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Abstract 
This paper describes the design and implementation of a new Time Warp simulator, 
called DSIM that targets clusters comprised of thousands of processors.  DSIM employs a 
novel technique for efficient, scalable GVT computation, called the Time Quantum GVT 
algorithm that requires no message acknowledgement and relies on constant-length 
messages. In addition, DSIM implements a Local Fossil Collection mechanism that 
alleviates the overhead associated with memory reclamation and an efficient event 
management to ensure fast event manipulation during simulation. It is also equipped with 
a simple programming interface to ease programming and debugging of simulations.  
Experimental results obtained on the PHOLD benchmark demonstrate that DSIM can 
process as many as 228 million events per second on 1033 processors. 

1. Introduction 
 
Clusters have steadily and gradually become the main stream of high performance 
computing platforms – the numbers of clusters among the top 500 supercomputer list 
(http://www.top500.org/) jumped from 208 in November 2003 to 291 in June 2004, an 
increase of 40% in merely 7 months. It is unlikely that this trend will not continue in the 
future, as technological progresses on single processors and fast interconnection networks 
made clusters much easier and more cost-effective to build from commodity components 
than ever before. 
 
The popularity of clusters brings a new challenge to PDES (Parallel Discrete Event 
Simulation) research.  Historically, at different stages of development, parallel discrete 
event simulators have always targeted the most widely available platforms at the time.  
For instance, the first generation Time Warp simulators [1-3] were usually designed for 
parallel computers, especially MPP (Massively Parallel Processing) machines. When 
shared-memory computers become more prevailing in the nineties, the second generation 
Time Warp simulators, such as GTW [4] and ROSS [5], were developed to support this 
type of parallel computers.  Today, as clusters are starting to dominate high-end 
computing, new Time Warp simulators capable of running efficiently on networks of 
distributed processors are particularly desired.   
 
There are some Time Warp simulators such as WARPED [6] and ParaSol [7] that were 
initially designed for distributed memory parallel computers.  One may argue that these 
simulators can be portable to clusters with a little effort, as modern clusters may exhibit 



behavior that is close or comparable to distributed memory MPP computers, in aspects 
such as bandwidth, latency, and scale.  However, little data have been available to prove 
these simulators’ effectiveness on thousands of processors.  In fact, the largest Time 
Warp simulations that have ever been attempted, in terms of the number of processors 
used, to the best of our knowledge, were executed on 64 processors [8, 9].  Hence, it is 
natural to wonder whether Time Warp simulators running on large-scale clusters can 
attain satisfactorily good performance.  

DSIM was developed to support efficient Time Warp simulation on distributed clusters 
with thousands of processors.  At the heart of DSIM is a new GVT (Global Virtual Time) 
algorithm, referred to as the Time Quantum GVT (TQ-GVT) algorithm that does not 
require message acknowledgement, and relies on short messages with constant length.  
This paper demonstrates that TQ-GVT is able to deliver a continuous stream of up-to-
date GVT values with minimum delays during simulation. It achieves this by devoting 
one or more processors to running the core of the GVT algorithm.  In view of the large 
number of processors involved in the simulation on a large cluster, such a solution is 
more efficient then delaying all processors by a small fraction of time in a distributed 
implementation of the GVT computation. 

In addition to the new GVT algorithm, DSIM uses a modified fossil collection 
mechanism called Local Fossil Collection, as well as a careful implementation of the 
event management mechanism.  However, DSIM is not just about performance.  An 
equally important aspect of DSIM design is to demonstrate that it is possible to improve 
the programmability of a parallel discrete event simulator without sacrificing its 
efficiency.   

The primary goal of this paper is to introduce the basic features of DSIM to make readers 
aware of the availability of yet another Time Warp simulator.  The PHOLD model was 
simply chosen as a non-trivial modeling problem, but it is yet to be demonstrated if the 
reported performance will be repeatable for other types of models.  Likewise, it is yet to 
be established if new features of DSIM are indispensable for high performance of Time 
Warp on large-scale clusters.  Still, it is safe to predict that some features, such as the new 
GVT algorithm, may play a larger role in enabling superior performance than, for 
example, those that are conceived merely for improving programmability.  

The paper is organized as follows. Section 2 introduces the basic ideas behind the Time 
Quantum GVT algorithm.  Section 3 presents DSIM implementation details, including 
Local Fossil Collection and the memory efficient event management mechanism.  Section 
4 describes the programming interface of DSIM in detail.  Section 5 presents the 
experimental results of DSIM running on two different yet popular clusters.  Section 6 
concludes the paper by providing a summary of the basic features of DSIM and a vision 
of its future development. 



2. Time Quantum GVT Algorithm  

The GVT is defined as the minimum of local simulated times on all processors and 
timestamps of all messages in transit.  A good GVT algorithm is critical to the overall 
performance of a Time Warp simulator.  A processed event earlier than the GVT will not 
be subject to rollback under any circumstances, and therefore its associated memory can 
be released permanently.  With more accurate GVT estimate, more obsolete memory can 
be reclaimed, decreasing the chance for a performance loss resulting from the memory 
system bottleneck.   

Numerous GVT algorithms [10-22] have been proposed for distributed execution of Time 
Warp.  Some of them depend upon message acknowledgement [12, 14, 16] to track those 
messages that are still in transit when the GVT computation is being conducted.  Others 
[11, 17, 19] utilize Vector Clock or similar structures whose size is proportional to the 
number of processors.  Still others [10, 13, 15, 18] take a distributed and passive 
approach, which requires the processor in need of memory to send out a special token 
message that will traverse all other processors.  Synchronization-based GVT algorithms 
[20-22] rely on global reductions to determine whether previously sent messages have all 
been received. 

Instead of implementing one of these GVT algorithms, yet another GVT algorithm, 
referred to as Time Quantum GVT (TQ-GVT), is contributed to the already rich 
repository.  Its uniqueness relies on allocating a processor, called the GVT master, 
exclusively to the GVT computation.  Its name comes from the fact that the simulated 
time is divided into a continuous sequence of time quanta with equal width, somewhat 
similar to the approach used in [22].  A GVT master monitors the numbers of sent and 
received messages within each time quantum for all simulating processors reporting to it.  
If the two numbers associated with a given time quantum are equal, then all messages 
sent during this time quantum must have already been received and they will not be 
counted when computing the new GVT value.  This well-known method of accounting 
from transient messages can be traced back to Mattern [19]. 

The use of an exclusive processor for GVT computation may appear an obstacle to 
scalability, since it is basically a centralized approach.  Nevertheless, one or more levels 
of intermediate GVT masters can be introduced, each of which keeps track of the number 
of transient messages in each time quantum for a subset of processors.  These numbers 
must then be reported to the root GVT master, which in turn determines whether or not 
there are still messages in transmit from each time quantum and calculates the GVT 
accordingly.  Empirically, one GVT master can drive as many as 128 simulating 
processors, so an extra level of intermediate masters could easily increase the number of 
simulating processors to 16,384 and if this is not sufficient, another level of GVT masters 
can be added.  A very small percentage of processors, 129 out of 16,513, or merely 0.78 
percent, will not be directly participating in the simulation. Hence, such a solution is 
suitable for clusters in which the numbers of processors involved in a computation are 
large.  



An essential feature that makes TQ-GVT scale so well is that it overlaps GVT 
computation with other tasks.  Simulating processors are only engaged in processing 
events and transmitting and receiving messages. With regards to GVT computation, they 
just need to send report messages periodically, and receive GVT messages as they come.  
If GVT messages do not come on time, simulating processors are never delayed or 
blocked, as in the case of some other algorithms.  As a result, only the masters are 
involved in a significant computation of the GVT; the cost of GVT computation for 
simulating processors is non-blocking send of a report message at the end of each 
quantum and non-blocking receive of the new GVT value if there is a GVT message. 
Thus, this solution eliminates two problems: (i) the large latency of the interconnection 
network often found in clusters, and (ii) the asynchrony that causes different processors 
to reach the synchronization point at vastly different wall-clock times when the number 
of involved processor exceeds, say, 1000. 

On the first glance, the TQ-GVT looks similar to the LBTS algorithm that chops the 
simulation time into bands or epochs [22].  However, this superficial similarity 
disappears as soon as one considers the fact that the performance study in [22] was 
limited to 16 processors.  Three essential differences distinguish TQ-GVT from the 
LBTS algorithm.   First, in [22] multiple reductions may be needed within each band for 
all transient messages sent during the previous band to be received, while in TQ-GVT, 
each simulating processor is guaranteed to sent only one report message and receive at 
most one GVT message per time quantum.  Second, in [22] during each band every 
processor must perform both global reduction and event processing. This, unfortunately, 
increases the latency of handling global reduction messages because, to maximize the 
event rates, a certain number of events must be consecutively processed before checking 
the message receive buffer.  In contrast, in TQ-GVT, simulating processors can focus on 
event processing and message exchanges.  It is the GVT master that carries out the global 
reduction, and it can respond to GVT-related messages more quickly than simulating 
processors, since this is its only job.  Third, and perhaps the most important one, TQ-
GVT never delays or blocks simulating processors at the end of the time quantum, and 
hence no temporary disturbances on communication can impact the progress of time 
quanta.  In [22], however, a new band may start only after all transient messages from the 
previous band have been accounted for. 

Two methods can be used for advancing time quanta.  The first method depends upon a 
hardware clock to advance the time quantum at fixed intervals.  Clocks on different 
processors, however, need not be precisely synchronized, since a processor that is too far 
ahead or behind only causes some messages to be counted in the next time quantum.  The 
other method simply requires that the GVT master broadcast a special message 
periodically, upon the receipt of which each simulating processor will advance the time 
quantum.  The latter method requires more bandwidth. 

The algorithm is briefly described below:  

• At the beginning of the simulation, all processors, including the GVT master, 
perform barrier synchronization. 



• When a message is sent, it is always marked with the current time quantum of the 
sender. 

• During the ith time quantum, the jth simulating processor keeps track of Si,j, the 
number of messages sent by itself, OTi,j, the smallest timestamp among all 
messages sent in this quantum, and {Rk,j}, an array of integers indicating the 
number of messages received marked with a time quantum k.   

• At the end of the time quantum i (i.e., when it is time to move to the next time 
quantum), the jth processor reports Si,j, OTi,j, {Rk,j}, as well as i, the current time 
quantum index, and Ti,j, the local virtual time, to the GVT master.  As an example, 
suppose that a processor, in the time quantum 10, has sent 6 messages, with a 
smallest timestamp being 35.3, and received 9 messages.  Among these 9 received 
messages, 3 were sent at time quantum 10, 2 at time quantum 9, 4 at time 
quantum 8.  Besides, the local virtual time at the end of the time quantum 10 is 
40.8 (the local virtual time must take into account the messages received in this 
time quantum).  The processor will then report 10, 40.8, 35.3, 6, and {3, 2, 4} to 
the GVT master.  

• The GVT master maintains three arrays. The first one is {TMi}, for the number of 
transient messages from each time quantum. The second one, {MVTi}, records the 
smallest timestamp among all messages sent from each quantum. The last one, 
{LVTj}, stores the local simulated time of each processor.  

• When receiving a report message for processor j, the GVT master first obtains the 
time quantum index i, and then updates its three arrays according to the following 
rules: 

o TMi += Si,j 
o For each k in {Rk,j}, TMk -= Rk,j 
o If ( OTi,j < MVTi ) MVTi = OTi,j 
o LVTj = Ti,j 

• The new GVT value is the minimum among {LVTj}, and {MVTi} for such i that 
TMi is a non-zero.  More formally: 

o  GVT = min( mini(MVTi| TMi>0), minj(LVTj)) 

In the above version of the algorithm, the report message contains an array of integers 
each of which denotes the number of received messages marked with the corresponding 
time quantum.  In the DSIM implementation, a maximum length is imposed on this array, 
by limiting the reporting of received messages to the oldest time quantum active at this 
processor (the smallest k such that Rk,j>0), and possibly several others that follow 
immediately. By doing so the correctness of the algorithm is not affected; the only effect 
may be that the GVT will be conservatively computed. This happens in an infrequent 
case in which at most a limited number of time quanta corresponding to the maximum 
length of the received time quantum array allowed in the report message can be removed 
from consideration at the end of a time quantum.  In practice, an array of size 2 to 4 gives 
the optimal performance.  Hence, only 2 or 4 such numbers need to be sent to the GVT 
master, no matter how many processors are used.   

The correctness of the algorithm can be proved by showing that any event message m1 
received after a GVT value gvt is received must have a timestamp ts(m1)≥gvt.   



Proof. We prove this property by contradiction using induction.  

Let’s assume that ts(m1)<gvt and i1 is the processor that sent this message at time 
quantum s1. Let j1 be the time quantum from which the last report message sent by 
processor i1 that was received by the GVT master before gvt value was obtained.  It 
cannot be that ts(m1)≥Ti1,j1, since Ti1,j1 is taken into account in computing gvt, so 
Ti1,j1≥gvt.  Neither it could be that s1≤j1, since then ts(m1) would be reflected in the MVT 
value corresponding to s1 , contradicting our assumption that ts(m1)<gvt. Hence, s1>j1 and 
ts(m1)< Ti1,j1, so there must be another message m2, sent by a different processor i2, which 
caused a rollback on processor i1, and satisfies gvt<ts(m1)<ts(m2), as rollback never 
affects the events with the same or earlier timestamps than the timestamp of the rollback 
message itself. From that it follows that this message also satisfies s2>j2, where s2, j2 are 
analogs of s1, j1. 

By induction, let’s assume that there is a message mk, sent by processor ik, such that 
gvt>ts(mk) and sk≤jk, where jk denotes the latest time quantum on processor ik that is 
included in computing gvt and sk is the time quantum at which message mk was sent. It 
cannot be that ts(mk)≥Tik,jk, since Tik,jk is taken into account in computing gvt, so Tik,jk≥gvt. 
Hence, ts(mk)< Tik,jk, so there must be another message mk+1, sent by a different processor 
ik+1, which caused a rollback on processor ik, and satisfies gvt<ts(mk)<ts(mk+1). We define 
sk+1, jk+1 as analogs of sk, jk. For message mk+1, it cannot be that sk+1≤jk+1, since then 
ts(mk+1) would be reflected in MVT value corresponding to sk+1, contradicting our 
conclusion that ts(mk+1)<gvt. 

Hence, by induction we conclude that our assumption that ts(m1)<gvt implies that there is 
an infinite sequence of messages with time stamps smaller than gvt, which contradicts the 
basic premise that each simulation can generate only a finite number of messages in the 
finite simulation time gvt. 

3. Implementation Details 
 
In this section, several techniques related to memory usage are described to provide the 
readers with an understanding of the inner workings of DSIM.  Although some similar 
techniques may have been proposed in other systems, a combination of them used in 
DSIM defines the exact design under which the experiments presented in this paper have 
been run, thereby allowing replication of those experimental results. 

3.1. Local Fossil Collection 

In Time Warp, a processed event becomes a fossil when its timestamp is smaller than the 
GVT, and the operation of releasing memory allocated for such events is called fossil 
collection.  Events cannot be immediately released after having been processed because 
of possibility of rollbacks. Hence, they must be kept in memory until fossil collection is 
performed.  Usually, there are two ways of maintaining these processed events.  The first 
approach uses a single processed event list for all LPs (Logical Processes) on one 
processor.  The main drawback is that, when rollbacks occur on some LPs, it becomes 



difficult to keep the entire list sorted.  If the list becomes unsorted, then the entire list has 
to be scanned in order to know which events are subject to fossil collection.  GTW used 
an on-the-fly technique [23] to partially solve this problem, by checking events with local 
minimum timestamps and ignoring other events.  However, there may exist some 
processed events with timestamps earlier than GVT that cannot be reclaimed by this 
technique. 

The other approach to maintaining processed events is to keep a separate processed event 
list on each LP.  The problem of unsorted lists no longer exists because it is always the 
head (the latest one) of the processed event list that needs to be rolled back first.  
However, it introduces another problem.  As explained in [5], it is costly to search 
through all those processed event lists during fossil collection, especially when the 
number of LPs is high.  ROSS [5] solved this problem by grouping LPs into kernel 
processes, thereby helping to reduce the number of processed event lists.  Another 
technique [24] is to sort these processed event lists further by their tails (the earliest ones) 
so that those lists with a tail larger than the GVT can be completely skipped. 

DSIM adopts the separate processed event list approach, in which fossil collection is not 
carried out when the GVT is updated.  Instead, each LP checks if the GVT has been 
updated before it is about to process an event.  If so, it will then compare the earliest 
processed event with the GVT.  Only if the GVT has been recently updated and if the 
earliest processed event is earlier than the GVT will the LP invoke the fossil collection 
procedure.  Otherwise fossil collection will be bypassed.  Although this technique does 
not decrease the number of operations, it improves the locality of memory references, 
since the event memory released in the fossil collection procedure can be immediately 
reused in the processing of the new event (if there are new events to be scheduled).   

Local Fossil Collection comes with its own drawbacks.  First, if an LP suddenly becomes 
inactive after a highly active period and before the GVT is updated, it will have no new 
events to process and consequently will not be able to perform fossil collection.  Second, 
delaying fossil collection until an LP is processing an event may increase memory usage, 
as more processed events will stay in the memory. 

3.2. Event Management 

Event allocation and deallocation are often operations that are the most frequently 
executed during discrete event simulation.  Low-level system calls cannot be directly 
used, since such calls cannot be guaranteed to finish in a constant time.  To minimize the 
cost of these operations, DSIM creates a customized event allocator for each event type.  
The rationale is that in C/C++, for objects of the same type, the memory footprint is 
always the same.  The actual amount of memory used may vary from one object to 
another, but any extra memory must be explicitly obtained, and this is not a responsibility 
of the simulator. 

Since event allocators only handle events of equal sizes, they can pre-allocate a number 
of memory buffers in a free buffer pool.  To handle a request for a new event, the event 



allocator simply retrieves one buffer from the free buffer pool.  If the pool is empty, it 
will acquire more buffers for it, using the low-level memory allocation function.  When 
an event is to be released, its buffer is returned to the free buffer pool. 

In DSIM, an unprocessed event becomes a processed one after it has been processed, and, 
conversely, a processed event becomes an unprocessed one after it has been undone.  To 
save memory and to avoid unnecessary memory operations, however, both events are 
represented by the same data structure, with a flag denoting the status of the event.  
Therefore, within this single event data structure, there are two data blocks, one for the 
processed event and the other for the unprocessed one.  DSIM is capable of overlying one 
over the other, to save memory further, as these two blocks are never needed at the same 
time during execution. 

DSIM adopts the direct cancellation approach proposed by Fujimoto [25] for intra-
processor events and extends it to inter-processor events.  When a new inter-processor 
event is to be created and scheduled for an LP in another processor, the event is packed 
into a positive message.  A stub event, containing only the timestamp of the new event, 
the message identifier, and the receiving LP identifier, is left behind to preserve the event 
dependency.  The stub event, treated in the same way as other intra-processor events, will 
be inserted into the dependent list of the event that scheduled the new inter-processor 
event.   

When receiving a positive message, an LP must unpack the message to restore the inter-
processor event, and store the sender LP identifier and the message identifier into an 
input queue.  To cancel an inter-processor event, an anti-message is created from the 
corresponding stub event.  When the receiver LP sees the anti-message, it will check its 
input queue for presence of an inter-processor event to be canceled by comparing the 
message identifier and the sender LP identifier.  In this way, the output queue can be 
completely avoided, while the input queue is still retained, but only for inter-processor 
events. 

4. Programming Interface 

DSIM comes with a simple programming interface that hides many implementation 
details while providing much freedom for programmers in making design decisions.  To 
build a simulation, a DSIM programmer must first define the types of events, and then 
implement the LPs that comprise the simulation, and finally complete several auxiliary 
functions according to certain rules. 

4.1. Event Declaration 

The following syntax is used to create a new event type named new_event_t: 

typedef tw_event_t < positive_data_t, anti_data_t, type_id> 
new_event_t; 



In the above statement, positive_data_t, the positive data type, is the type of the data 
stored in the unprocessed event, while anti_data_t, the anti-data type, is the type of the 
data stored in the processed event.  The third parameter type_id is the identifier of the 
event type.  It must be different for each event type so that the LP can determine what 
event has happened by checking this field of the event. 

4.2. State Saving versus Reverse Computation 

The positive data type is decided by the simulation model semantics.  The determination 
of the anti-data type is more difficult.  Normally, it is determined by what data are needed 
in order for the event to be reversible.  DSIM supports two styles of undoing events, one 
is traditional state saving (infrequent state saving is not supported) and the other is based 
on reverse computation [26].  If the former is taken, the anti-data must basically store any 
change made by the processing of an event.  For reverse computation, generally, much 
less information needs to be stored in the anti-data.  For example, if an ordinary random 
number generator is used during the event processing, then the anti-data must contain the 
random seed before the event arrives, which can be written back to the random number 
generator if the event is to be reversed.  This is traditional state saving.  In contrast, a 
reversible random number generator [26] can be used, which can go back to the original 
state after the reverse function is called. 

4.3. Implementing LPs 

An LP class must be derived from the base class tw_lp.  There are five functions of tw_lp 
that can be overridden: Start, Stop, Process, Undo, and Commit. 

The Start and Stop functions are called when the simulation is started and stopped, 
respectively.  The Process function processes an unprocessed event, while the Undo 
function revokes a processed event and brings the LP to the previous state. 

The Commit function is called when a given processed event is to be reclaimed.  This 
gives the LP an opportunity to perform irreversible operations, such as printing to the 
standard output or some others I/O actions.  If the event contains some pointer to 
allocated memory, it is also in this function that the memory can be released. 

The Commit function is useful for debugging as well.  In a PDES program, most 
programming errors would cause the total number of processed events to be different 
when the number of processors varies.  Locating the first event that is incorrect is 
difficult, since a processed event may be rolled back later.  A customized Commit 
function would allow only those committed events (processed events earlier than the 
GVT) to be printed out.  By comparing the outputs of a program running on different 
numbers of processors, incorrect events can be quickly identified. 



4.4. Auxiliary Functions 

Programmers must also implement several auxiliary functions in order for the simulation 
to work properly.  These functions include id_to_proc, which returns the identifier of the 
processor where a given LP resides, and id_to_lp, which converts the identifier of the 
given LP to the pointer to this LP.  In DSIM, each LP has a unique integral identifier that 
is used to address them.  For instance, to schedule an event for an LP, the identifier of 
that LP must be provided.  DSIM will then call the id_to_proc function to determine 
whether the destination LP is in the same processor.  If so, it will call the id_to_lp 
function to obtain the address and forward the event.  Otherwise, DSIM will simply pack 
the event into a message and then send it to the destination processor. 

Another function that must be implemented by the programmer is tw_main.  In this 
function, a predefined DSIM simulation engine must first be initialized.  This simulation 
engine is then used to create a set of LPs and to initialize them one by one.  After setting 
the parameters of the simulation engine and calling its Setup function, the Run function, 
which contains the main scheduler loop, must be called to run the simulation.  The 
simulation terminates after the return from the Run function. 

4.5. Shared/Distributed Memory 

Although DSIM was designed for distributed memory clusters, it supports shared-
memory machines as well.  The reason for dual mode support is that shared-memory 
machines, while limited by the number of processors, may be a more convenient platform 
to program, debug, and test PDES programs.  The only difference between these two 
modes is in the creation of LPs.  In the distributed mode, the program is only responsible 
for creating LPs that are assigned to the current processor, while in the shared-memory 
mode the program must create all LPs no matter which processor they are assigned to.  
The GVT algorithm proposed by Xiao et al. [27]  is adopted for the shared-memory 
version. As integral identifiers rather than addresses, are used to address LPs, the 
programming can completely ignore the differences between these two modes until they 
have to create LPs, which can be accomplished by merely a few lines of code. 

4.6. Artificial Rollback 

Another feature of DSIM is that it provides a special debug mode to facilitate debugging 
PDES programs.  If the program is compiled with a macro DSIM_AR, artificial rollbacks 
will be introduced even though the simulation is executed on a single processor.  This is 
achieved by using an error-prone priority queue that does not always find the earlier 
unprocessed event.  Instead, with an adjustable probability, this queue may retrieve a 
randomly chosen, arbitrary event in the queue.  Therefore, LPs will receive out-of-
timestamp order events even when there is only one processor.  The advantage of this 
technique is that errors are now reproducible, so the sequence of rollbacks remains the 
same every time the program is executed.  In contrast, a PDES program with a regular 
priority queue running on multiple processors tends to produce different orders of 



execution, and therefore errors may appear or disappear during different runs, making the 
program extremely hard to debug. 
 

5. Experimental Results 

Experiments have been performed on two different clusters, in order to evaluate the 
performance and scalability of DSIM with respect to the PHOLD model [9].  The first set 
of experiments was carried out on a cluster of 40 nodes, where each node is an IBM 
Netfinity server with two 700-MHz Intel Pentium III processors, half of which connected 
by fast Ethernet and the other by Gigabit Ethernet.   

In the PHOLD model [9], each event stays at an LP for an exponential time and then 
departs to one of four nearest neighbors randomly chosen. In all experiments present here 
the number of initial events per LP is always 16.  LPs are organized into a two 
dimensional X by Y grid, where X is the number of columns and Y is the number of rows.  
Let N denote the number of processors used. 

Strip partition by columns is selected so that each processor has a sub grid of X/N by Y to 
simulate.  One metric, the ratio of remote events (or inter-processor events), is of 
particular importance in asserting the performance of any Time Warp simulations.  For 
the PHOLD model that is partitioned by columns, the ratios of remote events can be 
easily deduced from X and N as follows.  Only two columns in each processor, the 
leftmost and the rightmost, may generate events that must be sent to a different processor. 
However, on average only 1 out of 4 such events produced by LPs on these two columns 
will actually depart.  Therefore, the fraction of remote events is N/(2X). 

It must be noted that strip partition does not result in fewest remote events.  It is block 
partition, which divides the entire grid into two-dimensional tiles, that leads to the lowest 
percentage of remote events when X=Y.  However, one goal of the performance studies 
here is to demonstrate the scalability of DSIM with different ratios of remote events, so 
block partition is not implemented. 
 
It is also worth to note that although the PHOLD model may seem to be a toy example, it 
is indeed difficult to be parallelized, because there is no lookahead, and because the event 
granularity is extremely low.   Some real-world models, such as PCS networks [28], 
exhibit similar event behaviors as PHOLD, only with higher ratios of local events and 
coarser event granularity.  Successful parallelization of the PHOLD model may shed 
some light on this class of real-world applications. 
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Figure 1.  Performance of DSIM on a Netfinity Cluster with Fixed Percentages of 

Remote Events 

The first set of experiments was designed to demonstrate how DSIM scales with different 
percentages of remote events (Figure 1).  The number of processors marked on the 
horizontal axis does not count the GVT master.  Here, the problem size was increased 
linearly as more processors were used.  The percentages of remote events ranged from 
3.125%, to 6.25%, 12.5%, and 25%.  The actual percentages of remote events were 
slightly higher, since there were anti-messages.  It is evident from Figure 1 that the 
performance of DSIM drops as remote events increase, due to the extra time needed for 
sending and receiving messages. 

In Figure 1, DSIM is also compared with a sequential discrete event simulator that uses 
the same simulation engine but with facilities to handle rollbacks and to exchange 
message being removed.  The overhead of parallelization becomes manifest when 
comparing this simulator with the sequential execution of DSIM, which is at least twice 
slower.  More interestingly, with decreasing numbers of columns, the performance of the 
sequential simulator improves while that of DSIM on one processor drops.  The former 
happens because of shrinking memory footprints with fewer LPs. The latter results from 
the use of a particular parameter called event batch which controls the number of 
consecutive events that can be processed in a single batch.  With more remote events, this 
parameter must be decreased, and therefore the performance declines. 

The performance gap between 1 processor and 2 processors hints the overhead of remote 
events.  The event-processing rate may grow or drop when 2 processors are used as 
opposed to 1, depending on the percentage of remote events.  However, in all cases 
starting from 2 processors, DSIM maintains almost linear increases in event rates, 
implying an excellent scalability of the simulator. 
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Figure 2.  Performance of DSIM on a Netfinity Cluster with Fixed Problem Sizes 
 

In the second set of experiments running on the same cluster, the number of LPs 
simulated was fixed but the numbers of processors varied (Figure 2).  Four 
configurations, namely, 1024 by 1024, 512 by 2048, 256 by 4096, and 128 by 8912, give 
different ratios of remote events.  As these results indicate, DSIM is capable of 
simulating about 10 millions events per second using 64 processors, with 3.25% remote 
events (the 1024 by 1024 configuration).  When the ratio of remote events increases to 
25% (the 128 by 8192 configuration), DSIM is still able to process more than 3 million 
events per second.  For this configuration, the improvement of using 64 processors over 
32 processors is minor, but with 32 processors the ratio of remote events drops from 25% 
to 12.5% as in this set of experiments the problem size is fixed. 
 
What is the speedup on 64 processors?  Unfortunately, for the presented performance 
studies, the term speedup loses its precise meaning.  All four configurations, each of 
which contained 1 million LPs and 16 million events shown in Figure 2 could not be 
executed on less than 8 processors due to the memory requirement (even if the efficient 
sequential simulation engine were to be used), so it was impossible to measure how fast a 
sequential simulation of the same problem size would be.  If, on the other hand, the data 
presented in Figure 1 are to be used to derive speedups, the results would be biased 
against parallel execution, since models of different sizes are simulated, and larger sizes 
mean slower sequential speedup, as evident in Figure 1.  Even so, the speedup of parallel 
execution on 64 processors of a 1024 by 1024 grid versus efficient sequential execution 
of a much smaller size (16 by 1024) is still 20.3.   
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Figure 3.  Numbers of Remote Events/GVT Messages in the 1024 by 1024 configuration 

Figure 3 shows the numbers of remote events and GVT messages in the 1024 by 1024 
configuration.  The numbers of GVT messages stay roughly the same for different 
numbers of processors as they are proportional to the product of the execution time and 
the number of processors, which in turn is proportional to the workload.  This is because 
the frequency of GVT updates is controlled by the width of time quanta.  In all 
experiments presented in this paper, this width is 0.1-0.2 seconds, meaning that the GVT 
value can be updated 5-10 times per second.  Notice the logarithmic scale used in the 
vertical axis – the ratios of GVT messages to remote events are 0.39%, 0.68%, 1.3%, and 
2.6% respectively.  These numbers illustrate the extremely low overhead of the TQ-GVT 
algorithm even with a high GVT update frequency. 

Another set of experiments was run on an Alphaserver cluster consisting of 750 nodes, 
connected by a Quadrics interconnection network, located at Pittsburgh Supercomputing 
Center.  This cluster was ranked 34th on the top 500 supercomputer list as of November 
2004. Each node is a SMP with 4 1-GHz processors and 4 Gbytes of memory.  Figure 4 
depicts the event processing rates of DSIM on up to 1024 simulating processors.  The 
numbers alongside each data point denote the number of extra processors that were used 
for GVT masters.  It has been empirically determined that a GVT master in the TQ-GVT 
algorithm can drive as many as 128 processors without degrading the performance 
noticeably (whether more processors can be supported is yet to be decided).  Therefore, 
2, 4, and 8 intermediate GVT masters were introduced for 256, 512, and 1024 processors 
respectively.  

The number of columns increases as more simulating processors are added, to maintain 
constant 6.25% remote events.  A performance curve similar to those in Figure 1 is 
observed in Figure 4.  In the 1024 processor case, which actually used 1033 processors, 
67,108,862 LPs were simulated, yielding an event processing rate of 228 million events 



per second, and a speedup of 296 (again, this speedup is somehow unfair to parallel 
execution since it is impossible for any single CPU to execute a simulation this large).  
Since each LP was assigned 16 events initially, at any moment during the simulation 
there were totally 1,073,741,824 events. 
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Figure 4.  Performance of DSIM on the PSC Cluster with Fixed Percentages of Remote 

Events 

 

6. Conclusion and Future Works 

As clusters become more prevailing, more and more PDES applications will be executed 
on this type of parallel computers.  DSIM was developed under such an assumption. The 
major difficulty of porting PDES applications to clusters is designing an efficient and 
scalable GVT algorithm.  The Time Quantum GVT algorithm adopted by DSIM meets 
these requirements.  Furthermore, various improvements, such as Local Fossil Collection 
and efficient event management, enable DSIM to run with an unprecedented speed of 228 
million events per second.  As the same time, the programmability of DSIM has been an 
equally important design consideration to ensure that a programmer can quickly get 
familiar with the simulator. 

DSIM is freely available at http://www.cs.rpi.edu/~cheng3/dsim.  More simulations will 
be implemented to verify its performance for various applications.  The Time Quantum 
GVT algorithm will continue to be improved to enable Time Warp simulations on tens of 
thousands or even millions of processors. Moreover, as DSIM is an open source project, 
it is hoped that it will provide a standard simulation platform for researchers to 
implement and test various PDES algorithms. 
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