against GTW-SEQ on this modelto determine the impat these di�erent approahes have on forward omputationrates. We did not use inremental state-saving in this omparison sine it resultedin slower performane than full opy saving-saving. The ause of low performaneof inremental state-saving was a onsequene of the LP state being so small (only112 bytes)[Gomes 1996℄. We did not use the PCS network model, sine it is of ahigher granularity than the ATM multiplexor model, and hene less stringent thanthe ATM multiplexor model on the forward omputation overheads.Figure 4 shows the event rate as a funtion of fan-in for the four simulators.There are several key observations based on this performane data. First, we ob-serve that the performane of GTW-RC is equal to GTW-NONE. The reason thesetwo systems perform equivalently is beause the few extra bits stored in the forwardomputation to support reverse omputation has negligible impat on the overallevent granularity of the ATM Multiplexor appliation. However, if we ompareGTW-RC with GTW-CSS, a muh di�erent piture emerges | GTW-RC is on-sistently faster than GTW-CSS, the primary reason being that we have ompletelyeliminated the overhead of state-saving.If one were to eliminate state-saving overheads in an optimisti simulator, as weahieved in GTW-RC, we may expet to observe performane that is about equalto that of the optimized sequential simulator. But, learly that is not the ase here| aross all fan-in values, the sequential simulator is faster, and, in one ase, asmuh as 30% faster. To investigate this phenomenon, we pro�led GTW-RC andGTW-SEQ to see where these two systems were spending most of their CPU yles.Pro�ling revealed that the memory footprint of GTW-RC is muh larger than thatof GTW-SEQ. This is beause the sequential simulator ommits and immediatelyreuses an event memory bu�er upon proessing that event. But, GTW-RC (andGTW-CSS) only ommits an event memory bu�er when global virtual time (GVT)sweeps past the event time-stamp, whih is approximately one every 1000 events.The onsequene of waiting for GVT is that GTW-RC \touhes" more pages ofmemory than GTW-SEQ, whih results in more �rst and seondary data ahemisses, as well as translation look-aside bu�er (TLB) misses and page faults.Finally, we observe that as the fan-in inreases, the performane of the di�erentsimulators begins to onverge. To explain this phenomenon, we need to understandhow an inrease in fan-in e�ets the system. Reall, there are n3 soures in the mul-tiplexor network. Eah soure generates two messages | one for self resheduling,and the other when a ell is generated to send to the target multiplexor. Conse-quently, there are, at any one instane, at least n3 events in the system. Thus,the event population grows as the ube of the fan-in, n. As we approah fan-ins3GTW-NONE is very muh like a onservative parallel simulator being run serially.

EÆient Optimisti Parallel Simulations Using Reverse Computation � 15of 48 and above, the event-list management overheads begin to dominate, whihdereases the impat state-saving overhead has on overall system performane.In summary, in the �ne-grained multiplexor model, we observe that reverse om-putation almost ompletely eliminates the state-saving overheads from the forwardomputation.4.6 Parallel Simulation PerformaneIn this next series of experiments, we ompare the parallel simulation performaneahieved by reverse omputation and state-saving on the ATM multiplexor modeland on the PCS network model.|ATM Multiplexor: For the experiments with the ATM multiplexor model,we hose a representative fan-in of 16 (to get a non-trivial network size that stillkeeps the event granularity suÆiently small) and varied the number of proessors(2, 4, 8, 12 and 16). The experiments were performed separately for eah of theGTW on�gurations { GTW-RC, GTW-RCC, GTW-CSS, GTW-PSS and GTW-ISS. Figure 5 ompares the event rate obtained with all the on�gurations, on avarying number of proessors.|PCS Network: We also simulated the PCS model in parallel, and ompared theparallel performane of state-saving and reverse omputation, using the di�erentGTW on�gurations on a varying number of proessors. For these experimentsthe following PCS network settings were used. The PCS model was on�guredwith a 64x64 LP grid for 8 proessors, a 72x72 LP grid for 12 proessors, and a60x60 LP grid on 15 proessors. For all LP on�gurations, the number of initialevents per LP was 25. These LP on�gurations were hosen beause they allowedan even number of LPs to be mapped to eah proessor to prelude introduingan unbalaned workload. The event rate performane for this set of experimentsis shown in Figure 9.Given the modest, nevertheless good, improvement in serial performane whenusing reverse omputation, we expeted to see a similar modest enhanement withrespet to parallel simulation performane. However, we were surprised to see thatreverse omputation improved GTW's performane on the ATM Multiplexor modelby up to 300% as ompared to state-staving, and up to 500% on the PCS networkmodel. We observe that in the 16 proessor ase of the ATM Multiplexor model,GTW-RC inreased the event rate by a fator of more than 4 ompared to GTW-CSS4. Similarly, in the 15 proessor ase of the PCS network model, GTW-RCinreased the event rate by a fator of more than 5 ompared to GTW-CSS. Allthe performane data were obtained by repeating the simulation runs several times.The performane results were found to be repeatable, with negligible variane. Inall ases, we observe that GTW-RC is onsistently and signi�antly faster thanGTW-CSS, GTW-PSS and GTW-ISS.These observations raised the next question, namely, why does reverse ompu-tation improve performane by suh a large fator? We hypothesized that it ismemory system related, assuming that reverse omputation has a smaller memo-ry footprint than state-saving and hene requires fewer resoures to be expended4The raw event rate using reverse omputation for that ase was over 1.6 million events per seond!

16 � C. D. Carothers, K. S. Perumalla and R. M. Fujimotoby the memory subsystem. To verify our hypothesis and to preisely identify thesoure of the performane variation, we used the perfex performane tool. Here,we on�gured perfex to make use of the hardware ounters internal to the MIPSR10000 proessor to obtain extremely aurate performane statistis. We notethat beause the hardware ounters were used, we observed neither slow down inperformane, nor perturbation in the model performane due to the perfex moni-toring software.Figures 6 { 8 show the primary data ahe misses, seondary data ahe missesand TLB misses for the ATM Multiplexor model. Figures 9 { 12 show the or-responding statistis for the PCS network model. In these �gures, the number ofmisses is normalized by a onstant, whih is the total number of events ommittedby the simulation. We observe that GTW-RC inurs signi�antly fewer numberof primary and seondary data ahe misses and TLB misses per event, omparedto GTW-CSS, GTW-PSS and GTW-ISS. The net e�et of the poor memory sub-system behavior of the state-saving variants is that the event rate degrades as thenumber of proessors is inreased. Some of the fators behind the low performaneof state saving are explained next. More detailed analysis of the detrimental e�etof state-saving on the simulation performane on shared memory multiproessorsis presented in [Carothers et al. 1999℄.Copy State-Saving. When opy state-saving is used, the footprint of the simula-tion is inreased beause of the additional memory required for state maintenanefor eah event. The inrease in the additional memory size manifests itself in termsof an inrease in the number of TLB misses inurred by the simulation per event.Furthermore, the simulation touhes more memory pages per event, due to the atof making a opy of the state. This further inreases the hane of ahe misses andTLB misses. The misses ontribute to ontention at the shared memory, with thenet e�et of rapidly reduing the performane as the number of proessors inreas-es. These phenomena are indiated by the rapid inrease in the number of primarydata ahe misses in the ATM Multiplexor simulation, as shown in Figure 6. Simi-larly, in the ase of PCS network simulation, the number of primary and seondarydata ahe misses, along with the number of TLB misses steadily inrease as thenumber of proessors inreases, as shown in Figures 10 { 12. The net e�et is thatthe event rate of the simulation deteriorates as more proessors are added to thesimulation.Periodi State-Saving. Sine periodi state-saving avoids saving state too often, itis fair to expet that its performane would be better than that of opy state-saving.This is beause periodi state-saving an potentially redue the overhead during theforward omputation, and redue the memory onsumed for state-saving. This isespeially true in appliations in whih the state size is signi�antly greater thanthe event size[Bellenot 1992; Press and MaIntyre 1992℄. However, in appliations{suh as used in this study{in whih event size is omparable to (or greater than)state size, periodi state-saving an have the ounter-e�et of atually inreasingthe memory utilization relative to opy state-saving. This is attributable to thefat that events annot be relaimed until global virtual time (GVT) goes pastthe earliest among all logial proesses of their latest state-saved event. Withopy state-saving, events an be relaimed as soon as GVT sweeps past their time

EÆient Optimisti Parallel Simulations Using Reverse Computation � 17stamps, whih allows them to be reused immediately thereafter. In ontrast, withperiodi state-saving, a proessed event an be relaimed only if there exists anotherproessed event with saved state whose timestamp is less than GVT. Hene, theworking set of simulations using periodi state-saving is greater in size relative tothat of opy state-saving, due to a greater number of events maintained betweenGVT omputations. (In fat, this relation is preserved independent of the frequenywith whih GVT is omputed.). The net result is that periodi state saving doesnot help in signi�antly reduing the state-saving overheads relative to opy state-saving. This is on�rmed by the similarity of the memory subsystem performaneof GTW-CSS and GTW-PSS, as shown in Figures 6 { 8, and in Figures 10 { 12.Inremental State-Saving. Sine inremental state-saving avoids opying the en-tire state, and opies instead only the piees that have been modi�ed, it an nor-mally be expeted to inur less overhead than opy state-saving. This is beause,inremental state-saving an potentially onsume less memory than opy state-saving in appliations with large state sizes. If only a small portion of the state ismodi�ed per event, then inremental state-saving an result in signi�ant redu-tion in state-saving overheads per event relative to opy state-saving. However, inappliations{suh as used in this study{in whih the state size is small, the over-heads of maintaining a log of hanges (lists of address-value pairs) is signi�ant,making it no better than opy state-saving. This is on�rmed by the similarityof the memory subsystem performane of GTW-CSS and GTW-ISS, as shown inFigures 6 { 8 and in Figures 10 { 12.Automated Reverse Code. Finally, we note that the hand-oded reverse ode(GTW-RC) performs slightly better than the automated reverse ode (GTW-RCC).This is beause the hand-oded reverse ode inorporates more optimizations thanthe automatially generated reverse ode. For example, bit operations are moreustomized for eah appliation in the hand-oded version, whereas the automatedversion uses more generalized bit operations. Consequently, the automated versionadds a slight amount of additional omputational overhead over that of hand-odedversion. This is evident in the slightly redued event rates for GTW-RCC relativeto GTW-RC, as shown in Figures 5 and 9. The fat that the memory harateristisof GTW-RC and GTW-RCC remain the same is indiated by the similarity of theirmemory performane results, as shown in Figures 6 { 8 and in Figures 10 { 12.4.7 Performane SummaryThe results presented here, when onsidered in their totality, indiate that theperformane of optimisti parallel simulation has reahed an aeptable level forthis lass of extremely low event granularity appliations. Previously, researher-s in the area of parallel and distributed simulation have indiated diÆulty inahieving aeptable levels of performanes from Time Warp systems with smallevent-granularity (e.g., [Xiao et al. 1999℄). They observed that state-saving ostswere dominating and stiing performane. Now, with reverse omputation it ap-pears that arguments against using optimisti approahes on suh appliations areebbing away.As future generations of proessors beome faster and the performane gapbetween memory and proessors widens, we antiipate reverse omputation an

18 � C. D. Carothers, K. S. Perumalla and R. M. Fujimotoahieve even higher performane ompared to state-saving.5. RELATED WORKReverse omputation has been previously studied in various ontexts. Researhinto reversible omputing is aimed at realizing reversible versions of onventionalomputations in order to redue power onsumption [Bennet 1982; MIT ReversibleComputing Group 1999℄. The R language is a high-level language with speial on-struts to enfore reversibility so that programs written in that language an betranslated to mahine ode of reversible omputers [Frank 1999℄. Another interest-ing appliation of reversible omputation is in garbage olletion. The Psi-Lisplanguage presented in [Baker 1992℄ uses reversible onstruts to eÆiently imple-ment garbage olletion. Other appliations for reversible exeution are in theareas of database transation support, debugging support and hekpointing forhigh-availability software [Leeman 1986; Sosi 1994; Biswas and Mall 1999℄. Morereent work is onerned with soure to soure translation of popular high-levellanguages, suh as C, to realize reversible programs. However, almost all of thesolutions suggested in these appliation areas translate either to onstraints on lan-guage semantis to disallow irreversible omputations, or to tehniques analogousto state-saving tehniques (spei�ally, opy-on-write tehniques) of optimisti par-allel simulations. Some of them operate at a oarse level of virtual memory pages.The optimizations are roughly analogous to those used in inremental state-savingapproahes in parallel simulations. Moreover, sine these solutions are not spei�-ally geared towards parallel simulations, they are not optimized for minimizing thestate size, and do not adequately exploit the semantis of onstrutive operations.In [Bishop 1997℄, reversible omputing has been suggested as a method for test-ing failures in real-time systems, but with admittedly high forward and reverseomputing overheads, and without treatment of omplex instrutions suh as inter-mixing jumps. An initial attempt at automatially generating symboli inversesof reversible funtions is made in [Eppstein 1985℄, but it relies on heuristis fororretness. A more theoretial approah is taken in [Chen and Udding 1990℄, byusing inversion of invariants to prove the orretness of inverse programs. A debug-ging system is desribed in [Biswas and Mall 1999℄ that exeutes C programs ininterpreted mode in forward and reverse diretions. Although their approah usinginterpretation is well suited for debugging systems, the performane harateris-tis of their tehniques are unlear when applied to high-performane simulations.An interesting use of reversible omputing is in its appliation to the automat-i di�erentiation of funtions expressed in a high-level omputer language, suhas C/C++[Griewant et al. 1996; Grimm et al. 1996℄. For this, reverse exeutionof ertain intermediate omputations is neessary, whih is ahieved via operator-overloading tehniques of C++.The state-saving tehniques presented in [Gomes 1996℄ utilize a limited form ofoptimization using the reverse omputation approah and is the �rst work we areaware of to spei�ally disuss reverse omputation for simulation, but no perfor-mane results are provided. Our work starts where [Gomes 1996℄ ends, and is on-erned with tehniques for minimizing the state size for realizing reversibility, andsimultaneously minimizing the runtime exeution overheads. Finally, in [Umam-ageswaran et al. 1998℄, a rollbak relaxation sheme is presented that automatially

EÆient Optimisti Parallel Simulations Using Reverse Computation � 19identi�es ertain types of history-independent logial proesses and optimizes theperformane of rollbak ativity for those proesses. Our approah is di�erent inthat it addresses logial proesses whih are not neessarily stateless, and seeks tooptimize run-time performane and memory utilization by minimizing the essentialstate required by suh proesses.6. REMARKS AND CONCLUSIONSReverse omputation is well suited for models ontaining onstrutive assignments.However, without adequate are, it an degenerate to traditional state-saving ifa suÆiently large number of destrutive assignments, whih are hard to reverse,are present in the model. In fat, in ertain ases, it an perform worse thaninremental state-saving, due to the fat that optimizations, suh as the mergingof multiple writes to the same variable into a single save operation, are possibleusing inremental state-saving tehniques, but not readily possible with reverseomputation.There is a ommonly implemented optimization in opy state-saving: when a roll-bak spans several proessed events, it is suÆient to merely swith a few pointersin order to restore the entire state to its value orresponding to the earliest rolledbak event. This helps in onsiderably reduing the rollbak ost. In ontrast, whenreverse omputation is used, eah one of the rolled bak events must be reversedone at at time, in the reverse order of proessing. This an potentially make therollbak ost muh higher than that of opy state-saving. Advaned inter-eventanalysis is neessary in order to redue suh overhead in reverse omputation.On the other hand, previously, optimisti simulations were onsidered to be un-suitable for �ne-grain appliations beause of the high state saving overheads. Wehave shown that reverse omputation is an appealing alternative approah thatmakes eÆient optimisti simulation of �ne-grain appliations feasible.We also identify some lasses of appliations in whih reverse omputation is nat-ural. In these appliations, automati tehniques are easily found that essentiallyexploit the soure ode as state. Examples inlude quantum omputer simulation,and queuing network simulation. In the ase of queuing network models, we iden-tify that a majority of the ommon operations are indeed reversible. In partiular,we have addressed the reversibility of the most ommon operation, namely, ran-dom number generation. In addition, we make the observation that other queuemanipulation operations, suh as insert, delete and shift, are in fat more memoryeÆient with reverse omputation than with state-saving.In other lasses of appliations, this approah also serves as an automati ompiler-based state-ompression tehnique. State ompression is useful for enhaning theperformane of optimisti simulations in limited memory environments. Consider-ing that CPU resoures are heaper and more abundant than memory resoures,we an hope to exeute ertain important lasses of appliations (suh as queu-ing networks) using optimisti parallel simulation on a network of, say, palm-topomputers. The state-ompression is useful even in the ontext of state-loggingonservative parallel simulations and sequential simulations. For interative (play-log-replay) appliations, there an be signi�ant bene�ts in terms of redution inmemory requirements of the state log. Sine the appliations tend to be simulatedfor long times, an order of magnitude di�erene in the size an be quite signi�ant.

20 � C. D. Carothers, K. S. Perumalla and R. M. Fujimoto(In this ase, we are still investigating the gains of state-ompression as opposed tousing standard ompression programs, suh as gzip, on the log of regular unom-pressed state.)Most importantly, the redued memory requirements due to state-ompressionallow us to explore new appliations that were onsidered too expensive to simu-late using state-saving-based optimisti simulations. However, several open issuesremain to be explored. A few of them are disussed next.Open IssuesIn general, reverse omputation redues the overhead in the forward omputationpath, but potentially inreases the rollbak ost. Additional work is needed tobetter understand the rollbak dynamis of reverse omputation on a wider rangeof appliations.Algorithms to automatially identify the naturally reversible patterns in the mod-el ode are important to prevent reverse omputation from degenerating to state-saving. Perhaps a library of forward{inverse pairs of funtions an help in thisdiretion.Sine oating point arithmeti is subjet to roundo�, arithmeti operations anresult in roundo� errors during the reverse exeution. Solution approahes exist(for example, by emulating a preision that is higher than the highest preisionsupported by the modeling language), but the performane impliations are unlear.An interesting theoretial problem is to �nd whether there exist data types,for whih the state-saving ost for their operations widely di�ers when reverseomputation is used instead of state-saving. To illustrate, onsider a irular shiftoperation on an array of n elements. This operation requires no state for reverseomputation. But it appears to require O(n) state size using state-saving, if afor loop is used for shifting. However, by using a pointer{based implementationfor the array, and shifting the \start" and \end" pointers of the array instead ofthe atual elements, the pointers an be state-saved instead of the entire arrayof elements, reduing the size of saved state to the size of two pointers. Thisimplies that for irular shift, the memory requirement for state-saving is only aonstant fator away from reverse omputation. It is unlear if this is true in general.For example, an interesting sub-problem onerns the insert and delete-minoperations on a priority queue. We are not aware of any theoretial result thatproves or disproves that only a onstant number of state modi�ations is suÆientfor arbitrary ombination of insert and delete-min operations on the queue,without sari�ing the asymptoti average time omplexity of O(logn) for insertionand deletion. Reverse omputation, on the other hand, requires no state historydespite state modi�ations, beause, insert an be reversed using delete, andvie versa.AknowledgementsThe authors would like to thank P. L'Euyer for his insights on the reversibilityof random number generators, David Niol and the Nops group at Dartmouthfor providing us with the soure ode for the ATM Multiplexor model spei�allywritten for GTW, and Rajive Bagrodia for his tehnial omments on making aperformane omparison between reverse omputation and periodi state-saving.

EÆient Optimisti Parallel Simulations Using Reverse Computation � 21REFERENCESBennett, C. 1982. Thermodynamis of omputation. International Journal of Physis,21 , 905{940.Biswas, B. and Mall, R. 1999. Reverse exeution of programs. ACM SIGPLAN Noties,34 , 4 (April), 61{69.Bishop, P. 1997. Using reversible omputing to ahieve fail-safety. In Proeedings of the8th Internal Symposium on Software Reliability Engineering (ISSRE 97), 182{191.Bellenot, S. 1992. State skipping performane with the Time Warp Operating System.In Proeedings of the 6th Workshop on Parallel and Distributed Simulation (PADS '92),53{64.Baker, H. G. 1992. NReversal of fortune{the thermodynamis of garbage olletion. InProeedings of the International Workshop on Memory Management, Springer Verlag Le-ture Notes in Computer Siene 637, 507{524.Carothers, C. D., Fujimoto, R. M. and Lin, Y-B. 1995. A ase study in simulating PCSnetworks using Time Warp. In Proeedings of the 9th Workshop on Parallel and DistributedSimulation (PADS '95), 87{94.Carothers, C. D., Perumalla, K. S. and Fujimoto, R. M. 1999. The e�et of state-saving in optimisti simulation on a ahe-oherent non-uniform memory aess arhite-ture. In Proeedings of the 1999 Winter Simulation Conferene, to appear.Chen, W. and Udding, J. 1990. Program inversion: more than fun. Siene of ComputerProgramming, 15 , 1 (January), 1{13.Das, D., Fujimoto, R. M., Panesar, K., Allison, D. and Hybinette, M. 1994. GTW: aTime Warp system for shared memory multiproessors. In Proeedings of the 1994 WinterSimulation Conferene, 1332{1339.Eppstein, D. 1985. A heuristi approah to program inversion. In Proeedings of the 9thInternational Joint Conferene on Arti�ial Intelligene, 219{221.Frank, M. 1999. The R programming language and ompiler.http://www.ai.mit.edu/~mpf/r/home.htmlFujimoto, R. M. 1989. Time Warp on a shared memory multiproessor. In Proeedings ofthe 1989 International Conferene on Parallel Proessing (ICPP '89), 242{249.Fujimoto, R. M. 1990. Parallel disrete event simulation. Communiations of the ACM,33 , 10 (Otober), pages 30{53.Gomes, F. 1996. Optimizing inremental state-saving and restoration. Ph.D. thesis, Dept.of Computer Siene, University of Calgary.Griewant, A., Juedos, D., Mitev, H., Utke, J., Vogel O. and Walther, A. 1996.ADOL-C: A pakage for the automati di�erentiation of algorithms written in C/C++.ACM Transations on Mathematial Software, 22 , 2 (February), 131{167.Grimm, J, Pottier, L. and Rostiang-Shmidt, N. 1996. Optimal time and minimumspae-time produt for reversing a ertain lass of programs. Researh Report, InstitutNational de Reherhe en Informatique et en Automatique (INRIA),Leeman, G. 1986. A formal approah to undo operations in programming languages. ACMTransations on Programming Languages and Systems, 8 , 1 (January), 50{87.L'Euyer, P. and Andres, T. H. 1997. A random number generator based on the ombi-nation of four LCGs. Mathematis and Computers in Simulation, 44 , 99{107.Matsumoto, M and Nishimura, T. 1998. Mersenne twister: a 623-dimensionally equidis-tributed uniform pseudo-random number generator. ACM Transations on Modeling andComputer Simulation (TOMACS), 8 , 1 (January), 3{30.Perumalla, K. S. Cooper, C. A. and Fujimoto, R. M. 1996. An eÆieny preditionmethod for ATM multiplexers. In Proeedings of Proeedings of the International IFIP-IEEE Conferene on Broadband Communiations, 477{488.Perumalla, K. S. and Fujimoto, R. M. 1999. Soure ode transformations for eÆientreversibility. Tehnial Report, GIT-CC-99-21 , College of Computing, Georgia Institute ofTehnology.

22 � C. D. Carothers, K. S. Perumalla and R. M. FujimotoPress, B. and MaIntyre, I. 1992. On the trade-o� between time and spae in optimistiparallel disrete event simulation. In Proeedings of the 6th Workshop on Parallel andDistributed Simulation (PADS '92), 33{42.Poplawski, A. and Niol, D. M. 1998. Nops: A onservative parallel simulation engine forTeD. In Proeedings of the 12th Workshop on Parallel and Distributed Simulation (PADS'98), 180{187.The reversible omputing home page at MIT 1999.http://www.ai.mit.edu/~vieri/reversible.htmlSosi, R. 1994. History ahe: hardware support for reverse exeution. Computer Arhi-teture News, 22 , 5 , 11{18.Steinman, J. S. 1993. Inremental state-saving in SPEEDES using C++. In Proeedingsof the 1993 Winter Simulation Conferene, 687{696.Umamageswaran, K., Subramani, K., Wilsey, P. A. and Alexander, P. 1998. Formalveri�ation and empirial analysis of rollbak relaxation. The Elsevier Siene Journal ofSystems Arhiteture, 44 , 473{495.Vanden Eynden, C. 1987. Elementary Number Theory, Random House, New York.Xiao, Z., Unger, B., Simmonds R. and Cleary, J. 1999. Sheduling ritial hannels inonservative parallel disrete event simulation. In Proeedings of the 13th Workshop onParallel and Distributed Simulation (PADS '99), 20{28.

EÆient Optimisti Parallel Simulations Using Reverse Computation � 23int qlen;int sent;int lost;int delays[B℄; if(qlen < B){delays[qlen℄++;qlen++;}else{lost++;}
if(qlen > 0){qlen--;sent++;}

(a) state (b) ell arrival () ell transferFig. 1. A simple ATM multiplexor model.

24 � C. D. Carothers, K. S. Perumalla and R. M. Fujimotoint qlen;int sent;int lost;int delays[B℄;bit b1;bit b2;
if(qlen < B){b1 = 1;delays[qlen℄++;qlen++;}else{b1 = 0;lost++;}

if(qlen > 0){b2 = 1;qlen--;sent++;}else{b2 = 0;}(a) state (b) ell arrival () ell transferFig. 2. Modi�ed ATM multiplexor model.

EÆient Optimisti Parallel Simulations Using Reverse Computation � 25if(b1 == 1){--qlen;--delays[qlen℄;}else{--lost;}
if(b2 == 1){--sent;++qlen;}

(a) Reverse ell arrival (b) Reverse ell transferFig. 3. Reverse ode for ATM multiplexor model.

26 � C. D. Carothers, K. S. Perumalla and R. M. FujimotoTable 1. Summary of treatment of various statement typesGeneration rules and upper bounds on state size requirements for supporting reverse om-putation. s, or s1::sn are any of the statements of types T0..T7. inv(s) is the orrespondingreverse ode of the statement s. b is the orresponding state-saved bits \belonging" tothe given statement. The operator = � is the inverse operator of a onstrutive operator� =, (e.g., � = for + =).Type Desription Appliation Code Bit RequirementsOriginal Instrumented Reverse Self Child TotalT0 simple hoie if()s1;elses2; if()fs1;b=1;gelsefs2;b=0;g if(b==1)finv(s1);gelsefinv(s2);g 1 x1; x2 1 +max(x1; x2)T1 ompoundhoie (n-way) if()s1;elsif()s2;elsif()s3;else()sn; if() fs1;b=1;gelsif()fs2;b=2;gelsif()fs3;b=3;gelse fsn;b=n;g
if(b==1)finv(s1);gelsif(b==2)finv(s2);gelsif(b==3)finv(s3);gelsefinv(sn);g lg(n) x1; x2;:::; xn lg(n)+max(x1; :::xn)

T2 �xed itera-tions (n) for(n)s; for(n)s; for(n)inv(s); 0 x n � xT3 variable it-erations(maximum n) while()s; b=0;while()fs;b++;g for(b) in-v(s); lg(n) x lg(n) +n � xT4 funtion all foo(); foo(); inv(foo)(); 0 x xT5 onstrutiveassignment v� =w; v� =w; v =�w; 0 0 0T6 k-byte de-strutiveassignment v =w; fb =v; v =w; g v = b; 8k 0 8kT7 sequene s1;s2;sn; s1;s2;sn; inv(sn);inv(s2);inv(s1); 0 x1+::: +xn x1 + :::+ xnT8 jump (label lblas target of ngoto's) gotolbl;s1;gotolbl;sn;lbl:s; b=1; go-to lbl;s1;b=n; go-to lbl;sn;b=0; la-bel:s;
inv(s);swith(b)fase 1:gotolabel1;ase n:gotolabeln;ginv(sn);labeln:inv(s1);label1:

lg(n+1) 0 lg(n+1)
T9 Nestings ofT0-T8 Apply the above reursively Apply the above reursively

EÆient Optimisti Parallel Simulations Using Reverse Computation � 27

0

50000

100000

150000

200000

250000

300000

0 10 20 30 40 50 60 70

E
ve

nt
 R

at
e

(e
ve

nt
s

pe
r

se
c)

Fanin

Comparing Forward Computation Costs of Reverse Computation and State Saving

GTW-SEQ
GTW-NONE on 1 PE

GTW-RC on 1 PE
GTW-SS on 1 PE

Fig. 4. Comparison of forward omputation performane to determine overheads in state-savingand reverse omputation approahes using the ATM multiplexor.

28 � C. D. Carothers, K. S. Perumalla and R. M. Fujimoto

0

200000

400000

600000

800000

1e+06

1.2e+06

1.4e+06

1.6e+06

1.8e+06

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

E
ve

nt
 R

at
e

Number of Processors

GTW-RC
GTW-RCC
GTW-PSS
GTW-CSS
GTW-ISS

Fig. 5. Event Rate: reverse omputation vs. state-saving on the ATM Multiplexor model withfan-in 16 (4,369 LPs).

EÆient Optimisti Parallel Simulations Using Reverse Computation � 29

30

40

50

60

70

80

90

100

110

120

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

P
rim

ar
y

D
at

a
C

ac
he

 m
is

se
s

pe
r

co
m

m
itt

ed
 e

ve
nt

Number of Processors

GTW-RC
GTW-RCC
GTW-PSS
GTW-CSS
GTW-ISS

Fig. 6. Primary Data Cahe Miss Rate: reverse omputation vs. state-saving on the ATMMultiplexor model with fan-in 16 (4,369 LPs).

30 � C. D. Carothers, K. S. Perumalla and R. M. Fujimoto

0

2

4

6

8

10

12

14

16

18

20

22

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

S
ec

on
da

ry
 D

at
a

C
ac

he
 m

is
se

s
pe

r
co

m
m

itt
ed

 e
ve

nt

Number of Processors

GTW-RC
GTW-RCC
GTW-PSS
GTW-CSS
GTW-ISS

Fig. 7. Seondary Data Cahe Miss Rate: reverse omputation vs. state-saving on the ATMMultiplexor model with fan-in 16 (4,369 LPs).

EÆient Optimisti Parallel Simulations Using Reverse Computation � 31

6

8

10

12

14

16

18

20

22

24

26

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

T
LB

 m
is

se
s

pe
r

co
m

m
itt

ed
 e

ve
nt

Number of Processors

GTW-RC
GTW-RCC
GTW-PSS
GTW-CSS
GTW-ISS

Fig. 8. TLB Miss Rate: rerse omputation vs. state-saving on the ATM Multiplexor model withfan-in 16 (4,369 LPs).

32 � C. D. Carothers, K. S. Perumalla and R. M. Fujimoto

0

100000

200000

300000

400000

500000

600000

700000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

E
ve

nt
 R

at
e

Number of Processors

GTW-RC
GTW-RCC
GTW-PSS
GTW-CSS
GTW-ISS

Fig. 9. Event Rate: reverse omputation vs. state-saving on the PCS network model with 40,000LPs.

EÆient Optimisti Parallel Simulations Using Reverse Computation � 33

40

60

80

100

120

140

160

180

200

220

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

P
rim

ar
y

D
at

a
C

ac
he

 M
is

se
s

pe
r

co
m

m
itt

ed
 e

ve
nt

Number of Processors

GTW-RC
GTW-RCC
GTW-PSS
GTW-CSS
GTW-ISS

Fig. 10. Primary Data Cahe Miss Rate: reverse omputation vs. state-saving on the PCSnetwork model with 40,000 LPs.

34 � C. D. Carothers, K. S. Perumalla and R. M. Fujimoto

10

20

30

40

50

60

70

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

S
ec

on
da

ry
 D

at
a

C
ac

he
 M

is
se

s
pe

r
co

m
m

itt
ed

 e
ve

nt

Number of Processors

GTW-RC
GTW-RCC
GTW-PSS
GTW-CSS
GTW-ISS

Fig. 11. Seondary Data Cahe Miss Rate: reverse omputation vs. state-saving on the PCSnetwork model with 40,000 LPs.

EÆient Optimisti Parallel Simulations Using Reverse Computation � 35

10

20

30

40

50

60

70

80

90

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

T
LB

 M
is

se
s

pe
r

co
m

m
itt

ed
 e

ve
nt

Number of Processors

GTW-RC
GTW-RCC
GTW-PSS
GTW-CSS
GTW-ISS

Fig. 12. TLB Miss Rate: reverse omputation vs. state-saving on the PCS network model with40,000 LPs.

