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Abstract
Conversational machine comprehension (MC) has
proven significantly more challenging compared to
traditional MC since it requires better utilization
of conversation history. However, most existing
approaches do not effectively capture conversation
history and thus have trouble handling questions in-
volving coreference or ellipsis. Moreover, when
reasoning over passage text, most of them simply
treat it as a word sequence without exploring rich
semantic relationships among words. In this paper,
we first propose a simple yet effective graph struc-
ture learning technique to dynamically construct
a question and conversation history aware context
graph at each conversation turn. Then we propose a
novel Recurrent Graph Neural Network, and based
on that, we introduce a flow mechanism to model
the temporal dependencies in a sequence of context
graphs. The proposed GRAPHFLOW model can ef-
fectively capture conversational flow in a dialog,
and shows competitive performance compared to
existing state-of-the-art methods on CoQA, QuAC
and DoQA benchmarks. In addition, visualization
experiments show that our proposed model can of-
fer good interpretability for the reasoning process.

1 Introduction
Recent years have observed a surge of interest in conver-
sational machine comprehension (MC). Unlike the setting
of traditional MC that requires answering a single question
given a passage, the conversational MC task is to answer a
question in a conversation given a passage and all previous
questions and answers. Despite the success existing works
have achieved on MC (e.g., SQuAD [Rajpurkar et al., 2016]),
conversational MC has proven significantly more challeng-
ing. We highlight two major challenges here. First, the
focus usually shifts as a conversation progresses [Reddy et
al., 2018; Choi et al., 2018]. Second, many questions re-
fer back to conversation history via coreference or ellipsis.
Therefore, without fully utilizing conversation history (i.e.,
previous questions and/or answers), one can not understand a
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question correctly. In this work, we model the concept of con-
versation flow as a sequence of latent states associated with
these shifts of focus in a conversation.

To cope with the above challenges, many methods have
been proposed to utilize conversation history. Most of them
simply prepend the conversation history to a current question
[Reddy et al., 2018; Zhu et al., 2018] or add previous answer
locations to a passage [Choi et al., 2018; Yatskar, 2018], and
then treat the task as single-turn MC without explicitly mod-
eling conversation flow. Huang et al. [2018] assumed that
hidden representations generated during previous reasoning
processes potentially capture important information for an-
swering a current question. In order to model conversation
flow, they proposed an Integration-Flow (IF) mechanism to
first perform sequential reasoning over passage words in par-
allel for each turn, and then refine the reasoning results se-
quentially across different turns, in parallel of passage words.

However, the IF mechanism has several limitations when
reasoning over a sequence of passages for answer seeking.
First of all, the strategy of interweaving two processing di-
rections (i.e., in passage words and in question turns) is not
quite effective. Because in the IF mechanism, the results of
previous reasoning processes are not incorporated into the
current reasoning process immediately. Instead, all reason-
ing processes over passage words are conducted in parallel.
As a result, the reasoning performance at each turn is not im-
proved by the outcome of previous reasoning processes. To
alleviate this issue, they have to refine the reasoning results
sequentially across different turns and use stacked IF lay-
ers to interweave two processing directions multiple times.
Second, following most previous methods, when reasoning
over passage text, they simply treat it as a word sequence
without exploring the rich semantic relationships among
words. Recent works on multi-hop MC [De Cao et al., 2018;
Song et al., 2018] have shown the advantages of applying
a Graph Neural Network (GNN) to process a passage graph
over simply processing a word sequence using a Recurrent
Neural Network (RNN).

To better capture conversation flow and address the above
issues, in this work, we propose GRAPHFLOW, a GNN based
model for conversational MC. We first propose a simple yet
effective graph structure learning technique to dynamically
construct a question and conversation history aware context
graph at each turn that consists of each word as a node.
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Then we propose a novel Recurrent Graph Neural Network
(RGNN), and based on that, we introduce a flow mechanism
to model the temporal dependencies in a sequence of context
graphs. Answers are finally predicted based on the match-
ing score of the question embedding and the context graph
embedding at each turn.

We highlight our contributions as follows:
• We propose a novel GNN based model, namely GRAPH-

FLOW, for conversational MC which captures conversa-
tional flow in a dialog.
• We dynamically construct a question and conversation

history aware context graph at each turn, and propose
a novel Recurrent Graph Neural Network based flow
mechanism to process a sequence of context graphs.
• On three public benchmarks (i.e., CoQA, QuAC and

DoQA), our model shows competitive performance
compared to existing state-of-the-art methods. In addi-
tion, visualization experiments shows that our model can
offer good interpretability for the reasoning process.

2 Related Work
2.1 Conversational MC
One big challenge of Conversational MC is how to effec-
tively utilize conversation history. [Reddy et al., 2018;
Zhu et al., 2018] concatenated previous questions and an-
swers to the current question. Choi et al. [2018] concatenated
a feature vector encoding the turn number to the question
word embedding and a feature vector encoding previous N
answer locations to the context embeddings. However, these
methods ignore previous reasoning processes performed by
the model when reasoning at the current turn. Huang et
al. [2018] proposed the idea of Integration-Flow (IF) to allow
rich information in the reasoning process to flow through a
conversation. To better model conversation flow, in this work,
we propose a novel GNN based flow mechanism to sequen-
tially process a sequence of context graphs.

Another challenge of this task is how to handle ab-
stractive answers. Reddy et al. [2018] propose a hybrid
method DrQA+PGNet, which augments a traditional ex-
tractive reading comprehension model with a text genera-
tor. Yatskar [2018] propose to first make a Yes/No deci-
sion, and output an answer span only if Yes/No was not se-
lected. Recent work [Huang et al., 2018; Zhu et al., 2018;
Yeh and Chen, 2019; Qu et al., 2019; Ju et al., 2019] as well
as our work in this paper follows a similar idea to handle ab-
stractive answers.

When processing passage text in MC, most existing meth-
ods treat it as a word sequence. Recently, promising results
have been achieved by applying a GNN to process a passage
graph [De Cao et al., 2018; Song et al., 2018].

2.2 Graph Neural Networks
Over the past few years, graph neural networks (GNNs) [Kipf
and Welling, 2016; Gilmer et al., 2017; Hamilton et al., 2017;
Xu et al., 2018a] have drawn increasing attention. Recently,
GNNs have been applied to various question answering tasks
including knowledge base question answering (KBQA) [Sun
et al., 2018], question generation [Chen et al., 2020], and

Figure 1: Overall architecture of the proposed model.

MC [De Cao et al., 2018; Song et al., 2018], and have
shown advantages over traditional approaches. For tasks
where the graph structure is unknown, linguistic features
(e.g., dependency parsing, coreferences) [Xu et al., 2018b;
De Cao et al., 2018; Song et al., 2018] or attention-based
mechanisms [Liu et al., 2018; Chen et al., 2019b; Chen et al.,
2019a] are usually used to construct a static or dynamic graph
containing words or entity mentions as nodes.

3 The GraphFlow Approach
The task of conversational MC is to answer a natural language
question given the context and conversation history. Let us
denote C as the context which consists of a word sequence
tc1, c2, ..., cmu and Qpiq as the question at the i-th turn which
consists of a word sequence tqpiq1 , q

piq
2 , ..., q

piq
n u. And there

are totally T turns in a conversation.
As shown in Fig. 1, our proposed GRAPHFLOW model

consists of Encoding Layer, Reasoning Layer and Predic-
tion Layer. The Encoding Layer encodes conversation history
and context that aligns question information. The Reason-
ing Layer dynamically constructs a question and conversation
history aware context graph at each turn, and then applies a
flow mechanism to process a sequence of context graphs. The
Prediction Layer predicts the answers based on the matching
score of the question embedding and the context graph em-
bedding. The details of these modules are given next.

3.1 Encoding Layer
We apply an effective encoding layer to encode the context
and the question, which additionally exploits conversation
history and interactions between them.
Linguistic features. For context word cj , we encode lin-
guistic features into a vector flingpc

piq
j q concatenating POS

(part-of-speech), NER (named entity recognition) and exact
matching (which indicates whether cj appears in Qpiq) em-
beddings.
Pretrained word embeddings. We use 300-dim GloVe
[Pennington et al., 2014] embeddings and 1024-dim BERT
[Devlin et al., 2018] embeddings to embed each word in the
context and the question. Compared to GloVe, BERT better
utilizes contextual information when embedding words.
Aligned question embeddings. Exact matching matches
words on the surface form; we further apply an attention
mechanism to learn soft alignment between context words
and question words. Since this soft alignment operation is
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conducted in parallel at each turn, for the sake of simplicity,
we omit the turn index i when formulating the alignment op-
eration. Following Lee et al. [2016], for context word cj at
each turn, we incorporate an aligned question embedding

falignpcjq “
ÿ

k

βj,kg
Q
k (1)

where gQ
k is the GloVe embedding of the k-th question word

qk and βj,k is an attention score between context word cj and
question word qk. The attention score βj,k is computed by

βj,k 9 exppReLUpWgC
j q

T ReLUpWgQ
k qq (2)

where W is a dˆ 300 trainable weight with d being the hid-
den state size, and gC

j is the GloVe embedding of context
word cj . To simplify notation, we denote the above attention
mechanism as AlignpX,Y,Zq, meaning that an attention ma-
trix is computed between two sets of vectors X and Y, which
is later used to get a linear combination of vector set Z. Hence
we can reformulate the above alignment as

falignpCq “ AlignpgC ,gQ,gQq (3)

Conversation history. Following Choi et al. [2018], we
concatenate a feature vector fanspc

piq
j q encoding previous N

answer locations to context word embeddings. Preliminary
experiments showed that it is helpful to also prepend previous
N question-answer pairs to a current question. In addition, to
each word vector in an augmented question, we concatenate
a turn marker embedding fturnpq

piq
k q indicating which turn the

word belongs to.
In summary, at the i-th turn in a conversation, each con-

text word cj is encoded by a vector wpiqcj which is a concate-
nation of linguistic vector flingpc

piq
j q, word embeddings (i.e.,

gC
j and BERTC

j ), aligned vector falignpc
piq
j q and answer vector

fanspc
piq
j q. And each question word qpiqk is encoded by a vec-

tor wpiqqk which is a concatenation of word embeddings (i.e.,
gQpiq

k and BERTQpiq

k ) and turn marker vector fturnpq
piq
k q. We

denote Wpiq
C and W

piq
Q as a sequence of context word vectors

w
piq
cj and question word vectors wpiqqk , respectively.

3.2 Reasoning Layer
When performing reasoning over context, unlike most previ-
ous methods that regard context as a word sequence, we opt to
treat context as a “graph” of words that captures rich seman-
tic relationships among words, and apply a Recurrent Graph
Neural Network to process a sequence of context graphs.

Question Understanding
For a questionQpiq, we apply a bidirectional LSTM [Hochre-
iter and Schmidhuber, 1997] to the question embeddings
W
piq
Q to obtain contextualized embeddings Qpiq P Rdˆn.

Qpiq “ q
piq
1 , ...,qpiqn “ BiLSTMpWpiq

Q q (4)

And the question is then represented as a weighted sum of
question word vectors via a self attention mechanism,

rqpiq “
ÿ

k

a
piq
k q

piq
k , where a

piq
k 9 exppwTq

piq
k q (5)

where w is a d-dim trainable weight.
Finally, to capture the dependency among question history,

we encode the sequence of questions with a LSTM to gener-
ate history-aware question vectors.

pp1q, ...,ppT q “ LSTMprqp1q, ..., rqpT qq (6)

The output hidden states of the LSTM network pp1q, ...,ppT q

will be used for predicting answers.

Context Graph Learning
The intrinsic context graph structure is unfortunately un-
known. Moreover, the context graph structure might vary
across different turns by considering the changes of ques-
tions and conversation history. Most existing applications of
GNNs [Xu et al., 2018b; De Cao et al., 2018; Song et al.,
2018] use ground-truth or manually constructed graphs which
have some limitations. First, the ground-truth graphs are not
always available. Second, errors in manual construction pro-
cess can be propagated to subsequent modules. Unlike pre-
vious methods, we automatically construct graphs from raw
context, which are combined with the rest of the system to
make the whole learning system end-to-end trainable. We
dynamically build a question and conversation history aware
context graph to model semantic relationships among context
words at each turn.

Specifically, we first apply an attention mechanism to the
context representations Wpiq

C (which additionally incorporate
both question information and conversation history) at the
i-th turn to compute an attention matrix Apiq, serving as a
weighted adjacency matrix for the context graph, defined as,

Apiq “ pW
piq
C d uqTW

piq
C

(7)

whered denotes element-wise multiplication, and u is a non-
negative dc-dim trainable weight vector which learns to high-
light different dimensions of wpiqcj whose dimension is dc.

Considering that a fully connected context graph is not
only computationally expensive but also might introduce
noise (i.e., unimportant edges), a simple kNN-style graph
sparsification operation is applied to select the most important
edges from the fully connected graph, resulting in a sparse
graph. To be concrete, given a learned attention matrix Apiq,
we only keep the K nearest neighbors (including itself) as
well as the associated attention scores (i.e., the remaining at-
tentions scores are masked off) for each context node. We
then apply a softmax function to these selected adjacency ma-
trix elements to get a normalized adjacency matrix.

rApiq “ softmaxptopkpApiqqq (8)

Note that the supervision signal is still able to back-propagate
through the kNN-style graph sparsification module since the
K nearest attention scores are kept and used to compute the
weights of the final normalized adjacency matrix.

Context Graph Reasoning
When reasoning over a sequence of context graphs, we want
to consider not only the relationships among graph nodes, but
also the sequential dependencies among graphs. Especially
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Figure 2: Architecture of the proposed Recurrent Graph Neural Net-
work for processing a sequence of context graphs.

for the conversational MC task, we hope the results of previ-
ous reasoning processes can be incorporated into the current
reasoning process since they potentially capture important in-
formation for answering the current question.

Therefore, we propose a novel Recurrent Graph Neural
Network (RGNN) to process a sequence of graphs, as shown
in Fig. 2. As we advance in a sequence of graphs, we process
each graph using a shared GNN cell and the GNN output will
be used when processing the next graph. One can think that it
is analogous to an RNN-style structure where the main differ-
ence is that each element in a sequence is not a data point, but
instead a graph. Our RGNN module combines the advantages
of RNNs which are good at sequential learning (i.e., model-
ing sequential data), and GNNs which are good at relational
reasoning (i.e., modeling graph-structured data).

The computational details of RGNN are as follows. Let us
denote Cpiq as the initial context node embedding at the i-th
turn. Before we apply a GNN to the context graph Gpiq, we
update its node embeddings by fusing both the original node
information Cpiq and the updated node information sCpi´1q

computed by a parameter-sharing GNN at the pi´ 1q-th turn
via a fusion function,

sCpiq “ GNNpFusepCpiq, sCpi´1qq, rApiqq (9)

where we set sCp0q “ C0 as we do not incorporate any his-
torical information at the first turn. The fusion function is
designed as a gated sum of two information sources,

Fusepa,bq “ z ˚ a` p1´ zq ˚ b

z “ σpWzra;b;a ˚ b;a´ bs ` bzq
(10)

where σ is a sigmoid function and z is a gating vector. As
a result, the graph node embedding outputs of the reasoning
process at the previous turn are used as a starting state when
reasoning at the current turn.

We use Gated Graph Neural Networks (GGNN) [Li et al.,
2015] as our GNN cell, but the framework is agnostic to
the particular choice of GNN cell. In GGNN we do multi-
hop message passing through a graph to capture long-range
dependency where the same set of network parameters are
shared at every hop of computation. At each hop of computa-
tion, for every graph node, we compute an aggregation vector
as a weighted average of all its neighboring node embeddings
where the weights come from the normalized adjacency ma-
trices rApiq. Then, a Gated Recurrent Unit (GRU) [Cho et al.,
2014] is used to update node embeddings by incorporating the
aggregation vectors. We use the updated node embeddings at
the last hop as the final node embeddings.

To simplify notation, we denote the above RGNN module
as sCpiq “ RGNNpCpiq, rApiqq, i “ 1, . . . , T which takes
as input a sequence of graph node embeddings tCpiquTi“1
as well as a sequence of the normalized adjacency matrices
trApiquTi“1, and outputs a sequence of updated graph node em-
beddings tsCpiquTi“1.

While a GNN is responsible for modeling global interac-
tions among context words, modeling local interactions be-
tween consecutive context words is also important for the
task. Therefore, before feeding the context word represen-
tations to a GNN, we first apply a BiLSTM to encode local
dependency, that is, Cpiq “ BiLSTMpWpiq

C q, and then use
the output Cpiq as the initial context node embedding.

Inspired by recent work [Wang et al., 2018] on modeling
the context with different levels of granularity, we choose to
apply stacked RGNN layers where one RGNN layer is ap-
plied on low level representations of the context and the sec-
ond RGNN layer is applied on high level representations of
the context. The output of the second RGNN layer trCpiquTi“1
is the final context representations.

H
piq
C “ rsCpiq;gC ;BERTC

s

H
piq
Q “ rQpiq;gQpiq

;BERTQpiq

s

f2alignpC
piqq “ AlignpHpiq

C ,H
piq
Q ,Qpiqs

Ĉpiq “ BiLSTMprsCpiq; f2alignpC
piqqsq

rCpiq “ RGNNpĈpiq, rApiqq, i “ 1, . . . , T

(11)

3.3 Prediction Layer
We predict answer spans by computing the start and end prob-
abilities of the j-th context word for the i-th question. For the
sake of simplicity, we omit the turn index i when formulating
the prediction layer. The start probability PS

j is calculated by,

PS
j 9 expprcTj WSpq (12)

where WS is a dˆd trainable weight and p (turn index omit-
ted) is the question representation obtained in Eq. (6). Next,
p is passed to a GRU cell by incorporating context summary
and converted to rp.

rp “ GRUpp,
ÿ

j

PS
j rcjq (13)

Then, the end probability PE
j is calculated by,

PE
j 9 expprcTj WErpq (14)

where WE is a dˆ d trainable weight.
We apply an answer type classifier to handle unanswerable

questions and questions whose answers are not text spans in
the context. The probability of the answer type (e.g., “un-
known”, “yes” and “no”) is calculated as follows,

PC “ σpfcppqrfmeanprCq; fmaxprCqsT q (15)
where fc is a dense layer which maps a d-dim vector to a
pnum class ˆ 2dq-dim vector. Further, σ is a sigmoid func-
tion for binary classification and a softmax function for multi-
class classification. fmeanp.q and fmaxp.q denote the average
pooling and max pooling operations, respectively.
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Child. Liter. Mid-High. News Wiki Reddit Science Overall
PGNet [See et al., 2017] 49.0 43.3 47.5 47.5 45.1 38.6 38.1 44.1
DrQA [Chen et al., 2017] 46.7 53.9 54.1 57.8 59.4 45.0 51.0 52.6
DrQA+PGNet [Reddy et al., 2018] 64.2 63.7 67.1 68.3 71.4 57.8 63.1 65.1
BiDAF++ [Yatskar, 2018] 66.5 65.7 70.2 71.6 72.6 60.8 67.1 67.8
FLOWQA [Huang et al., 2018] 73.7 71.6 76.8 79.0 80.2 67.8 76.1 75.0
Flow [Unpublished] – – – – – – – 75.8
SDNet [Zhu et al., 2018] 75.4 73.9 77.1 80.3 83.1 69.8 76.8 76.6
GRAPHFLOW 77.1 75.6 77.5 79.1 82.5 70.8 78.4 77.3
Human 90.2 88.4 89.8 88.6 89.9 86.7 88.1 88.8

Table 1: Model and human performance (% in F1 score) on CoQA test set.

3.4 Training and Inference
The training objective for the i-th turn is defined as the cross
entropy loss of both text span prediction (if the question re-
quires it) and answer type prediction where the turn index i is
omitted for the sake of simplicity,

L “ ´ISplogpPS
s q ` logpP

E
e qq ` logPC

t (16)

where IS indicates whether the question requires answer span
prediction, s and e are the ground-truth start and end positions
of the span, and t indicates the ground-truth answer type.

During inference, we first use PC to predict whether the
question requires text span prediction. If yes, we predict the
span to be ŝ, êwith maximum PS

ŝ , P
E
ê subject to certain max-

imum span length threshold.

4 Experiments
In this section, we conduct an extensive evaluation of our
proposed model against state-of-the-art conversational MC
models. We use three popular benchmarks as described be-
low. The implementation of our model is publicly available
at https://github.com/hugochan/GraphFlow.

4.1 Datasets, Baselines and Evaluation Metrics
CoQA [Reddy et al., 2018] contains 127k questions with an-
swers, obtained from 8k conversations. Answers are in free-
form and hence are not necessarily text spans from context.
The average length of questions is only 5.5 words. The av-
erage number of turns per dialog is 15.2. QuAC [Choi et al.,
2018] contains 98k questions with answers, obtained from
13k conversations. All the answers are text spans from con-
text. The average length of questions is 6.5 and there are
on average 7.2 questions per dialog. DoQA [Campos et al.,
2019] contains 7.3k questions with answers, obtained from
1.6k conversations in the cooking domain. Similar to CoQA,
31.3% of the answers are not directly extracted from context.

We compare our method with the following baselines:
PGNet [See et al., 2017], DrQA [Chen et al., 2017],
DrQA+PGNet [Reddy et al., 2018], BiDAF++ [Yatskar,
2018], FLOWQA [Huang et al., 2018], SDNet [Zhu et al.,
2018], BERT [Devlin et al., 2018] and Flow (unpublished).

Following previous works [Huang et al., 2018; Zhu et al.,
2018], we use an extractive approach with answer type clas-
sifiers on all benchmarks. The main evaluation metric is F1
score which is the harmonic mean of precision and recall at

F1 HEQ-Q HEQ-D
BiDAF++ 60.1 54.8 4.0
FLOWQA 64.1 59.6 5.8
GRAPHFLOW 64.9 60.3 5.1
Human 80.8 100 100

Table 2: Model and human performance (in %) on QuAC test set.

word level between the predication and ground truth. In ad-
dition, for QuAC and DoQA, the Human Equivalence Score
(HEQ) is used to judge whether a system performs as well as
an average human. HEQ-Q and HEQ-D are model accuracies
at question level and dialog level. Please refer to [Reddy et
al., 2018; Choi et al., 2018] for details of these metrics.

4.2 Model Settings

The embedding sizes of POS, NER, exact matching and turn
marker embeddings are set to 12, 8, 3 and 3, respectively. Fol-
lowing Zhu et al. [2018], we pre-compute BERT embeddings
for each word using a weighted sum of BERT layer outputs.
The size of all hidden layers is set to 300. When construct-
ing context graphs, the neighborhood size is set to 10. The
number of GNN hops is set to 5 for CoQA and DoQA, and
3 for QuAC. During training, we apply dropout after embed-
ding layers (0.3 for GloVe and 0.4 for BERT) and RNN layers
(0.3 for all). We use Adamax [Kingma and Ba, 2014] as the
optimizer and the learning rate is set to 0.001. We batch over
dialogs and the batch size is set to 1. When augmenting the
current turn with conversation history, we only consider the
previous two turns. All these hyper-parameters are tuned on
the development set.

4.3 Experimental Results

As shown in Table 1, Table 2, and Table 3, our model outper-
forms or achieves competitive performance compared with
various state-of-the-art baselines. Compared with FLOWQA
which is also based on the flow idea, our model improves
F1 by 2.3% on CoQA, 0.8% on QuAC and 2.5% on DoQA,
which demonstrates the superiority of our RGNN based flow
mechanism over the IF mechanism. Compared with SDNet
which relies on sophisticated inter-attention and self-attention
mechanisms, our model improves F1 by 0.7% on CoQA.
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F1 HEQ-Q HEQ-D
BERT 41.4 38.6 4.8
FLOWQA 42.8 35.5 5.0
GRAPHFLOW 45.3 41.5 5.3
Human 86.7 – –

Table 3: Model and human performance (in %) on DoQA test set.

F1
GRAPHFLOW (2-His) 78.3

– PreQues 78.2
– PreAns 77.7
– PreAnsLoc 76.6
– BERT 76.0

– RecurrentConn 69.9
– RGNN 68.8
– kNN 69.9

GRAPHFLOW (1-His) 78.2
GRAPHFLOW (0-His) 76.7

Table 4: Ablation study (in %) on CoQA dev. set.

4.4 Ablation Study and Model Analysis

We conduct an extensive ablation study to further investi-
gate the performance impact of different components in our
model. Here we briefly describe ablated systems: – Recur-
rentConn removes temporal connections between consecutive
context graphs, – RGNN removes the RGNN module, – kNN
removes the kNN-style graph sparsification operation, – Pre-
Ques does not prepend previous questions to the current turn,
– PreAns does not prepend previous answers to the current
turn, – PreAnsLoc does not mark previous answer locations
in the context, and – BERT removes pretrained BERT embed-
dings. We also show the model performance with no conver-
sation history GRAPHFLOW (0-His) or one previous turn of
the conversation history GRAPHFLOW (1-His).

Table 4 shows the contributions of the above components
on the CoQA development set. Our proposed RGNN mod-
ule contributes significantly to the model performance (i.e.,
improves F1 score by 7.2%). In addition, within the RGNN
module, both the GNN part (i.e., 1.1% F1) and the tempo-
ral connection part (i.e., 6.1% F1) contribute to the results.
This verifies the effectiveness of representing a passage as a
graph and modeling the temporal dependencies in a sequence
of context graphs. The kNN-style graph sparsification opera-
tion also contributes significantly to the model performance.
We notice that explicitly adding conversation history to the
current turn helps the model performance. We can see that
the previous answer information is more crucial than the pre-
vious question information. And among many ways to use
the previous answer information, directly marking previous
answer locations seems to be the most effective. Last but not
least, we find that the pretrained BERT embedding has sig-
nificant impact on the performance, which demonstrates the
power of large-scale pretrained language models.

Figure 3: The highlighted part of the context indicates GraphFlow’s
focus shifts between consecutive question turns.

4.5 Interpretability Analysis
Following Huang et al. [2018], we visualize the changes of
hidden representations of context words between consecu-
tive turns. Specifically, we compute cosine similarity of hid-
den representations of the same context words at consecu-
tive turns, and then highlight the words that have small co-
sine similarity scores (i.e., change more significantly). Fig. 3
highlights the most changing context words (due to the page
limit, we do not show full context) between consecutive turns
in a conversation from the CoQA dev. set. As we can see,
the hidden representations of context words which are rele-
vant to the consecutive questions are changing most and thus
highlighted most. We suspect this is in part because when
the focus shifts, the model finds out that the context chunks
relevant to the previous turn become less important but those
relevant to the current turn become more important. There-
fore, the memory updates in these regions are the most active.

5 Conclusion
We proposed a novel Graph Neural Network (GNN) based
model, namely GRAPHFLOW, for conversational machine
comprehension (MC) which carries over the reasoning out-
put throughout a conversation. Besides, we proposed a
simple yet effective graph structure learning technique to
dynamically construct a question and conversation history
aware context graph at each conversation turn. On three re-
cently released conversational MC benchmarks, our proposed
model achieves competitive results compared with previous
approaches. Interpretability analysis shows that our model
can offer good interpretability for the reasoning process. In
the future, we would like to investigate more effective ways
of automatically learning graph structures from free text and
modeling temporal connections between sequential graphs.
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