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Abstract

The growing size of Semantic Web data expressed in the form of Resource Description Framework (RDF) has made

it necessary to develop effective ways of storing this data to save space and to query it in a scalable manner. SPARQL

– the query language for RDF data – closely follows SQL syntax. As a natural consequence most of the RDF storage

and querying engines are based on modern database storage and query optimization techniques. Previous work has

tried to use vertical partitioning using column stores (C-Store, MonetDB) and 6-way indexing (RDF-3X, Hexastore)

for storage and querying of RDF data. Although these approaches perform well for highly selective queries, for queries

having low-selectivity triple patterns, scalability of the querying method and optimizations still remain a challenge.

In this paper we present a new way of storing RDF graphs in run-length-encoded bit-vector format called BitMat,

and we propose a novel two-phase SPARQL join query processing algorithm. In the first phase it prunes the candidate

RDF triples, and in the next phase, it stitches the pruned RDF triples together to generate final results. Our query

processing method does not build intermediate join tables and works directly on the compressed data. Our evaluation

shows that BitMat not only provides an efficient method of storage of the RDF graphs, but our join query processing

algorithm scales well for low-selectivity join queries, where state-of-the-art RDF query processors face problems.

1. Introduction

Resource Description Framework (RDF)1, a W3C stan-

dard for representing any information, and SPARQL2, a

query language for RDF, are gaining importance as se-

mantic data is increasingly becoming available in the RDF

format. RDF data consists of triples represented as (S P

O) where each triple represents a relationship between its

subject (S) and object (O) via the predicate (P). Such

RDF data can be represented as a labeled directed graph

and can be serialized and stored in a relational database

simply as a 3-column table where each tuple in that table

represents a triple in the original RDF graph.

1http://www.w3.org/TR/rdf-syntax-grammar/
2http://www.w3.org/TR/rdf-sparql-query/

As the amount of RDF data on the web is increasing at

break-neck speed, efficient storage and querying methods

for RDF data are of prime importance. Various commu-

nities like bioinformatics, life sciences, social networks, as

well as government are adopting RDF as a data standard.

RDF datasets of few hundred million to a billion triples are

becoming common. In this situation, the two major chal-

lenges are 1) efficient storage of RDF data, and 2) efficient

querying of the stored data.

Disk-space is growing rapidly and a more efficient

method of storing the data in compressed form allows even

more data to fit in the same amount of disk space.More

importantly, while querying, the disk-based data needs to

be brought in main-memory to execute queries on it. Since
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the amount of available main memory still remains much

smaller than the secondary memory, efficient and scalable

ways of querying the RDF data remain a big challenge.

Querying any large dataset involves fetching the data

into main-memory, scanning the data and any indexes cre-

ated over it, and executing query processing algorithm.

For efficient storage, the data can be stored using stan-

dard compression algorithms, but it usually needs to be

uncompressed while querying. A better alternative is to

have a query algorithm that can work on the compressed

data without uncompressing it. Previous work by D. J.

Abadi et al [1, 2] addresses these issues to a certain extent

by proposing compression techniques in column-oriented

databases and using lazy materialization to work on com-

pressed data as much as possible.

SPARQL join queries, also known as Basic Graph Pat-

tern matching (BGP) or conjunctive triple pattern queries

closely resembles SQL join queries. Any SPARQL join

query can be systematically translated into a correspond-

ing SQL join query [3]. These join queries can be broadly

classified into three categories. The first class of queries

are the ones having highly selective3 triple patterns. E.g.,

consider a query (?s :worksFor :Rensselaer)(?s :hassSSN

“123-45-6789”). Since Rensselaer is small community and

SSN is a unique attribute of a person, both the triple pat-

terns are highly selective. The second class of queries are

the ones with low-selectivity triple patterns, but which

produce highly selective results. E.g., consider the query

(?s :residesIn :China)(?s :citizenOf :India). Here each

triple pattern in unselective – population of China is over

1.3 billion and over 1.2 billion people are citizens of In-

dia. But there are very few Indian citizens who reside

in China, hence the result of the join of these two triple

patterns is highly selective. The third class of queries are

the ones having low-selectivity triple patterns producing

low-selectivity join results. For example, consider a query

3Selectivity of a triple pattern is low if there are more number of

triples associated with it and vice versa [4].

(?s :residesIn :India)(?s :hasProfession :Farming). India

being the country where agriculture is a large sector of the

economy, this query will produce a lot of results.

Systems that generate various indexes on the RDF data

do well on the first type of queries. Especially systems like

Hexastore [5] and RDF-3X [6], which generate 6-way in-

dexes can choose the appropriate index and pick the right

set of triples at the beginning and make use of merge-joins

instead of scanning a large amount of data. For the sec-

ond type of queries – low-selectivity triple patterns but

highly selective results – join selectivity estimation or pre-

computed join tables/indexes fetch benefits in query opti-

mization to certain extent, although our evaluation shows

that join selectivity estimation does not always help in

improving the query performance. For the third type of

queries – low-selectivity triple patterns generating a large

number of results – even state-of-the art systems run into

problems.

The main challenge while executing queries of second

and third type as mentioned above, is to uncompress a

large amount of data if it is in compressed form, fetch it in

memory, and execute join queries over it by maintaining

any intermediate results (which in turn can be quite large).

Hence our goal is to build a scalable query algorithm which

operates on the compressed data without generating inter-

mediate join tables. This helps to keep the memory foot-

print of the system small in case of low-selectivity queries,

compared to the contemporary approaches. Our key con-

tributions in this work are:

1. A compressed data structure – BitMat – for storing

the RDF data.

2. A novel 2-phase algorithm to execute SPARQL join

queries, which precludes building large intermediate

join tables in case of a low-selectivity query involving

multiple joins.

3. Procedures and algorithms developed to work directly

on the compressed data.

4. Thorough experiments across a wide range of dataset

Copyright c© 2011 All rights reserved by authors.



3

S−dimension

0

0

0
0

0

0

0

0
0

0
0

0
0

1

1

1

1

1

O−dimension
P−dimension

0

0

1

0

0

0

1

2

3 0     1     0    0

0     1     0    0

0     0     0    1

1     0     0    0

"1999"
"1999":the_thirteenth_floor

Subject Predicate

:the_matrix :releasedIn
:releasedIn

:the_thirteenth_floor
:the_matrix

rdf:type
rdf:type

:movie
:movie

Object

:the_thirteenth_floor :similar_to :the_matrix
:the_matrix :similar_to :the_matrix_reloaded

1 2 3

:releasedIn
ba c     d

S−O BitMats for each P concatenated together

:similar_to
ba c     d

0     0     1    0

0     0     1    0

rdf:type
ba c     d

Note: a = :the_matrix, b = "1999", c = :movie, d = :the_matrix_reloaded

Figure 1: Basic method of BitMat construction

sizes ranging up to 1.33 billion triples, which consti-

tutes some of the largest used to-date.

2. Related Work

Recent attention towards efficient storage and querying

of RDF data has spawned a lot of different RDF-stores,

such as – 4Store [7], BigOWLIM [8], AllegroGraph [9],

Hexastore, RDF-3X, MonetDB [10], Jena-TDB [11], Jena-

SDB, Jena with PostgreSQL, C-Store [12] and so on.

Out of these, some are commercial RDF stores and some

are open-source efforts. Jena distributions, RDF-3X, and

MonetDB are ongoing efforts to improve RDF storage and

querying. MonetDB does not provide a native RDF store

or a SPARQL query processor, but one can exploit the

fact that RDF data typically has very less predicates as

compared to the number of subjects and objects by storing

the data into separate predicate tables using MonetDB’s

column storage. Also since most SPARQL join queries

have bound predicate positions in the triple patterns, this

kind of data organization turns out to be beneficial for

efficient SPARQL join query processing.

RDF-3X and Hexastore make use of the fact that an

RDF triple is a fixed 3-dimensional entity and hence they

create all 6-way indexes (SPO, SOP, PSO, POS, OPS,

OSP). Although Hexastore does share common indexes

within these 6 indexes, e.g., SPO and PSO share the “O”

index, without any compression, it suffers from 5-fold in-

crease in the space required to store these indexes. RDF-

3X goes one step further and compresses these indexes

[13]. RDF-3X also implements several other join optimiza-

tion techniques like RDF specific Sideways-Information-

Passing, selectivity estimation, merge-joins, and using

bloom-filters for hash joins [6].

Most RDF storage systems built on top of a database ar-

chitecture typically use a left-deep join tree which requires

materialization of the intermediate join results in case of a

complex join query involving several join variables. Even

in case of 6-way indexing, merge-joins cannot always be

used to perform later joins if there is a long chain of join

variables. In contrast to these, in our system instead of

using sophisticated join optimization techniques, we have

used some simple heuristics and a rule of keeping the data

compressed without materializing the intermediate join re-

sults. This is explained further in Section 5.3. This helps

to keep a large amount of required data in memory. We ex-

ecute the join by following a novel algorithm, which prop-

agates the constraints on the join-variable bindings among

different join variables in the query. Our technique is rem-

iniscent of the concept of semi-joins [14, 15] as discussed

further in Section 5.2. We consider our query processing

engine light-weight – light-weight on runtime memory con-

sumption as well as optimization techniques. Through our

evaluation, we have analyzed that our system outperforms

the state-of-the-art systems like Hexastore, RDF-3X, and

MonetDB in case of low-selectivity join queries, whereas

for highly selective queries the contemporary systems per-

form better.

The work presented in this article presents comprehen-
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sive overview of previously unpublished work over BitMat

structure, along with our work presented in [16, 17, 18],

with the necessary details of the query processing algo-

rithm which were not covered in any of the earlier pub-

lished work.

3. BitMat – Compressed Index for RDF Data

Since RDF triple is a 3-dimensional entity (subject,

predicate, object), conceptually RDF data can be repre-

sented as a 3D bitcube. Each dimension of the bitcube

represents subjects (S), predicates (P), objects (O). Let

Vs, Vp, Vo be the set of distinct subjects, predicates, and

objects in the RDF data. Then the volume of the bitcube

is |Vs×Vp×Vo|. Each cell in the bitcube represents a unique

RDF triple that can be formed by the corresponding co-

ordinates of S, P, O. A bit set to 1 represents presence of

that triple in the RDF data. Further, this 3D bitcube can

be flattened in 2D form by two methods.

3.1. Basic Method

In this method, the bitcube is sliced along the P-

dimension to get |Vp| number of 2D S-O matrices. These

matrices are concatenated together along the O-dimension

to get one contiguous matrix of all the RDF triples – such

a 2D matrix is called as BitMat. This procedure is elabo-

rated in Figure 1. There are total |Vs|×|Vp|×|Vo| possible

triples with the given Vs, Vp, Vo sets, but it is observed that

typically RDF data contains much fewer number of triples,

hence the constructed BitMat is very sparse. We make use

of this fact by applying run length encoding on each row of

the BitMat. In run length encoding of a bit-vector, a bit-

row of “0011000” will be represented as “[0] 2 2 3”. That

is, starting with the first bit value, we record alternating

run lengths of 0s and 1s.

In the Basic Method, all the triples are first ordered

on their subject IDs and in each subject row, in turn the

triples are ordered as predicate IDs followed by the ob-

ject IDs. We apply run length encoding on the entire row

without maintaining the predicate boundaries. Conceptu-

ally this BitMat serves as a SPO index. This method of

BitMat construction yields much better compression ratio

to store the RDF data. But while executing queries it in-

curs additional overhead to process joins on the predicate

and object dimensions (this will be elaborated further in

Section 5).

3.2. Enhanced Method

In this method, similar to the Basic Method, the 3D

bitcube is sliced along P-dimension, but instead of con-

catenating the S-O matrices and storing a single BitMat,

we store the S-O matrices separately. Along with these,

we store the transposed O-S matrices for each P as well.

These essentially serve as PSO and POS indexes. Addi-

tionally, we slice the bitcube along S and O dimensions,

which gives P-O and P-S BitMats respectively, and they

serve as SPO and OPS indexes. We do not store O-P and

S-P BitMats, because of the following reasons. In an RDF

data, typically Vp is a much smaller set than Vs and Vo

(for example, in the UniProt dataset containing 845 mil-

lion triples, there are about 147 million distinct subjects

and 128 million distinct objects, but only 95 predicates).

This means that in an O-P BitMat, there will be many

more rows than the number of columns. Since we ap-

ply run length encoding on each row, an O-P BitMat will

yield much poorer compression ratio as compared to the

respective P-O BitMat. Same analysis holds for S-P Bit-

Mat as well. Also since Vs and Vo are much larger sets

than Vp, typically the number of triples associated with

each unique S or O value are much smaller than the ones

associated with each P value. Hence the number of triples

in a P-O or P-S BitMat are much lesser than those in

S-O or O-S BitMat. This essentially voids the need of

having separate O-P or S-P BitMats, because if required,

they can be constructed easily from the corresponding P-O

or P-S BitMats or the required operations can be simply

performed on the appropriate dimension of the P-O or P-
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Figure 2: Enhanced Method of BitMat construction (example of S-O, O-S BitMats for each P)

S BitMats (this will be elaborated further in Section 5).

We apply run length encoding on each row of these Bit-

Mats. It is to be noted though that due to replication of

the data (triples represented by S-O and O-S BitMat of

each P value are the same), the amount of space required

for BitMats created with the Enhanced Method is more

than the Basic Method. To summarize, in the Enhanced

Method of BitMat construction, we create 4 types of Bit-

Mats – S-O and O-S BitMats for each P value, P-O BitMat

for each S value, and P-S BitMat for each O value (in all

2∗ |Vp|+ |Vs|+ |Vo| BitMats). Figure 2 shows construction

of S-O and O-S BitMats for each P value.

In the Enhanced Method, we also store the number of

triples in each BitMat (this statistics is useful while ex-

ecuting our query algorithm as explained later). Along

with this, we store two bitarrays – row and column bitar-

ray – for S-O and O-S BitMats, which give a condensed

representation of all the non-empty row and column val-

ues in the given BitMat. For example, in Figure 2, for the

S-O BitMat of “:similar to” predicate (marked by BitMat

“2”), we store row bitarray “1 1” and a column bitarray

“1 0 0 1”. This means that there is at least one 1 in both

rows and at least one 1 in column 1 and 4. Likewise for the

O-S BitMat we store row bitarray “1 0 0 1”, and column

bitarray “1 1”, respectively. For P-S and P-O BitMats

we store only condensed representation of rows. We do

not store condensed representation of columns for them,

because the number of predicates (in turn the number of

rows in the BitMat) are very less. Hence the condensed

representation of columns can be easily formed on the fly

by doing a bitwise OR of all the rows. These bitarrays are

useful while performing “star join” queries (as elaborated

in the Evaluation section).

The above construction reveals that each unique S, P,

and O is mapped to a unique position along each dimension

of the 3D bitcube and this position can be represented by

an integer ID. We decide this mapping with the following

procedure: Let Vso represent the Vs∩Vo set. Each element

in Vso, along with the elements in Vs, Vp and Vo, is assigned

an integer ID as follows:

• Common subjects and objects : Set Vso is mapped to

a sequence of integers: 1 to |Vso|.

• Subjects : Set Vs − Vso is mapped to a sequence of

integers: |Vso|+ 1 to |Vs|.

• Predicates : Set Vp is mapped to a sequence of integers:

1 to |Vp|.

• Objects : Set Vo − Vso is mapped to a sequence of

integers: |Vso|+ 1 to |Vo|.

The common subject-object identifier assignment facili-

tates the bitwise operations in join queries wherein an S

position in one triple pattern is joined over an O position

in another triple pattern (e.g. ?n in the query in Figure

3). We store the meta-information of size of each of |Vs|,

|Vo|, |Vp|, and |Vso| sets in the configuration file. For the

Copyright c© 2011 All rights reserved by authors.
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SELECT *

WHERE {

}

?m rdf:type :movie .
?n rdf_type :movie .

SPARQL join query

?m :similar_to ?n

Equivalent SQL join query

Note: RDF graph stored as tripletable

WHERE A.subject = B.subject

tripletable AS A, tripletable AS B, tripletable AS C
SELECT * FROM

AND A.object = C.subject
AND B.predicate = "rdf:type"

AND A.object = ":movie"
AND A.predicate = ":similar_to"

AND B.object = ":movie"
AND C.predicate = "rdf:type";

Figure 3: An example of SPARQL join query

present considerations, we do not handle joins across S-P

and P-O dimensions. Such queries are rare in the context

of assertional RDF data. None of the benchmark queries

published for the large RDF datasets have queries hav-

ing joins over S-P or P-O dimensions. Hence overlapping

S, P, O IDs except for the common S and O values do

not pose a problem while processing a query. The BitMat

construction described above is assuming a 3-dimensional

RDF data. Sometimes RDF data can have forth dimen-

sion – context or graph name – which makes it a “quad”

data as opposed to “triple” data. The forth dimension can

be easily handled by building 3D bitcubes of quads having

same context or graph name (the forth dimension). All

quads having same context can be practically represented

as triples having same forth dimension.

In practice, after mapping each string/URI in the RDF

data to appropriate IDs as described above, we convert

the entire list of triples in the ID form. We build each

BitMat directly from the sorted list of triples instead of

constructing an uncompressed row and then compressing

it. For example, to build S-O BitMats of each P value,

all the triples are first sorted on their P values followed

by their S and O values. For each S-P pair, we read the

O values and build a compressed row of the S-O BitMat

directly. E.g., consider 3 triples with the same P-value

“10”, (“1122 10 3”), (“1122 10 1234”), (“1122 10 5678”).

Note that they all have same S-value and hence will be

placed in the same row in the S-O BitMat. Let |Vo| be

10,000 (total number of O values). After reading the first

O value as “3”, we build the first part of a compressed

row as ”[0] 2”, i.e., first 2 bits are 0s. Then we append a

1 bit for O value “3” and the encoding becomes “[0] 2 1”.

When we read the next 1 value “1234”, we fill the gap in

between with 1230 0s and update the encoding as “[0] 2 1

1230 1” and so on. The final compressed representation of

this S row in the S-O BitMat will be “[0] 2 1 1230 1 4443 1

4321”. This procedure of building a compressed row of a

BitMat directly is same for all other type of BitMats. For

P-S BitMats of each O value, we sort the ID based triples

on O, P, S values and construct the BitMat as given above.

For the Basic Method of BitMat construction, where the

entire RDF data is represented using a single BitMat, we

sort the ID based triples on S, P, O values respectively.

The length of the row in this case is |Vp|× |Vo| and the bit

position of a triple is decided as (PID − 1) ∗ |Vo|+OID.

We build the condensed representation of rows and

columns on the fly in a similar manner. The row bitar-

ray helps in omitting storage of the empty rows and saves

more space. While loading the BitMat the row bitarray

assists in identifying the empty rows, which are not stored.

For the Enhanced Method, we store each type of Bit-

Mats (S-O, O-S, P-S, P-O) preceded by the number of

triples and condensed representation of rows and columns

in one giant file (one file for each type of BitMat) on the

disk. We maintain meta-files which give the offset of each

BitMat inside the giant file concatenating all BitMats of

a type. Due to this, addition or deletion of triples might

require moving a large amount of data, but if bulk up-

dates are expected on the RDF data, all the BitMats can

be rebuilt at once since the BitMat construction time even

for very large data is very small. For addition of a single

triple there are two cases: (1) S, P, O values of the triple

are part of existing Vs, Vp, Vo sets respectively, (2) One

or more of S, P, or O values of the newly added triple is

not part of existing Vs, Vp, Vo sets. For the first case con-

ceptually the volume of the 3D bitcube remains the same

and only a particular bit-value gets toggled from 0 to 1.

But in the second case, the new value of S, P, or O has to

Copyright c© 2011 All rights reserved by authors.
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be added to the 3D bitcube which changes volume of the

bitcube. The first case is easier to handle. For instance,

if we want to add triple (:the thirteenth floor :similar to

:the matrix reloaded) to the sample data given in Figure 2,

it affects 4 BitMats, i.e., S-O and O-S BitMats of P value

:similar to, P-S BitMat of O value :the matrix reloaded,

and P-O BitMat of S value :the thirteenth floor. In such

case, we can build four new BitMats, append them to the

end of the giant file containing all BitMats of the respec-

tive type, and update the metafiles to give the new offset

of the newly added BitMats.

Example of the second case is addition of triple

(:the matrix reloaded :rdf type :movie). The value

:the matrix reloaded does not exist in original Vs set. In

such a case, we will need to rebuild all the BitMats to ac-

commodate the newly added value (as it changes the vol-

ume of the bitcube from which the BitMats were built).

Also if the newly added value changes the intersection set

Vso then all other IDs will need to be reassigned (e.g., the

example given above). For the data which is relatively

stable, addition of such triples can be done by rebuild-

ing all the BitMats occasionally (as building the BitMats

from the ID representation of triples is much faster than

initial parsing). However this can be expensive for highly

dynamic data.

With respect to the construction described above, the

RDFCube [19] system is conceptually closest to BitMat.

RDFCube also builds a 3D cube of S, P, and O dimensions.

However, RDFCube’s design approximates the mapping of

a triple to a cell by treating each cell as a hash bucket con-

taining multiple triples. They primarily used this as a dis-

tributed structure in a peer-to-peer setup (RDFPeers [20])

to reduce the network traffic for processing join queries in

a conventional manner. In contrast, BitMats compressed

structure maintains unique mapping of a triple to a single

bit, and also employs a different query processing algo-

rithm. Further, RDFCube has demonstrated their results

on a bitcube of only up to 100,000 triples, whereas we have

used more than 1.33 billion triples in this paper.

4. BitMat Operations

The join query algorithm for BitMat structure is based

on four primitive procedures: (a) initialization, (b) filter,

(c) fold, (d) unfold. For the Basic Method of BitMat, we

need to use all the four procedures, whereas for the En-

hanced Method, we need to use only initialization, fold,

and unfold methods.

4.1. Initialization (Basic Method)

We define initialization as an abstract procedure which

depends on the underlying BitMat structure. In the Basic

Method, the original BitMat – with all the triples – is

always kept in memory. Initialization involves applying

filter operation on the original BitMat to generate separate

BitMats for each triple pattern in the query. The operation

is described briefly in Algorithm(1). The initialization in

case of the Enhanced Method depends on the triple pattern

and is described later in Section 5.1.

Algorithm 1 Initialization (for the first type of BitMats)

1: Let BM be the BitMat for the original RDF graph

2: for each triple pattern T in query do

3: BMT = filter(BM , T )

4: end for

4.2. Filter

Filter operation is used only for the Basic Method of

BitMat construction. It is represented as ‘filter(BitMat,

TriplePattern) returns BitMat’. It takes an input BitMat

and returns a new BitMat which contains only triples that

match the TriplePattern. For the query in Figure 3, fil-

ter(BitMat, ‘?m :similar to ?n’), clears all the bits from

BitMat except those having :similar to as a predicate and

returns a new BitMat containing only those triples. A

triple pattern can have any of the following positions with

fixed values – only S, only P, only O, S and P, S and O, or

Copyright c© 2011 All rights reserved by authors.
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P and O. For instance, triple pattern (?m rdf:type :movie)

has P and O as fixed values.

The filter operation is performed as follows: if only S

value is fixed, only the row corresponding to the S value

in the original input BitMat is retained in the resulting

BitMat and rest all rows are set to null. If only P value

is fixed, we set a compressed mask bitarray of the size

|Vp| × |Vo|, with all the bits corresponding to the P value

set to “1”. For example, if |Vp| = 3 and |Vo| = 10 and

the fixed value of P in the triple pattern is mapped to ID

“2” (ref. Section 3, each unique string value of S, P, O is

mapped to an ID unique within Vs, Vp, Vo subsets), the

mask bitarray would look like, “0000000000 1111111111

0000000000” (but it will be in a compressed form). Note

that this is an uncompressed representation with a whites-

pace inserted between group of object bits per predicate

and is presented in this form only for the ease of reading a

long bitarray. Whereas the actual storage of this bitvector

is in compressed form without any delimiter for group of

objects of each predicate. We do a bitwise AND of each

row of the original BitMat and this mask bitarray. The

procedure of doing bitwise AND and OR of compressed

bit-vectors is described later in Section 4.5. The result of

the bitwise AND is set as the corresponding row in the re-

sulting BitMat. If O value in a triple pattern is fixed, we

create a compressed mask bitarray of the size |Vp| × |Vo|,

with all the bits corresponding to the O value set to “1”.

For example, if |Vp| = 3 and |Vo| = 10 and the fixed value

of O is mapped to ID “5” the mask bitarray would look

like, “0000100000 0000100000 0000100000”. The com-

pressed form of this mask bitarray is ANDed with each

row of the original BitMat and the result is set as the

corresponding row in the resulting BitMat.

For fixed values in S and P positions, the resulting Bit-

Mat just has one row corresponding to the S value. Within

the row bits corresponding to other P values are masked

out. For example, if S value is mapped to “5” and P value

is mapped to “2”, with |Vp| = 3 and |Vo| = 10, the fifth

row in the original BitMat is ANDed with compressed form

of “0000000000 1111111111 0000000000” and the result of

this is set as the fifth row in the resulting BitMat. For

fixed values in S and O positions, we create a run-length-

encoded bitarray as is done for a fixed O value (shown

above) and AND it with the corresponding S row in the

original BitMat. The resulting BitMat has just one row

which is the result of the AND operation. For fixed val-

ues in P and O positions, we build a compressed bitarray

with just one bit corresponding to P and O values to 1

and AND it with each row of the original BitMat. For a

triple pattern containing all variable positions, the original

BitMat is just replicated as is and output as a resulting

BitMat.

4.3. Fold

Fold operation represented as ‘fold(BitMat, retainDi-

mension) returns bitArray’ folds the input BitMat by re-

taining the retainDimension. In the Basic Method, a Bit-

Mat is actually flattened version of a 3D bitcube and hence

has all 3 dimensions – subjects as rows and all the object

columns per predicate are grouped together (while con-

catenating S-O matrices for each P). Hence for the Basic

Method, the fold operation folds the two dimensions other

than the one specified as retainDimension. For example,

if retainDimension is set to ‘object’, then BitMat is folded

along the predicate and subject dimensions resulting into

a single bitarray. Intuitively, a bit set to 1 in this array

indicates presence of at least one triple with the object

corresponding to that position in the given BitMat. For

the example BitMat given in Figure 4, it has 5 triples rep-

resented in ID form (1 1 1), (1 3 2), (1 3 4), (2 1 3), (2 3 2).

Folding predicate dimension, gives us a single S-O matrix

having with unique bit positions (1 1), (1 2), (1 4), (2 2),

(2 3). Note that these are S-O values from original triples

without the predicate value. A fold on subject dimension

(i.e., removing subject positions) gives us bits in unique O

position 1, 2, 3, 4, which is nothing but the object bitarray

Copyright c© 2011 All rights reserved by authors.
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Figure 4: Conceptual view of folding an BitMat for a retainDimension – Basic method of BitMat construction

“11110”.

Conceptually, the fold operation is similar to a projec-

tion operation (SELECT clause) on a relational table and

the retainDimension is same as the column/attribute of

the table that is projected out. As in case of projection

operation, only the unique values of the retainDimension

are returned in the form of bitarray.

In the implementation of the fold operation, if the re-

tainDimension is set to ‘subjects’, we simply check each

row of the BitMat for emptiness. In the resulting bitarray,

a bit corresponding to a row in the BitMat is set to 1 if

that row is not empty. If the retainDimension is set to

‘predicate’, we maintain an initially empty bitarray of |Vp|

bits, say P-bitarray. We scan each compressed row in |Vp|

parts (without actually uncompressing it). If any of the

object bits grouped for a given predicate has a 1 bit, we

set the corresponding predicate bit in P-bitarray. E.g., if

|Vp| = 3 and |Vo| = 10 and the subject row is ‘1000100000

1001100100 0000000000’, we check the 3 parts of the sub-

ject row ‘1000100000’, ‘1001100100’, ‘0000000000’ sepa-

rately. Since only the first 2 parts have at least one ‘1’

bit, the P-bitarray is updated as P-bitarray = P-bitarray

OR ‘110’. We check the next subject row similarly in

|Vp| parts and update the P-bitarray. If the retainDimen-

sion is set to ‘objects’, similar to the previous example, we

check each subject row in |Vp| parts and do a bitwise OR of

each part. E.g., for a subject row ‘1000100000 1001100100

0000000000’, O-bitarray = O-bitarray OR ‘1000100000’

OR ‘1001100100’ OR ‘0000000000’, where O-bitarray is

initially empty with |Vo| bits.

In the Enhanced Method of BitMat construction, any

given BitMat has only 2 dimensions and the orientation

of these dimensions in the 4 types of BitMats is different.

E.g., an S-O BitMat of a P value has S and O dimensions as

rows and columns respectively, whereas for a P-S BitMat

P and S dimensions are rows and columns respectively.

Hence for a fold operation, retainDimension is specified

as ‘rows’ or ‘columns’. If in an S-O BitMat of a P value,

retainDimension is set to ‘columns’, then BitMat is folded

along the subject ‘rows’ resulting into a single bitarray,

i.e., all the subject rows are bitwise ORed together to give

an O-bitarray. If the retainDimension is ‘rows’ for a S-O

BitMat, we simply check each row for non-emptiness. A 1

bit in S-bitarray represents that the corresponding row in

S-O BitMat is not empty. S-bitarray is |Vs| bit long.

4.4. Unfold

Unfold operation specified as ‘unfold(BitMat,

MaskBitArray, retainDimension)’, unfolds the

MaskBitArray on the BitMat on the retainDimen-

sion. Intuitively, in the unfold operation, for every bit set
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to 0 in the MaskBitArray all the bits corresponding to

that position of the retainDimension in the BitMat are

cleared.

Unfold is exactly opposite to the fold operation. In

the Basic Method of BitMat construction, if retainDi-

mension is ‘subject’, MaskBitArray has |Vs| bits. For

each bit set to 0 in the MaskBitArray, the correspond-

ing row in the BitMat is deleted completely. If the re-

tainDimension is set to ‘predicate’. We scan each row

of the BitMat in |Vp| parts. For a bit set to 0 in the

MaskBitArray, the object bits corresponding to that pred-

icate value in a row are all set to 0. E.g., if the original row

is ‘1000100000 1001100100 0100110000’ and MaskBitAr-

ray is ‘101’, it is unfolded on the row as (ResultRow =

‘1000100000 1001100100 0100110000’ AND ‘1111111111

0000000000 1111111111’). MaskBitArray is unfolded on

‘object’ dimension in a similar manner. Keeping the exam-

ple row same as before, if MaskBitArray is ‘1101101101’

with the retainDimension set to ‘object’, each row of

the BitMat is updated as (ResultRow = ‘1000100000

1001100100 0100110000’ AND ‘1101101101 1101101101

1101101101’).

For the Enhanced Method, unfold operation is simpler.

For an unfold on ‘rows’ dimension, all rows correspond-

ing to a 0 bit in the MaskBitArray are deleted and for

an unfold on ‘columns’ of a BitMat, the MaskBitArray is

ANDed with each row of the BitMat and the result is set

as the updated row in the BitMat.

4.5. Bitwise Operations of Compressed Bit-vectors

Note that filter, fold, and unfold operations are imple-

mented to operate directly on a compressed BitMat. For

example, a bitwise AND of compressed arrays – arr1 as

‘[0] 2 3 4’ and arr2 as ‘[1] 3 4 2’ – can be performed by

sequentially looking at their “run length encoding values”.

E.g., AND the first encoded length of arr1 – 2 0s and arr2

– 3 1s, which gives the first encoded length of 2 0s in the re-

sult. Since the two lengths were uneven, there is a leftover

1 from the first encoded length of arr2. Now AND the sec-

ond encoded length of arr1 – 3 1s, and leftover first length

of 1 1s from arr2, which gives second encoded length in

the result – 1 1s, so on and so forth. Bitwise OR on the

compressed bitarrays can be done with AND using simple

Boolean logic (a OR b) = NOT(NOT(a) AND NOT(b)).

A bitwise NOT operation on a compressed bitarray is sim-

ply – NOT([0] 2 3 4) = [1] 2 3 4.

5. Join Processing Algorithm

Before describing our join processing algorithm, we

would like to note some properties of the join process

[14, 15].

Property 1. Each triple pattern in a given join query has

a set of RDF triples associated with it which satisfy that

triple pattern. These triples generate bindings for the vari-

ables in that triple pattern. If the triples associated with

another triple pattern containing the same variable cannot

generate a particular binding, then that binding should be

dropped. In that case, all the triples having that binding

value should be dropped from the set of triples associated

with the triple patterns which contain that variable.

Property 2. If two join variables in a given query appear

in the same triple pattern, then any change in the bindings

of one join variable can change the bindings of the other

join variable as well.

Property 3. A join between two or more triple patterns

over a join variable indicates an intersection between bind-

ings of that join variable generated by the triples associated

with the respective triple patterns.

To elaborate the use of these properties, consider the

query given in Figure 3. ?m and ?n appear in the same

triple pattern (?m :similar to ?n). If we perform a join

of (?m :similar to ?n) (?m rdf:type :movie) first, we get

two bindings for the variable ?m viz. :the matrix and

:the thirteenth- floor and two for ?n :the matrix reloaded

Copyright c© 2011 All rights reserved by authors.
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?n rdf:type :movie
SS

?m :similar_to ?n?m rdf:type :movie
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G

jvar
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Figure 5: Graph G for the query in Figure 3

and :the matrix corresponding to ?m’s bindings. When

we do the join between (?n rdf:type :movie)(?m :simi-

lar to ?n), we consider bindings generated for ?n after

the first join on ?m. After the second join on ?n, bind-

ing :the matrix reloaded for ?n gets dropped, since the

triple (:the matrix reloaded rdf:type :movie) is not present

in the dataset. Hence the triple (:the matrix :similar to

:the matrix reloaded) gets dropped from the triples asso-

ciated with (?m :similar to ?n) which in turn drops the

binding :the matrix for ?m.

Properties 1, 2 and 3 together establish the basis of our

pruning algorithm. We propagate the constraints on the

bindings of each join variable in a given triple pattern to

all other triple patterns and do aggressive pruning of the

RDF triples associated with them.

The join processing algorithm for both methods of Bit-

Mat construction is the same, except that for the Basic

Method, an additional step of initialization is required (ref.

Algorithm 1).

First we construct a constraint graph4 G out of a given

join query. The constraint graph is built as follows:

1. Each triple pattern in the join query is denoted by a

tp-node in G. Hence forth we use the terms “tp-node”

and “triple pattern” interchangeably. A jvar-node in

G corresponds to a join variable in the query. Hence

forth we use terms “jvar-node” and “join variable”

interchangeably.

4This graph is reminiscent of similar terminology used in the

constraint satisfaction literature.

2. An undirected, unlabeled edge between a jvar-node

and a tp-node exists in G if that join variable appears

in the triple pattern represented by the tp-node. This

edge represents the dependency between triples asso-

ciated with the tp-node and the join variable bindings

(ref. Property 1).

3. An edge exists between two jvar-nodes if the two join

variables appear in the same triple pattern. This

undirected, unlabeled edge represents the dependency

between their bindings (ref. Property 2).

4. An edge between two tp-nodes exists if they share

a join variable between them. This is an undirected,

labeled edge with potentially multiple labels. Multiple

labels can appear if the two triple patterns share more

than one join variables. The labels denote the type

of join between the two triple patterns – SS denotes

subject-subject join, SO denotes subject-object join

etc.

For a query having no Cartesian joins5, the constraint

graph G is always connected. Figure 5 shows the constraint

graph for the join query given in Figure 3.

5.1. Initialization (Enhanced Method)

Before starting the pruning algorithm, we initialize each

tp-node by loading the triples which match that triple pat-

tern. This step differs based on the BitMat construction

method. For the Basic Method, we make use of the filter

operation as described in Section 4.2. That is, for each

triple pattern, we apply filter operation on the original

BitMat and keep only triples that satisfy the triple pat-

tern. For the Basic Method, the original BitMat is always

kept in memory.

For the Enhanced Method, we initialize the BitMat as-

sociated with each triple pattern using the four types of

5A Cartesian join is where there is no shared variable in a

set of triple patterns, and hence the result of the query is a

full Cartesian product of all triples associated with each triple

pattern.

Copyright c© 2011 All rights reserved by authors.



12

stored BitMats. In Section 3.2 we elaborated the construc-

tion of four types of BitMats viz. S-O and O-S for each P

value, P-S for each O value and P-O for each S value. We

assume that a given query does not have any triple pat-

tern with all variable positions (e.g. (?x ?y ?z). The case

of handling all-variable triple patterns is discussed later in

Section 5.6. E.g., if the triple pattern in the query is of

type (?s :p2 :o321) then we load only one row correspond-

ing to “:p2” from the P-S BitMat created for “:o321”. If

the triple pattern is of type (?s :p6 ?o) then we load either

the S-O or O-S BitMat created for “:p6”. If ?s is a join

variable and ?o is not, we load S-O BitMat and vice versa.

If both, ?s and ?o, are join variables, then the decision de-

pends on whether ?s will be processed before ?o. If a join

over ?s is processed before ?o, we load S-O BitMat and

vice versa.

If we have a triple pattern of type (:s2 ?p :o6), then first

we decide whether P-S BitMat for “:o6” has fewer triples

or P-O BitMat for “:s2” has fewer triples. If P-S BitMat

has less number of triples, then we load the P-S BitMat

by keeping only the bit corresponding to “:s2” in each row

and mask out all other bits. Note that all these operations

are done directly on the compressed BitMats.

This way, for both, Basic and Enhanced methods, at the

end of initialization step each triple pattern in the con-

straint graph G has a separate BitMat associated with it

which contains only triples that satisfy that triple pattern.

5.2. Pruning RDF Triples

First, we consider an induced subgraph Gjvar of G con-

taining only jvar-nodes. Since we do not handle queries

with Cartesian joins, by the construction of graph G, Gjvar

is also always connected (see Figure 5). Gjvar can be cyclic

or acyclic. Next, we embed a tree on Gjvar discarding any

cyclic edges. To propagate the constraints on join variable

bindings (Property 2), we walk over this tree from root to

the leaves and backwards in breadth-first manner. At ev-

ery jvar-node, we perform an intersection of the bindings

generated by its adjacent tp-nodes and after the intersec-

tion, we drop the triples from tp-node BitMats as a result

of the dropped bindings.

It can be seen that by the construction of graph G and

following the tree over Gjvar, constraints on the join vari-

able bindings get propagated to other jvar-nodes through

the tp-node BitMats (when the triples get dropped). This

procedure is elaborated in Algorithm(2) and (3).

A topological sort of an undirected tree is nothing but

enumerating all the nodes from root to leaves in a breadth-

first-search fashion. For each node in the topological

sorted list of join variables, we call prune for jvar (Lines

2 – 4 in Algorithm(2)). A topological sort ensures that

a child jvar node always gets processed after all of its

ancestors. The bitwise AND between folded bitarrays

in prune for jvar(J) computes the intersection of all the

bindings generated by the tp-nodes which contain J (Lines

2 – 5 in Algorithm(3)). According to Property 1, for any

binding dropped in the intersection, the respective triples

are removed from the BitMats associated with the tp-

nodes which contain J using the unfold operation (Lines

6 – 9 in Algorithm(3)). getDimension returns the posi-

tion of J in the BitMat of the triple pattern. For the En-

hanced Method of BitMat construction, getDimension(?n,

(?m :similar to ?n)) can return column or row depending

on whether it is an S-O or O-S BitMat. For the Basic

Method getDimension returns the position of the variable,

i.e., “subject”, “predicate”, or “object”.

Algorithm 2 Pruning Step
1: queue q = topological sort(V (Gjvar))

2: for each J in q do

3: prune for jvar(J)

4: end for

5: queue q rev = q.reverse() - leaves(Gjvar)

6: for each K in q rev do

7: prune for jvar(K)

8: end for

One such pass over all the jvar-nodes ensures that the

constraints are propagated to the adjacent jvar-nodes in

the direction from root to leaves of the tree. For the
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Algorithm 3 prune for jvar(jvar-node J)
1: MaskBitArrJ = a bit-array containing all 1 bits.

2: for each tp-node T adjacent to J do

3: dim = getDimension(J, T )

4: MaskBitArrJ = MaskBitArrJ AND fold(BitMatT , dim)

5: end for

6: for each tp-node T adjacent to J do

7: dim = getDimension(J, T )

8: unfold(BitMatT , MaskBitArrJ , dim)

9: end for

backward propagation of constraints, we traverse jvar-

nodes second time by following the reverse order of the

first pass (effectively a bottom-up pass) (Lines 5 – 8 in

Algorithm(2)). The leaves of the tree embedded on Gjvar

appear last in queue q. Since they are processed last in

the first traversal over the tree, in the second traversal, we

directly start with the parent nodes of these leaves (Line

5 in Algorithm(2)). Notably, since we take intersection of

the bindings in each pass, the number of triples in the tp-

node’s BitMat decrease monotonically as the constraints

are propagated.

During the pruning phase, we use a simple statistical

optimization technique, which we call, early stopping con-

dition. That is, while performing the pruning at each jvar-

node, at any point if the MaskBitArrJ contains all 0 bits,

that is a direct evidence of the query generating empty set

of results. If such a condition occurs we exit the query

processing at that point telling that the query has 0 re-

sults. This avoids unnecessary further processing of other

join variables and fold/unfold operations over BitMats.

At the end of Algorithm(2), each tp-node contains a

much reduced set of triples. Typically, when Gjvar is

acyclic, this set of triples is also minimal, i.e., each triple

in the BitMat of a triple pattern is necessary to generate

one or more final results. In other words, if we consider the

final result of a SPARQL/SQL query and project out the

unique triples matching each triple pattern in the query,

they will be same as the set of triples left in the BitMats

of respective tp-nodes. But this depends on the way the

Gjvar is traversed and is elaborated below in Section 5.4.

If Gjvar is cyclic, then the set of triples is not guarantied to

be minimal. But in any case, any unwanted set of triples

get dropped in the following phase of final result set gen-

eration.

SPARQL join queries that BitMat handles fall in the

category of equi-joins in the database systems. An equi-

join is where columns in different tables are joined by the

condition of equality only. Equi-join queries do not contain

FILTER conditions, e.g., “>”, “<=” or regular expres-

sions. Equi-joins in SPARQL are nothing but join queries

without OPTIONAL, UNION, or FILTER clauses. OP-

TIONAL, UNION, or FILTER queries can be processed

with additional modifications to BitMat’s join query pro-

cessing algorithm. SPARQL basic graph pattern (BGP)

queries are the building blocks of the SPARQL queries.

They are also the most performance intensive queries. In

view of space limitations and to keep the scope of this

article limited, we have not discussed ways of processing

OPTIONAL, UNION, and FILTER queries.

5.3. Results of Intermediate Joins

As explained by the pruning phase in the previous sub-

section, we monotonically go on removing triples from the

BitMats associated with each triple pattern as the prun-

ing algorithm progresses. This process is distinctly differ-

ent from the pairwise joins performed in a conventional

join query processing algorithm. For example, consider a

query (?s :p1 ?x)(?s :p2 ?y). After the first pruning, i.e.,

the intersection between bindings of ?s generated by each

triple pattern, let the number of triples remaining in the

BitMat associated with (?s :p1 ?x) be 5 and the ones in

(?s :p2 ?y) be 8. So the total number of triples are 13. In

the conventional query processor, the results of this join

will be materialized to generate (8*5) 40 intermediate re-

sults (rows). Thus by not materializing intermediate join

results, and by only removing the triples from BitMat, we

achieve a better control over the required memory for the

query processing.
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5.4. Minimal Triple Set Generation

Our pruning algorithm closely resembles the idea of

semi-joins [14, 15]. Semi-joins are half-joins which reduce

the number of candidate tuples in the tables involved in

a join, such that only the tuples necessary to produce the

final join results are left in them. Semi-join’s algorithm

ensures that a join query satisfying certain properties can

be fully reduced, i.e., all the tables involved in the query

have a minimal set of tuples. To show BitMat’s pruning

algorithm can fully reduce all the BitMats of the triple

patterns in a query we show: 1) a correspondence between

the structure of semi-join’s query graph and Gjvar, and

2) an analogy between semi-join operations on the query

graph and pruning method on Gjvar.

Semi-join: A semi-join between two tables R1 and R2

over attributes i and j is represented as R1.i ⋉ R2.j =

{r1 ∈ R1|r1.i ∈ (σi(R1) ∩ σj(R2)}. In other words, only

tuples r1 in R1 whose i attribute value exists in one of

the j attribute values of R2 are retained. Semi-joins are

restricted to only join over a single attribute between two

tables, e.g., R1.i⋉R2.j and R1.k⋉R3.l is a valid semi-join,

but R1.i⋉R2.j and R1.k ⋉R2.l is not.

Semi-joins construct a query graph GQ such that each

table in the join represents a node in GQ. If two tables are

joined over a column, there is an edge between the corre-

sponding nodes in GQ. In case of a SPARQL join query,

each triple-pattern is equivalent to a table in the SQL

join. Consider the SPARQL query on a movie database

as shown in Table 1. Treating each triple pattern in the

SPARQL query as a table, the query graph GQ created by

semi-joins is given in Figure 6. The node IDs in GQ corre-

sponding to each triple pattern are given in the adjacent

column.

In semi-joins, the query graph construction takes care

of removing redundant cycles. For example, in case of the

query graph given in Figure 6, nodes l, m, p, q, r can be

connected to each other as they all share join variable ?a.

By transitivity, (l.a = m.a and m.a = p.a) implies (l.a =

p.a). As a result, an explicit edge between nodes l and p

creates a redundant cycle. Hence all the conditions and

corresponding edges that create a redundant cycle in GQ

are dropped. Semi-join’s algorithm has proved in [14, 15]

that when GQ is acyclic, all the tables involved in the

query can be fully reduced.

Table 1: Example query

Triple Pattern Node ID in

graph GQ

?a :similar to ?b l

?a rdf:type :movie m

?a :has director ?e q

?e rdf:type :Person v

?e :name “Andy Wachowski” w

?a :has actor http://keanu.personal.com p

?a :has actress http://moss.personal.com r

?b :similar to ?c n

?b rdf:type :movie o

?c :has actor ?d s

?d rdf:type :Person t

?d :name “Leonardo DiCaprio” u

GQ
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Figure 6: Example of GQ and its line graph

BitMat Reducibility: We show BitMat’s reducibility

via semi-join’s reducibility. First we show an analogy be-

tween the structure of GQ and Gjvar. We can show that

graph Gjvar in BitMat’s pruning algorithm is a line graph

[21] of GQ. A line graph L(G) of original graph G is a

graph, such that each node in L(G) represents a unique

edge in G. Two nodes in L(G) are connected if their corre-

sponding edges in G have a common vertex between them.

As shown previously, we can construct graph GQ from

any SPARQL join query. Let GQ be an edge-labeled graph

such that the label on the edge represents the variable over

which two triple patterns are joined. For instance, edge
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(l, m) has label ?a in Figure 6. Let us construct a line

graph of GQ such that each edge in GQ is represented by

a node. Let the label of this node be same as the original

edge label. In other words we want to construct a graph

of SPARQL join query where each node is a join variable

and there exists an edge between two join variables if they

share at least one triple pattern among them. GQ can

have multiple edges having same label which gives rise to

multiple nodes with the same label, and hence redundant

cycles and cliques in the line graph. We merge all the

cliques having same node labels and represent them with

a single node. This construction is exactly same as Gjvar

which is an induced subgraph of the constraint graph G

(ref Section 5).

Next we want to show that when GQ is acyclic, Gjvar is

also acyclic. Let us define the effective degree of a node in

GQ as the number of incident edges having distinct edge

labels. E.g., node l in Figure 6 has effective degree of

2, since it has a and b as the only 2 distinct edge labels

incident on it. As per the construction of line graph of

an acyclic GQ, L(GQ) can have cycles if GQ has one or

more nodes having effective degree greater than 2. A triple

pattern in a SPARQL join query is a 3-dimensional entity

(S, P, O positions which can either be variables or fixed

values). Hence in a graph GQ of a SPARQL equijoin query,

each vertex can have maximum effective degree of 3 (when

all 3 are join variables in case of a triple pattern like (?x ?y

?z)). In the current BitMat pruning algorithm, we do not

consider triple patterns with all variable positions (each

triple patterns has at least one fixed position).

Property 4. The above construction ensures that in GQ

for a SPARQL join query, each vertex has effective degree

of 1 or 2.

Property 5. Construction of GQ ensures that a node hav-

ing a specific incident edge label “e” has at least one path

to every other node having edge “e” incident on it, such

that the only edge labels on that path are “e” (we call it

an e-path). This also implies that when GQ is a tree, two

edges cannot share the same label “e”, unless they have

an e-path between them (because there is a unique path

between any two nodes in a tree).

Lemma 1. Gjvar is acyclic if GQ is acyclic and holds

Property 4 and 5.

Proof. We prove this by contradiction. Let line graph

Gjvar have one or more cycles. We consider the shortest

cycle in Gjvar.

Case 1: Let Gjvar have a shortest cycle of length 3

formed by 3 nodes, a, b, c6. Let these nodes correspond to

3 distinct edge labels a, b, c in GQ. They will form a cycle

in Gjvar if they are incident on same node in GQ. This is a

contradiction to Property 4 as given above. Consider two

edges with labels a and b in GQ. By construction, they

share at least one node among them, say n1. n1 cannot

have any other edge label incident on it (Property 4). Let

another edge with label b share a node n2 with edge c. By

Property 5, the first and second edges with label b must

have a b-path between them. Consider another edge with

label c and an edge with label a. Let them share a node

n3 among them. By Property 5, the first and second edges

with label c have a c-path among them. Similarly the first

and second a edges have an a-path between them. This

gives rise to a cycle in GQ which is a contradiction. Hence

you cannot have a 3-cycle in Gjvar.

Case 2: Let Gjvar have a shortest cycle of length m > 3

formed by m nodes, e1..em. These nodes represent edges

with labels e1..em in GQ. These edges cannot be all inci-

dent on the same node in GQ as that will violate Property

4 and it will also give rise to a clique in Gjvar, making

the shortest cycle of length 3 which violates our original

assumption – that the shortest cycle is of length m. Con-

sider two adjacent edges e1, e2 in GQ. They share a node

among them and as per Property 4 this node cannot have

any other edge label incident on it. Consider some other

6An undirected graph cannot have a cycle of length lesser than 3.
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two edges with label e2 and e3 that share a node between

them. The first and second e2 edges have an e2-path be-

tween them. Considering this way up to edges em and

e1, let them share a node among them which is not same

as the nodes on which all earlier edges e1..em−1 are inci-

dent. But by Property 5, the second e1 edge has to have

a e1-path to the first e1 giving rise to a cycle in GQ.

Hence it is proved that Gjvar is acyclic when GQ is

acyclic with effective degree of any node 1 or 2.

Next we show a correlation between the semi-join oper-

ations on GQ and our method of traversing Gjvar in the

pruning step. Semi-joins define two operations UP and

DN on a GQ and they prove that an UP operation fol-

lowed by DN on GQ fully reduces all the tables in the

query if GQ is a tree. For that let us select any table-node

and make it the root of GQ, l is the root in our exam-

ple. Semi-joins define an UP operation as: convert GQ

into a directed graph by directing each edge upward from

child to its parent. A directed edge, say (m, l) in GQ,

represents a semi-join (Rl ⋉ Rm). Do a topological sort

of such directed GQ to get a series of semi-joins from the

bottom to the root of the tree. Lemma 4 in [15] proves

that one such bottom-up pass on directed GQ removes all

the tuples not needed for the final result generation from

the root of the tree (e.g., table l in our example). That

is – the root node is fully reduced. Further extending this

Lemma, Theorem 1 in [15] proves that a top-down pass

on GQ by following the reverse order of semi-joins fully

reduces each table in the query. This is defined as the DN

operation on GQ. Together it proves that a UP.DN pass

on GQ fully reduces each table in the query.

To complete the proof sketch for BitMat’s reducibility,

we finally show that a UP.DN operation on acyclic GQ

is equivalent to a bottom-up followed by a top-down pass

(UP.DN) on Gjvar. This in turn fully reduces the set

of candidate RDF triples. For the sake of simplicity, we

adhere to the following 2 rules:

• Rule 1: While making a bottom-up pass on GQ, when

we encounter a new edge label, say “e”, we process all

edges (corresponding semi-joins) with label “e” inGQ.

We might face a situation, where a particular “e”-edge

cannot be processed since its children are not pro-

cessed yet in the UP operation. In that case, we do

not process any of the “e”-edges until all the children

of all the “e”-edges are processed first. This restric-

tion ensures that in a bottom-up sequence of edges,

all edges with the same label appear together and are

not interleaved with any other edge labels. Due to

Property 5 outlined above, enforcing this restriction

is possible and it still gives a legitimate bottom-up

pass on GQ.

• Rule 2: We choose root node of Gjvar such that the

corresponding edge label in GQ is incident on the root

of GQ. Alternately, we can choose a root of Gjvar

first and choose root of GQ such that the edge label

corresponding to the root of Gjvar is incident on it.

Lemma 2. A bottom-up and top-down pass (UP.DN op-

eration) on an acyclic GQ is equivalent to UP.DN oper-

ation on its line graph Gjvar with respect to the ordering

between edge labels when Rule 1 and 2 above hold.

Proof. By construction of Gjvar, all the edge labels which

are incident only on the leaf nodes in GQ make the leaf

nodes in Gjvar (e.g. edge labels “e” and “d” in Figure 6).

Also the adjacency between edge labels in GQ is preserved

in Gjvar in the form of adjacency between corresponding

nodes. Hence a bottom-up pass over GQ (adhering to Rule

1) above produces a legitimate bottom-up pass on Gjvar.

We would like to point out a key difference between

semi-joins and BitMat’s pruning algorithm. In semi-

joins, a bottom-up pass over GQ in Figure 6, represents

(q.e⋉v.e, q.e⋉w.e, s.d⋉t.d n.c⋉s.c, m.a⋉q.a...l.b⋉o.b).

This means that 0 or more tuples in table q are dropped
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as a result of the semi-join between q and v, but v is not

updated. Similarly, a semi-join between q and w updates

only tuples in q. Unlike the semi-join algorithm, in case of

BitMat’s pruning algorithm, while processing a join vari-

able, say e which is shared among 3 triple patterns v, q,

w, updates are made to all 3 BitMats associated with the

respective triple patterns (ref. Lines 6 – 9 in Algorithm 3).

In this case, the set of triples left in the BitMats is a subset

of the triples left by the semi-join’s algorithm, hence Bit-

Mat’s pruning method not only fits the semi-joins concept

but also does more aggressive pruning.

Although we have proved that UP.DN operation over

Gjvar ensures minimal triple set generation, if the leaves

of the Gjvar tree are join variables associated with low-

selectivity triple patterns, it can often hamper the overall

performance. We observed that instead if we process the

join variables associated with more selective triple patterns

first (although they might not follow the order enforced

by UP.DN operation), they help in faster pruning of the

triples overall. Although it might not guaranty minimal

triple generation, this avoids the overhead of processing

non-selective BitMats first, thereby improving the query

performance. Hence as elaborated by Algorithms 2 and

3 in Section 5.2, we process Gjvar nodes in the root-to-

leaves order first (top-down pass), followed by the reverse

order of it (bottom-up pass), essentially making aDN.UP

operation instead of UP.DN. We also carefully choose the

root of Gjvar as follows.

After initialization, in a join query with n triple pat-

terns, we sort all the triple patterns first in the order of

increasing number of triples associated with them. If the

first triple pattern in this list has only one join variable,

we pick this join variable as the root of Gjvar. In case of

cyclic Gjvar it is the root of the tree embedded on Gjvar.

If it has more than one join variables, we scan through the

sorted list of triple patterns and find another triple pat-

tern that shares a join variable with the first triple pat-

tern (since constraint graph G is always connected for the

queries without Cartesian joins, we are sure to find such

a triple pattern). We then assign this shared join variable

as the root of the tree embedded on Gjvar.

After choosing the root of Gjvar, a DN pass can turn

out to be is equivalent to UP pass and vice versa if the

Gjvar has one single path in it. For example, in case of a

Gjvar having 3 join variables connected as (?a – ?b – ?c),

if either “a” or “c” is chosen as the root of Gjvar, then the

UP operation is same as DN operation and vice versa.

5.5. Generating Final Results

After the pruning phase, we are left with a much re-

duced set of triples associated with each triple pattern.

Intuitively, each BitMat of a triple pattern can be viewed

as a compressed table in a relational database. Hence, one

way of producing the results is to simply materialize these

BitMats into tables and perform standard joins over them.

But our goal is to avoid building intermediate join results;

which precludes a 2-way sequence of joins as done in a

typical SQL query processor. In our method, we build

and output an entire resulting row of variable bindings,

which is similar to multi-way joins [22].

For this process, we use at most k size additional mem-

ory buffers, where k is the number of variables in the query

(and hence the additional buffer size is negligible). We

keep a map of bindings for all k variables at a time, output

one result when all k variables are mapped, and proceed

to generate the next result.

Let us assume that a query has n triple patterns and N

is the maximum number of triples in any of the n BitMats

associated with the triple patterns. For simplicity, we de-

note BitMati as the BitMat associated with the ith triple

pattern (tpi).

A simple brute force approach can be as follows: Choose

say BitMat1, pick a triple from it. This triple will gener-

ate bindings for the variables in tp1. Store these bindings

in the map. Next pick the first triple from BitMat2 and

generate bindings for the variables in tp2. If tp2 and tp1
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share one or more join variables, check the map if the vari-

able bindings generated by both of them are the same, if

not, pick a second triple from BitMat2. Repeat this pro-

cedure until you get the variable bindings consistent with

the ones stored in the map. Then consider BitMat3 and

repeat the same procedure as described above. Repeat this

procedure up to the last BitMatn in the query. If a triple

in BitMatn generates valid bindings for all k variables

in the map, output one result. Now start with BitMat1

again and choose the second triple, store the bindings for

the variables in tp1, and repeat the same process. In gen-

eral, while generating variable bindings from any BitMati,

check all the variable bindings stored in the map.

Since BitMat is a fully inverted index structure, we in-

stead devise the following method which speeds up the

above procedure by several orders of magnitude: In gen-

eral, a BitMat having fewer triples generates fewer unique

bindings for the variables in its tp-node. This means that

in the final results of the query, these bindings will get

repeated more often in different result rows than other

bindings (just like the product of two columns where the

first column has fewer rows than the other – values from

the first column get repeated more often in the product).

Making use of this fact, we choose a BitMat as BitMat1,

which has the least number of triples, to be processed first

(similar to the way of choosing the table having least num-

ber of triples to join first), generate bindings for the vari-

ables in tp1, and store them in the map. Next instead of

picking BitMat2 randomly, we pick a tp2 which shares a

join variable with tp1. Depending on the variable bindings

stored in the map, we directly locate the triples which can

satisfy these bindings inside BitMat2. Recall that BitMat

being a completely inverted index structure, it is easy to

locate specific triples. If no such triple exists in BitMat2,

we discard the variable bindings in the map, go back to

BitMat1, and pick the second triple from it to generate

new bindings (this can happen in case of a cyclic Gjvar or

if we do a DN.UP pass on Gjvar). If BitMat2 generates

variable bindings consistent with BitMat1, pick tp3 which

shares join variables either with tp1 or tp2. Considering

the constraint graph given in Figure 5, let Gtp be an in-

duced subgraph of G having only triple patterns (tp-nodes)

and edges between them. We make use of Gtp to make the

choice of the next tp-node at every step. Hence it can be

seen that after one walk over all the tp-nodes of Gtp, if the

map has all k variables mapped to bindings, we output

one result. The procedure is repeated again until all the

triples in BitMat1 are exhausted.

The worst-case complexity of this operation is
∏n

i=1 triplesi, where triplesi are the number of triples left

in BitMat of tpi. But since we exploit the indexed nature

of BitMat and its small size with a reduced set of triples,

this process is faster than the worst case complexity.

Presently the final result generation phase doesn’t have

a facility of selecting specific variables for projection. It

always projects out bindings of all variables in the query

unless it is a “star join” (involving only one join variable

and only that is projected out in the results). However if

graph Gjvar has a single path in it and only the join vari-

able at the either end of the path is being projected out

by the SELECT clause, we can generate the final results

by following procedure. Make the SELECTed join vari-

able as the root of Gjvar, and make a single UP pass on

Gjvar. This ensures complete reduction of BitMats asso-

ciated with that join variable and we can simply project

out unique bindings of it. This will avoid the DN pass

and improve the query performance further. Similar opti-

mization can be applied depending on which variables in

the query are projected out in the SELECT clause and the

structure of G.

5.6. Memory Requirements

In our current implementation, we load the BitMat as-

sociated with each triple pattern at the beginning of query

processing and then never seek a disk access in the entire

lifespan of the query. This necessitates that for a query
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having n triple patterns it needs
∑n

i=0 size(BitMati)

amount of memory at the beginning. This poses limita-

tions for queries having triple patterns with all variable

positions (?x ?y ?z), as it is not feasible to load a Bit-

Mat for the all-variable triple pattern containing the en-

tire dataset in memory. Although this seems like a large

memory-overhead, due to our Enhanced Method of Bit-

Mat construction, and run length encoding applied on each

BitMat, for typical queries
∑n

i=1 size(BitMati) is small

due to small size of the individual BitMati (but we have

given example of an exception in the Evaluation section).

In future, all-variable triple patterns can be handled with

dynamic construction of a BitMat associated with them

after the first pass of pruning. Details of the procedure

are omitted due to space constraints. Notably, in the set

of the queries obtained from UniProt [23] and LUBM [24]

datasets, none of the queries had a triple pattern having

all variable positions. Two of the UniProt queries pub-

lished by the authors of RDF-3X [6] have an all-variable

triple pattern. But it is to be noted that these queries are

not part of the queries published by UniProt [23].

With the Basic Method of BitMat construction, han-

dling all-variable triple patterns is possible. In this case,

we simply make a replica of the original BitMat for the Bit-

Mat associated with the all-variable triple pattern. Please

note that due to this the Basic Method has restrictions on

the amount of RDF data that can be loaded in memory.

Since each triple pattern has a separate BitMat asso-

ciated with it, for highly selective queries, the memory

requirement of the contemporary query processors, using

6-way indexes (e.g. RDF-3X), can be lesser than Bit-

Mat as they do not need to load entire indexes in mem-

ory to perform joins. But notably, BitMat’s memory re-

quirement remains linear in terms of the triples associated

with the triple patterns, because it does not generate in-

termediate join results. Whereas for conventional query

processors, it can increase polynomially for low-selectivity

multi-join queries due to construction of intermediate re-

sults (e.g., T1(A,B,C) ⋊⋉A T2(A,D,E) = {〈a, b, c, d, e〉 ∈

A×B × C ×D × E | 〈a, b, c〉 ∈ T1 and 〈a, d, e〉 ∈ T2}).

Note that all the procedures described in the pruning

and final results generation phases work on a compressed

BitMat. Since the pruning phase only reduces the number

of triples in the BitMat monotonically, the memory re-

quirement of the query processor goes on reducing as the

pruning progresses and the final phase of result generation

doesn’t build join tables.

We would like to point out some key differences between

BitMat’s algorithm and a typical bitmap index join. Bit-

Mat’s structure is similar to the idea of compressed bitmap

indexes [25, 26, 27]. Typically bitmap indexes are created

on the columns having fewer distinct entries and those

which are known to participate in more joins. But in an

SQL join between multiple tables over different columns,

after the first level of join, a query processor material-

izes results of the previous join to carry out the next join

and the materialized intermediate tables do not always

have bitmap indexes (unless join-indexes are precomputed

based on heuristics). As opposed to that, BitMat’s prun-

ing and final result generation steps always use compressed

BitMats, without materializing the intermediate join re-

sults. However, currently we handle only equijoins.

6. Evaluation

BitMat structure and query algorithm is developed in C

and is compiled using g++ with -O3 optimization flag. We

evaluated both the Basic and Enhanced methods of creat-

ing BitMat. For the experiments we used a Dell Optiplex

755 PC having 3.0 GHz Intel E6850 Core 2 Duo Processor,

4 GB of memory, running 64 bit 2.6.28-15 Linux Kernel

(Ubuntu 9.04 distribution), with 7 GB of swap space on a

7200 rpm disk with 1 TB capacity.

6.1. Choice of competitive RDF stores

We had a wide choice to select the systems for compet-

itive evaluation due to the availability of numerous RDF
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triplestores. We experimented with Hexastore7 [5], Jena-

TDB [11], RDF-3X [6], and MonetDB [28].

Hexastore served as an in-memory store and the rest

as persistent stores. For the Basic Method, we load the

entire BitMat in memory before query processing. As the

query is submitted, we run the query processing algorithm

as described in Section 5.2 and 5.5. Due to the ability to

load the entire data in-memory, we compared the Basic

Method with Hexastore.

We chose RDF-3X (v0.3.3) and MonetDB (v5.14.2) –

the persistent stores – for our evaluation of the Enhanced

Method as they could load a large amount of RDF data,

gave better performance than others (e.g. Jena-TDB).

Like BitMat, Hexastore and RDF-3X map strings/URIs

in RDF data to integer IDs and mainly operate on these

IDs, building the entire result of a query in the integer ID

format. They convert the IDs to strings using their dictio-

nary mapping just before outputting the results in a user

readable format. Current BitMat system doesn’t support

a formal SPARQL query parser interface and the interface

to output the results in the string format is still under

preliminary development. Hence for a fair comparison, all

the query times reported are only the core query process-

ing times without counting query parsing or ID to string

mapping after generating the results for all the systems.

We loaded MonetDB8 by inserting the integer IDs gen-

erated out of BitMat dictionary mapping (ref. Section 3).

Hence essentially all the MonetDB queries were performed

on S, P, Os as integer IDs. We created separate predicate

tables in MonetDB by inserting the respective triples by

ordering on S-O values [28] and used these predicate tables

in the query whenever there is a bound predicate in the

triple pattern instead of the giant triple-table containing

all the triples.

7We obtained compiled binaries of Hexastore from the au-

thors.
8MonetDB was compiled using “--enable-optimization” flag

to enable highest possible optimization of MonetDB server.

6.2. Choice of datasets and queries

Due to the limitation of main-memory and the amount

of the RDF data that can be completely contained within

it, we chose smaller datasets for evaluation of the Basic

Method. To test the scalability of Basic and Enhanced

method, we chose 4 datasets of increasing sizes. The

dataset characteristics are given in Table 2. UniProt 0.2

million tripleset was extracted from the larger UniProt 845

million dataset. LUBM 6 million dataset was created over

50 universities using LUBM synthetic data generator [29],

and LUBM 1.33 billion dataset was created over 10,000

universities.

Table 2: Dataset characteristics
Dataset #Triples #S #P #O

Uniprot 0.2m 199,912 30,007 55 45,754

LUBM 6m 6,656,560 1,083,817 18 806,980

UniProt 845m 845,074,885 147,524,984 95 128,321,926

LUBM 1.33b 1,335,081,176 217,206,845 18 161,413,042

Out of these we used the smaller two datasets to build

the BitMat using Basic Method. Since Hexastore keeps all

the data including the string to ID mappings in memory,

the largest dataset it could load from our set was LUBM

6 million triples, hence we used the first two datasets to

compare BitMat’s performance with it. The other two

datasets, UniProt 845 million and LUBM 1.33 billion, were

used to build BitMats using the Enhanced Method and

were evaluated by comparing with RDF-3X and MonetDB.

For the two UniProt datasets, we used some of the

queries published by the UniProt dataset owners [23] and

we used 6 out of the 8 queries published by RDF-3X in

[6]. We modified two of the RDF-3X queries by remov-

ing some bound positions to reduce the selectivity of the

triple patterns. For the LUBM datasets, OpenRDF has

published a list of queries [24], but many of these queries

are simple 2-triple pattern queries or they are quite similar

to each other. Hence we chose only some of the representa-

tive queries out of this list. For more detailed description

of the choice of queries please refer to our previously pub-
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lished work [16]. All the queries are listed in Appendix

A.

6.3. Comparison

For the evaluation, we measured the following parame-

ters:

1. Query execution time – This is an end-to-end time

counted from the time of query submission until the

output of final results in ID form – this is the “CPU

(user + system) time”. Since the machine that we

used for query execution was not a shared machine,

we ensured that except required kernel processes,

no other miscellaneous user processes were running

on the machine while calculating query times. We

evaluated separate cold and warm cache times only

for the Enhanced Method and hence only on the

two larger datasets (UniProt 845 million and LUBM

1.33 billion triples). For cold cache, we dropped the

file systems caches using /bin/sync and echo 3 >

/proc/sys/vm/drop caches. Query times were aver-

aged over 10 consecutive runs as follows: (1) for cold

cache times – we ran each query 10 times consecu-

tively on a given system (BitMat, RDF-3X, or Mon-

etDB) by dropping the file-system caches every time

before running the query. E.g., for cold-cache perfor-

mance, Q1 (UniProt 845 million) is run on BitMat 10

times, by dropping the file-system caches every time

before running the query. Next Q1 (UniProt 845 mil-

lion) is again run on RDF-3X by same procedure and

then on MonetDB with same procedure (note that

MonetDB server is restarted while doing so). This

ensured that the file-system caches were empty while

running the query each time, (2) for warm cache times

– we ran the query first time to “warm up” file-system

caches and then ran the same query 10 times consec-

utively. The procedure of running the query 10 times

is same as described above for cold-cache method ex-

cept that we did not drop file-system caches in be-

tween the consecutive runs. BitMat and RDF-3X do

not run as servers. They are stand-alone applications

which execute each query independently. MonetDB

runs as a server, and hence for cold-cache times, we

restarted MonetDB every time along with dropping

file-system caches. But for warm-cache times, we nei-

ther restarted MonetDB nor dropped the file-system

caches. Please note that for the Basic Method the

original BitMat containing the entire RDF data al-

ways remains in memory once the BitMat process is

started. Hence there is no cold-cache time reported

for this structure.

2. Initial number of triples – the sum of triples matching

all the triple pattern in the query.

3. The number of final results.

4. BitMat filter time – For the evaluation of the smaller

datasets with the Basic Method, we measured another

parameter – time taken for the filter operation in the

initialization step (ref. Section 4.1). This helped us

gain an insight into the overheads in query processing

which are discussed further. In the Enhanced Method,

for a triple pattern with at least one fixed position, the

BitMat associated with it can be directly loaded from

the disk as outlined in Section 5.1 without the need

of filtering from the entire set of triples.

The evaluation is given in Tables 3 and 4. Geometric

mean* is the geometric mean of the query times excluding

the ones on which one or the other RDF stores failed to

complete the processing.

Note that our current BitMat query processing system

does not use any sophisticated cache management (like

MonetDB) and also does not mmap datafiles into the mem-

ory (like RDF-3X). Due to this, as opposed to RDF-3X and

MonetDB, in most of the queries over the larger datasets,

the difference between our cold and warm cache times was

not very high.
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Table 3: Small RDF datasets – in-memory comparison (time in seconds, best times are boldfaced)

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Geom. Mean

UniProt 0.2 million triples

BitMat (Basic) 0.019 0.046 0.22 0.022 0.036 0.017 0.037

BitMat filter time 0.01 0.018 0.014 0.021 0.019 0.012 0.015

BitMat (Enhanced) 0.0063 0.033 0.090 0.0018 0.033 0.0023 0.011

Hexastore 0.0011 1.67 7.28 0.04 0.025 0.007 0.067

#Results 1 696 28600 137 28 1

#Initial triples 6622 27470 35235 9046 41 2

LUBM 6 million triples

BitMat (Basic) 1.69 1.00 10.31 0.19 0.81 11.05 0.42 0.55 1.27

BitMat filter time 0.54 0.49 0.66 0.17 0.49 0.60 0.31 0.21 0.39

BitMat (Enhanced) 0.86 0.65 1.05 0.0063 0.67 1.11 0.016 1.44 0.29

Hexastore 0.66 3.35 75.69 0.02 1.16 104.04 0.02 26.99 1.96

#Results 130 5916 2199 146 1874 2188 125 54052

#Initial triples 7302 17778 77160 292 5635 83066 280 108104

6.3.1. Smaller Datasets (Basic Method)

Since Hexastore keeps all the data including their string

to ID mappings in memory, it failed to load the LUBM 6

million dataset on our original evaluation platform having

4 GB of physical memory. Hence we used another machine

with much higher physical memory (32 GB) to evaluate

over LUBM 6 million dataset.

From the evaluation of the smaller datasets in compari-

son to Hexastore, it was apparent that for highly selective

queries, producing very small number of results, Hexas-

tore came out as a winner against the Basic Method (e.g.,

Q1, Q5, Q6 of UniProt 0.2 million dataset and Q1, Q4,

Q7 of LUBM 6 million dataset). But for queries involv-

ing large number of initial triples, involving two or more

join variables BitMat performed better (e.g., Q2, Q3, Q4

of UniProt 0.2 million dataset and Q2, Q3, Q6, Q8 of

LUBM 6 million dataset). Specifically, Q2, Q3 and Q6

of LUBM-6m data, have cyclic dependency among their

join variables (ref. Section 5.2). Hence the minimal triple

set generation in the pruning step is not guarantied. For

Q2 and Q6, BitMat did much better than Hexastore. It

is our hypothesis that due to three join variables with a

cyclic dependency between them, Hexastore could not ex-

ploit the advantage of “merge-joins” using 6-way indexes

and had to resort to the conventional way of joins while

performing later joins.

During the evaluation of smaller datasets, we also mea-

sured the time taken for the filter operation in the initial-

ization step. This time is given in the evaluation Table

3. It was noted that in the query evaluation, the filtering

time constituted a large part, especially for queries with

highly selective triple patterns producing smaller number

of results. For example, Q1, Q5, Q6 of UniProt-0.2m and

Q4 and Q7 of LUBM-6m datasets are such queries. We

also noted that most of the queries had at least one fixed

position in their triple patterns. While evaluating Basic

Method over larger datasets (up to 100 million triples) we

noted that due to inherent limitation of the main memory

size, we cannot load and process very large datasets using

this method. We also compared the Basic Method to the

Enhanced method (warm cache) – which eliminated the

filter operation – and noted the significant improvement

in query times (ref. Table 3). This further motivated

our idea of using the Enhanced Method instead the Basic

Method.

6.3.2. Larger Datasets (Enhanced Method)

Among the larger datasets, for Q1, Q2 of UniProt-845m

and Q1, Q2, Q3 of LUBM-1.33b BitMat excelled over,
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Table 4: Large RDF datasets (time in seconds, best times are boldfaced)

UniProt 845 million triples

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8

Cold cache

BitMat 451.365 269.526 173.324 9.396 78.35 1.34 9.33 13.06

MonetDB 548.21 303.2134 124.3563 9.63 97.28 11.28 9.91 15.93

RDF-3X Aborted 525.105 244.58 1.38 4.636 0.902 0.892 1.353

Warm cache

BitMat 440.868 263.071 168.6735 8.305 77.442 0.448 8.36 10.87

MonetDB 495.64 267.532 113.818 0.584 96.02 0.822 0.861 0.362

RDF-3X Aborted 487.1815 226.050 0.077 1.008 0.0064 0.003 0.0299

#Results 160,198,689 90,981,843 50,192,929 0 179,316 0 0 19

#Initial triples 92,965,468 73,618,481 78,840,372 16,626,073 60,260,006 15,408,126 16,625,901 53,677,336

Q9 Q10 Q11 Q12 Q13 Geom.

Mean

Geom. Mean*

(without Q1)

Cold cache

BitMat 11.43 10.49 15.56 26.98 17.37 25.775 20.304

MonetDB 21.37 21.39 12.33 2.468 12.884 27.891 21.761

RDF-3X 1.718 1.549 3.268 2.804 1.765 N/A 4.268

Warm cache

BitMat 9.78 8.69 14.13 25.19 15.77 21.754 16.929

MonetDB 0.611 0.563 0.71 0.744 1.02 3.845 2.565

RDF-3X 0.047 0.0469 0.547 0.295 0.0486 N/A 0.255

#Results 2 28 8893 2495 9

#Initial triples 19,312,584 20,594,986 20,951,969 38,141,013 38,064,279

LUBM 1.33 billion triples

Q1 Q2 Q3 Q4 Q5 Q6 Geom.

Mean

Geom. Mean*

(without Q1)

Cold cache

BitMat 51.21 2.71 6.56 2.45 0.503 3.81 4.0285 2.4227

MonetDB 109.35 27.17 455.23 34.12 18.89 14.6 48.3195 41.0377

RDF-3X Aborted 34.868 2328.753 0.588 0.425 1.129 N/A 7.4474

Warm cache

BitMat 48.57 2.11 1.94 0.686 0.27 2.85 2.1719 1.1666

MonetDB 96.65 6.56 398.46 3.209 0.566 0.542 7.9301 4.8094

RDF-3X Aborted 29.033 2028.6855 0.0024 0.0029 0.1814 N/A 0.5947

#Results 2528 10,799,863 0 10 10 125

#Initial triples 165,397,764 224,805,759 219,416,877 438,912,513 3,000,966 9,100,649

both, RDF-3X and MonetDB. Notably, UniProt Q1, Q2

had a high number of initial triples and the join results

were quite unselective. As was our initial conjecture,

BitMat did much better on such queries. On the other

hand, LUBM Q1 and Q3 were more complex queries hav-

ing a high number of initial triples associated with the

triple patterns, but the final number of results were quite

small (2528 and 0 respectively). These queries too have

cyclic dependency among their join variables, which does

not guaranty minimal triple generation and can poten-

tially prohibit conventional query processors from exploit-

ing merge-joins.

For these queries BitMat was up to 3 orders of magni-

tude faster than RDF-3X and MonetDB due to its way of

producing join results without materializing the intermedi-

ate join tables. RDF-3X aborted while executing UniProt

Q1 and LUBM Q1 as the system ran out of its physical

memory and swap space on the 4GB Dell PC. We executed
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the same queries on RDF-3X on a higher configuration

server having 16 GB physical memory. Please note that

the 16 GB machine was used only for the specific queries

where RDF-3X aborted on the 4 GB Dell PC and we are

reporting these times on 16 GB machine for investigating

the query performance further. All other queries were run

on same 4 GB Dell PC using the same procedure as out-

lined in Section 6.3. RDF-3X processed UniProt Q1 in

858.464 sec and was observed to consume ∼11 GB resi-

dent memory. For LUBM Q1, RDF-3X took 1613.178 sec

and the peak memory consumption was ∼11 GB. For these

queries BitMat took 448.169 and 50.70 sec, and consumed

∼2.6 GB and ∼3 GB, respectively, on the same server.

A “star join” query is the one where many triple pat-

terns are joined on one variable, the query has only one

join variable, and that variable is projected out in the fi-

nal results. LUBM Q2, Q4, Q5 were star-join queries. For

star-joins, BitMat worked much better, because our query

processor doesn’t need to load the BitMats of all the triple

patterns in memory. It just loads the pre-computed row

or column bitarrays of each BitMat associated with the

triple pattern (ref. Section 3.2). The final result genera-

tion phase consists of just listing out the 1-bit positions

from the bitwise AND of the loaded bitarrays (similar to

the bitmap index joins). Notably, although Q2 has only

two triple patterns in it, each has very low selectivity and

the query generates a lot of results compared to query Q4

and Q5.

RDF-3X did very well on the UniProt queries Q7-Q10,

Q12, Q13. These queries have a lot of triple patterns, with

many having bound predicate and object positions which

make them highly selective. Also many of these triple

patterns join on one variable where RDF-3X’s method of

Sideways Information Passing worked much better. The

number of results produced by these queries were highly

selective too (less than 30 results for 5 out of 6 queries).

In the case of UniProt Q4, Q5, Q7-Q10 BitMat did bet-

ter than MonetDB (cold cache), but RDF-3X still out-

performed BitMat (Q7-Q10 are the queries published by

RDF-3X). For Q6 the margin of difference between cold

cache times of RDF-3X and BitMat was quite small. But

in case of Q5, the difference was quite high. Further dissec-

tion of BitMat query processing times revealed that initial-

ization and pruning phases were very fast, but more than

90% of the time was spent in the last phase of the result

construction. The reason behind this is – our current data

structures and result enumeration algorithm are not tuned

to exploit the “locality” in memory while generating the

final results. This query has only one join variable but all

the variables in the query get projected in the results. On

the other hand, for UniProt Q11-Q13, more than 90% of

the query processing time was spent in the initialization to

load the BitMats associated with each triple pattern. In

the future, this effect can be alleviated by implementing a

“lazy loading” of the BitMats associated with the tp-nodes

– instead of loading all the BitMats at the beginning, one

can wait until the very first join and then load only the

required portion of the BitMat in the unfold operation.

To summarize the results – for complex join queries with

low-selectivity intermediate results, BitMat outperformed

all 3 other triplestores – Hexastore, RDF-3X, and Mon-

etDB – by a significant margin. Although for queries with

highly selective triple patterns generating fewer results,

other triplestores performed better. This re-emphasizes

our initial goal of targeting low-selectivity queries with our

novel query processing algorithm.

In view of these results, we would like to mention one

specific LUBM query which turned out be an outlier

(LUBM Q7 of LUBM-1.33b data). RDF-3X aborted due

to the system running out of memory on the 4 GB Dell

PC. BitMat took several hours to process this query, al-

though the processor clock showed that the query spent

only ∼200 seconds actually executing on the processor.

MonetDB processed it in 449.048 sec. For further investi-

gations, we evaluated this query on the server having 16

GB of memory and we found the following:
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• BitMat finished processing this query in 139.94 sec on

the 16 GB memory server. The peak resident mem-

ory consumption was reported to be 6.3 GB, and on

an average the process consumed 5 GB of the resi-

dent memory. The BitMat associated with tp-node

‘?x ub:takesCourse ?z’ was very large, ∼3.4 GB, hav-

ing 288,017,530 triples (22% of the total triples) in

it – largest among all the predicates. Thus, on the

4 GB Dell PC, BitMat process spent a lot of time

in the kernel waiting for the pages to be allocated.

MonetDB handled this situation well due to its bet-

ter cache-memory management.

• MonetDB processed this query in 136.082 sec, but the

peak resident memory consumption was 9 GB, and on

an average the process consumed 8.6 GB of resident

memory.

• RDF-3X processed the same query in 66.139 sec on

the same server, but its peak resident memory con-

sumption was 14 GB and on an average it consumed

13 GB of resident memory for most of the lifespan of

the query.

This query has 442,351,492 initial triples associated with

it – largest among the listed LUBM-1.33b queries – and

generates 439,994 results. We believe that with a “lazy

loading” strategy along with “proactive cache manage-

ment” BitMat would be able to handle these type of

queries in a better manner in future.

6.3.3. Index Sizes and Construction Time

The on disk size of the BitMats created with the Ba-

sic Method for UniProt 0.2 million data is 1.6 MB and

for LUBM 6 million data is 61 MB. The cumulative size

of BitMats created with Enhanced Method are 6.3 MB

and 202 MB respectively for the same datasets. We used

an external Perl script to parse the raw triples and build

string to ID dictionary mapping. The total time for pars-

ing the UniProt 0.2 million and LUBM 6 million data was

6sec and 126sec respectively. The total time to construct

Basic BitMats for UniProt 0.2 million and LUBM 6 mil-

lion data was 0.1sec and 4sec respectively. Comparing the

index sizes with the query performance (ref. Table 3),

it was apparent that the Basic Method offers benefit of

saving a lot of disk space, but suffers from the overheads

of filter operation required while processing the queries.

We observed that as the size of the data increases, the

encoding size needed to store the entire row in the Basic

Method of BitMat creation increases very fast prohibiting

loading of very large datasets. Hence as the size of the

data increases, it becomes beneficial to store the data us-

ing Enhanced Method and take the advantage of avoiding

the filter operation which constitutes significant amount

of query processing time.

The on disk cumulative size of all BitMats created with

the Enhanced Method was 48 GB and 67 GB for UniProt

845 million and LUBM 1.33 billion data respectively and

corresponding LZ77 compressed dictionary mappings were

3.2 GB and 1.8 GB. These BitMat sizes include the size of

the meta-file too. But note that for any given query with

n triple patterns, the runtime memory requirement is just
∑n

i=1 size(BitMati); which is typically a much smaller

fraction of the total datafile size. For RDF-3X and Mon-

etDB the on-disk size of datafiles were 42 GB and 16 GB

for UniProt-845m, and 70 GB and 25 GB for LUBM-1.33b

respectively. Note that MonetDB’s storage requirements

do not include dictionary mapping, because we loaded

RDF triples in integer ID representation in MonetDB.

It took ∼12 hours to parse and build dictionary map-

pings of LUBM data and ∼9 hours for UniProt data. Af-

ter parsing the data, the S-O, O-S, P-S, P-O BitMats for

UniProt and LUBM were built in 41 and 56 minutes re-

spectively. This process is much faster than parsing due

to our method of building the compressed bit-row of a

BitMat directly without building an uncompressed array

first using the ID based triples sorted on their S, P, O

positions (details of this process are omitted due to space
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constraints).

7. Conclusion and Future Work

In this article, we have demonstrated a new method

– BitMat – of storing a large number of RDF triples in

a compressed format. This method can be implemented

with Basic or Enhanced way of constructing the BitMats.

Basic Method packs all the RDF triples in a single BitMat

using much lesser disk space, but it suffers from the over-

heads of filter operation while executing queries, as well

as the increase in the encoding size required to encode a

compressed row in the BitMat for larger datasets. On the

other hand, in case of the Enhanced Method, although

the cumulative disk storage of the compressed BitMats is

larger than the Basic Method, it avoids the overhead of

filter operation.

As shown in our extensive evaluation, our novel join

query processing algorithm delivers 2-3 orders of magni-

tude better performance than the state-of-the-art triple-

stores, specifically for queries with non-selective triple pat-

terns. This is due to our way of not materializing the

intermediate join results and keeping the data in the com-

pressed BitMat form in memory. This ensures a smaller

memory footprint even for queries involving a large num-

ber of triples. For queries with highly selective triple pat-

terns, the contemporary triplestores, e.g., RDF-3X and

MonetDB work better, because of their optimization tech-

niques which are tuned for highly selective queries.

Presently we process only equijoin queries, but BitMat’s

structure and pruning algorithms can as well be integrated

with a conventional query processor to achieve fast prun-

ing of RDF triples for the other class of SPARQL queries,

e.g., OPTIONAL, UNION, FILTER, which can involve

underlying equijoin operation. With dynamic BitMat con-

struction, we can handle all-variable triple patterns. A

BitMat can also be thought as a compressed adjacency

matrix between subject and object nodes, classified as per

predicates. Therefor this structure can also be used for

performing graph operations on the RDF data where the

conventional in-memory graph data structures can be pro-

hibitive as the size of the graph increases, and this is the

focus of our future work.
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Appendix A. Queries

Appendix A.1. UniProt 0.2 million

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX uni: <http://purl.uniprot.org/core/> PREFIX uni2:

<http://purl.uniprot.org/>

Q1: SELECT ?protein ?name ?gene WHERE { ?protein rdf:type :Pro-

tein . ?protein uni:name ?name . ?protein uni:gene ?gene . ?gene

uni:name “CRB” .}

Q2: SELECT ?protein ?annotation ?range ?begin ?end WHERE { ?pro-

tein rdf:type :Protein . ?protein uni:annotation ?annotation . ?an-

notation rdf:type :Transmembrane Annotation . ?annotation uni:range

?range . ?range uni:begin ?begin . ?range uni:end ?end . }

Q3: SELECT ?protein ?author ?title WHERE { ?protein rdf:type

uni:Protein . ?protein uni:modified ?modified . ?protein uni:citation

?citation . ?citation uni:author ?author . ?citation uni:title ?title .}

Q4: SELECT ?protein ?related WHERE { ?protein rdf:type uni:Protein

. ?protein ?p uni2:keywords/482 . ?protein rdfs:seeAlso ?related .}

Q5: SELECT ?gene ?name ?text WHERE { ?annotation rdf:type

uni:Disease Annotation . ?annotation rdfs:comment ?text . ?protein

rdf:type uni:Protein . ?protein uni:gene ?gene . ?gene uni:name ?name

. ?protein uni:organism uni2:taxonomy:9606 . ?protein :annotation ?an-

notation .}

Q6: SELECT ?protein ?x ?s WHERE { ?protein rdf:type :Protein .

?protein uni:organism uni2:taxonomy:287 . ?protein uni:sequence ?s . ?s

rdf:value ?x .}

Appendix A.2. LUBM 6 million

PREFIX ub: <http://www.lehigh.edu/˜zhp2/2004/0401/univ-

bench.owl#>

Q1: SELECT ?x ?y ?z WHERE { ?z ub:subOrganizationOf ?y . ?y

rdf:type ub:University . ?z rdf:type ub:Department . ?x ub:memberOf

?z . ?x rdf:type ub:GraduateStudent . ?x ub:undergraduateDegreeFrom

?y . }

Q2: SELECT ?x ?y ?z WHERE { ?x rdf:type ub:UndergraduateStudent

. ?y rdf:type ub:Department . ?x ub:memberOf ?y . ?y

ub:subOrganizationOf <http://www.University0.edu> . ?x

ub:emailAddress ?z . }

Q3: SELECT ?x ?y ?z WHERE { ?y ub:teacherOf ?z . ?y rdf:type

ub:FullProfessor . ?z rdf:type ub:Course . ?x ub:advisor ?y . ?x rdf:type

ub:UndergraduateStudent . ?x ub:takesCourse ?z}

Q4: SELECT ?x WHERE { ?x rdf:type ub:GraduateStudent . ?x

ub:memberOf <http://www.Department0.University0.edu> . }

Q5: SELECT ?x ?y ?z WHERE { ?x rdf:type ub:GraduateStudent . ?y

rdf:type ub:Department . ?x ub:memberOf ?y . ?y ub:subOrganizationOf

<http://www.University0.edu> . ?x ub:emailAddress ?z . }

Q6: SELECT ?x ?y ?z WHERE { ?x rdf:type ub:UndergraduateStudent .

?y rdf:type ub:AssistantProfessor . ?z rdf:type ub:Course . ?x ub:advisor

?y . ?y ub:teacherOf ?z . ?x ub:takesCourse ?z . }

Q7: SELECT ?x ?y WHERE { ?x rdf:type ub:FullProfessor . ?y

rdf:type ub:Department . ?x ub:worksFor ?y . ?y ub:subOrganizationOf

<http://www.University0.edu> . }

Q8: SELECT ?x ?y WHERE { ?x rdf:type ub:Course . ?x ub:name ?y

.}

Appendix A.3. UniProt 845 million

Q1: SELECT ?modified ?author ?citation ?title ?protein WHERE {

?protein rdf:type uni:Protein . ?protein uni:/modified ?modified . ?pro-

tein uni:citation ?citation . ?citation uni:author ?author . ?citation

uni:title ?title .}

Q2: SELECT ?a ?vo ?b ?ab ?x ?z ?p WHERE { ?a uni:encodedBy ?vo

. ?a schema:seeAlso ?x . ?b uni:sequence ?z . ?b uni:replaces ?p . ?b

rdf:type uni:Protein . ?a uni:replaces ?ab . ?ab uni:repla-cedBy ?b . }
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Q3: SELECT ?a ?x ?vo ?b ?ab ?z ?p WHERE { ?a schema:seeAlso ?x

. ?a uni:encodedBy ?vo . ?b uni:sequence ?z . ?b uni:replaces ?p . ?b

uni:modified “2008-07-22” . ?b rdf:type uni:Protein . ?a uni:replaces ?ab

. ?ab uni:replacedBy ?b . }

Q4: SELECT ?name ?gene ?protein WHERE { ?protein rdf:type

uni:Protein . ?protein uni:encodedBy ?gene . ?gene uni:name “hup” .

?protein uni:name ?name }

Q5: Same as Q4 in UniProt 0.2 million data

Q6: SELECT ?p2 ?interaction ?p1 WHERE { ?p1 uni:enzyme

uni2:enzyme/2.7.7.- . ?p1 rdf:type uni:Protein . ?interaction

uni:participant ?p1 . ?interaction rdf:type uni:Interaction . ?interac-

tion uni:participant ?p2 . ?p2 rdf:type uni:Protein . ?p2 uni:enzyme

uni2:enzyme/3.1.3.16 .}

Q7-Q10: Same as Q1, Q3, Q6, Q8 in [6] respectively.

Q11: Same as Q6 in UniProt 0.2 million data

Q12-Q13: Same as Q5 and Q7 respectively in [6],

Note: We project all the variables in the queries Q7-Q10, Q12, Q13

above.

Appendix A.4. LUBM 1.33 billion

PREFIX ub: <http://www.lehigh.edu/˜zhp2/2004/0401/univ-

bench.owl#>

Q1: Same as Q1 in LUBM 6 million data

Q2: Same as Q2 in LUBM 6 million data

Q3: SELECT ?x ?y ?z WHERE { ?x rdf:type ub:Undergraduate-Student.

?y rdf:type ub:University . ?z rdf:type ub:Department . ?x ub:memberOf

?z . ?z ub:subOrganizationOf ?y . ?x ub:under-graduateDegreeFrom ?y

. }

Q4: SELECT ?x WHERE { ?x ub:worksFor <http://www.-

Department0.University0.edu> . ?x rdf:type ub:FullProfessor . ?x

ub:name ?y1 . ?x ub:emailAddress ?y2 . ?x ub:telephone ?y3 . }

Q5: SELECT ?x WHERE { ?x ub:subOrganizationOf <http-

://www.Department0.University0.edu> . ?x rdf:type ub:Research-

Group}

Q6: Same as Q7 in LUBM 6 million data

Q7: Same as Q3 in LUBM 6 million data
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