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Abstract

Di�use gliomas are brain tumors that invade the surrounding normal tissue by an aggressive
di�usion process. This di�use invasive behavior a�ects the prognosis adversely, and renders radical
treatment impossible. Current mathematical models to quantify and analyze a cancer tumor are not
scalable due to their enormous complexity. We developed a scalable, graph theoretical model, based
on the spatial relationship between the cells, to quantify the properties of the invasion. The graph
theoretical model is used by a machine learning algorithm. The learning algorithm uses graph metrics
to distinguish (1) gliomas from surrounding normal tissue, and (ii) gliomas from in
ammation. We
tested the algorithms on real data to validate the proposed approach.

1 Introduction
Cancer is an uncontrolled proliferation of cells that express varying degrees of �delity to their precursors.
Neoplastic process entails not only cellular proliferation but also a modi�cation of the di�erentiation of
the involved cell types. Thus, in a sense cancer may be viewedas a burlesque of normal development
[1].

Di�use (malignant) gliomas are brain tumors that possess the capability to in�ltrate the surrounding
healthy brain tissues by an initially non-destructive migrational manner. The biological basis for glioma
invasion constitutes a complex process involving cell-to-cell interaction, adhesion to the exctracellular
matrix, tumor cell motility, and enzymatic remodeling of th e extracellular space [12]. Although the
state of art medical imaging improved the detection of gliomas; quanti�cation of the extent of invasion,
prediction of biological behavior, and radical surgical removal in individual cases remains a challenge.

Mathematical modeling of cancer and quanti�cations of its properties has been a focus of intensive
research [2, 3, 6, 4, 7]. However, current computational andmathematical models at the cellular level
are not scalable. Some of these approaches are based on Monte-Carlo algorithm [6, 7]. Others are
based on formulating continuous di�erential equations and �nding probability generating functions to
model the cell behavior. Clearly, solving large number of equations or simulating millions of cells with
Monte-Carlo algorithms have prohibitive computational complexity. Thus, addressing the scalability
problem requires new algorithmic approaches and new models.

This work o�ers novel mathematical technique to model a cancer tumor. It is based on examination
of the coordinates of individual cells in a sample tissue to construct a cell-graph. The mathematical
properties of the cell-graph are computed to identify subgraphs that represent di�erent biomedical phe-
nomena in the sample tissue. The identi�cation is done by a machine learning algorithm that is trained
over numerous samples under human (expert) supervision. The learning algorithm can successfully
distinguish (1) gliomas from surrounding normal tissue, and (ii) gliomas from other invasions such as
in
ammation.
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The graph theoretical approach is motivated by the fact that many real-world, self-organizing,
complex dynamic systems can be represented by graphs. Furthermore, precise metrics are available to
quantify the properties of these graphs and identify their characteristics. One example is the Hollywood
movie star network, obtained by drawing a line between two actors if they played in the same movie.
This network is derived from 150,000 movies and has 300,000 nodes. Another one is the WWW graph
in which each page is a node and eachurl is a directed link. This graph has billions of nodes and several
billions of links (it was based on 1999 data). Similarly, the Internet router graph has hundreds of
thousands nodes and links. Another example is the USA power grid network which has approximately
5,000 nodes. Collaboration network among the mathematicians with 70,000 nodes and 200,000 links
(1991-1998 data) is another example. Finally, the tiny neural network of C-elegance worm with 300
nodes (neurons) shares common properties with the earlier mentioned, much large networks. Although
the size and domains of these graphs are very di�erent, it is possible to distinguish them from random
graphs [5] using some of the metrics that are adapted in this work as well.

In this work we report our initial results that we can constru ct a cell-graph from sample tissue
images, and deploy a learning algorithm that distinguishesbetween di�erent regions in the tissue based
on the graph metrics. The proposed approach is scalable since graphs with order of millions nodes can
be tackled to compute the metrics of interest.

The remaining of this paper is organized as follows. In Section 2, we de�ne our methodology to
construct a graph from given tissue information. The topological properties de�ned on this graph are
explained in Section 3. We give our experimental results andtheir interpretations in Section 4. Section
5 concludes and explains the possible future research directions.

2 Methodology
The methodology used in this work is summarized in Figure 1. The �rst step is to obtain tissue images
from the surgically removed clinical data. Staining process of the data enables us to see and take their
images under a microscope. Using these images of tissue samples, we develop a tool to distinguish and
recognize di�erent type of cells, e.g., healthy, cancer or in
amed cells. These steps are illustrated as the
next components of this �gure.

In this work, our approach is based on construction of cell-graphs from the tissue images. A cell-
graph is denoted byG = ( V; E) where the vertex (node) set represents the nucleus of cellsand the edge
set E de�nes a locality relationship between them. The cell-graph is obtained after the following steps
(these steps are visualized in Figures 4 and 5 on a sample image):

1. First we determine the cell locations in a tissue image. This problem requires to distinguish
the cells from their background. We usek-means clustering algorithm which is based on the
color information of the pixels [8]. After setting the cluster vectors on our training samples, our
pathology expert analyzes the cluster information and assign classes to the cluster vectors, i.e., he
labels these clusters as either cell or non-cell regions. Welabel pixels as 1 if they are cells and 0
otherwise. This information is to be used in all of our tissuesamples (during testing).

2. Next we transform the cell information to identify the nod es (vertices) of the graph. The main
di�culty here is the noise: in glioma samples, there are too many cells with di�erent sizes as well
as coinciding cells. The noise prevents a one-to-one mapping between a cell and a node. Moreover,
if a one to one mapping were possible, then the number of nodesin our graph would be dependent
on the number of cells, which makes the computation hard for very large tissue cells.

Our approach to this problem is to embed a grid over the sampleimage, and calculate the proba-
bility of a grid entry being a cell. For each entry, we compute the probability value as the average
of the label of pixels located in this entry. We apply a threshold (node-threshold) to the computed
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Figure 1: A general view of our system. In the �rst component the tissue image is extracted from
the clinical data surgically removed from the patients. The second component (image processing)
distinguishes cells from their background. Third component extracts the cell-graphs, and the metrics
are computed on them in the fourth component. The last component is the classi�cation tool that
classi�es the di�erent type of cells, e.g., healthy in
amed.
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probability values and the values greater than the node-threshold are labeled as cells, whereas the
others are labeled as background. This step can also be considered as downsampling of the image
obtained in Step 1. Note that the resolution of a tissue imagedetermines the complexity of whole
process.

We have two control parameters in this step: (i) the size of the grid, and (ii) the node-threshold
value. Increasing the node-threshold value produces sparser graphs and the grid size determines
the downsampling rate. At the end of this step the spatial information of the nodes is translated
to their locations on a 2D grid.

3. The last step is to de�ne the edge set to connect the nodes found in Step 2 to construct the graph.
In this step, we use spatial information, which are the locations of the nodes in a 2D grid. We
de�ne an edge-threshold such that any two nodes are to be connected if the distance between
them is smaller than the edge-threshold. This threshold a�ects the connectivity of the graph.
Increasing the edge-threshold results in denser graphs.

We compute six di�erent metrics on the resultant graphs, re
 ecting their di�erent topological prop-
erties. The metrics are used by a machine learning algorithmto classify di�erent cell concentrations as
cancerous, normal or in
ammation. The learning algorithms used in this paper are brie
y explained
next.

2.1 K -means Algorithm
The k-means algorithm is an unsupervised learning algorithm that clusters the data based on their
features [8]. As its name implies we havek cluster vectors and each sample belongs to one of the
clusters whose center is the closest to that sample. After assigning the sample to one of the clusters,
the sample is represented by this cluster vector.

K -means algorithm is trained as to minimize the distances between the samples and their corre-
sponding cluster vectors. We begin with random cluster vectors, and after assigning each sample to its
closest vector, cluster vectors are recomputed as the mean of all samples that belong to them. This
continues iteratively until reaching a convergence point.

In this work, we use k-means algorithm to cluster the color information of the tissue images, where
the color information is represented by red-green-blue (RGB) values. Each cluster vector, which is also
composed of RGB values, represents the group of colors.

Obviously k-means algorithm is unsupervised learning and after learning one must assign classes to
the determined clusters. In this work we have classes ofcell and background, and our expert assigns
them to each cluster vector.

2.2 Arti�cial Neural Networks
A neural network is composed of nodes (perceptrons) that are tied with weighted connections. Each
perceptron takes a vector of input values and computes a single output value as the weighted sum of
its input values. The output value is activated only if exceeds the threshold de�ned by an activation
function [9, 10]. Figure 2 shows a single perceptron with inputs x i and output o. In this �gure, weights
wi are associated with each input, wherew0 is a bias term.

In this work, we use multilayer perceptrons; the outputs of each layer are connected to the inputs of
another layer. In this work, inputs, x i are the topological metrics, and the output, o, is the class label,
indicating whether a cell is cancerous, healthy or generated as synthetically. The input layer is connected
to a hidden layer with weights wij and the hidden layer connects to a output layer with weightsvij . A
multilayer network used in this work is illustrated in Figur e 3. Note that in cell classi�cation we use
six di�erent local metrics which are explained in detail in t he next section.
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Figure 2: A single perceptron.

Figure 3: One of the multilayer perceptron used in this work. The inputs are the local metrics de�ned
for the nodes of the extracted graphs. The output indicates whether a cell is cancerous, healthy or
generated synthetically.
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3 Metrics
Metrics on a graph re
ects its topological properties, and provides information of its characteristics.
The metrics de�ned in this section are most commonly used in analyzing the other types of graphs, e.g.,
Internet, actor or C-elegance worm graphs. These metrics quantify the information about the degree
distribution of a node, the connectivity information of its neighbors, and the connectedness information
of itself as well as the whole graph. Metrics de�ned on the nodes are local, but by using statistics, they
also provide the global information for the graph. A precisemapping from these metrics to properties
of glioma cells is outside the scope of this work and left for future study. We simply use these metrics
to identify and distinguish mathematical properties of gliomas from other cell structures.
1. Degree is the most trivial metric and it is de�ned as the number of the connections of a single node
for an undirected graph. Its value on a tumor graph is higher,but the higher degree values are not
always an indicator of a cancer.
2. Clustering coe�cient re
ects the connectivity information in the neighborhood environment of a
node [11]. They provide the transitivity information [13], since it controls whether two di�erent nodes
are connected or not, if they are connected to the same node.

We use clustering coe�cient Ci which is de�ned as the percentage of the connections betweenthe
neighbors of nodei , and it is given as:

Ci =
2 � E i

k � (k � 1)
(1)

where k is the number of neighbors of nodei and E i is the existing connections between its neighbors.
Random and scale-free graphs can be distinguished by using the clustering coe�cient C. Random

graphs have small values of clustering coe�cientsC, whereas scale-free graphs have larger values than
those of the random graphs. We also observe larger values forour tissue images. This indicates the
scale-free-ness of our graphs. This also means that our cell-graphs are not random.

We also use modi�ed version of the clustering coe�cient de�ned in [11]. Clustering coe�cient D i is
de�ned similar to Ci with an exception. It also considers nodei and its connections in the computation
of the clustering coe�cient [11]. The formula of D i is given as:

D i =
2 � (E i + k)
k � (k + 1)

(2)

3. Closeness and betweenness are local metrics that measure the connectedness of a graph [13]. The
closeness of a node is the average of the distances between the node and every other nodes except itself.
It re
ects the centrality property of a single node and smaller values indicate that this node places close
to the center of a graph. Betweenness of a node is the total number of the shortest paths that pass
through this node. These metrics may indicate the location of a cell within the tumor. For example,
having a smaller closeness value or higher betweenness value may suggest that the cell is close to the
center of the tumor.
4. Eccentricity of a node is a local metric de�ned as the minimum number of hopsrequired to reach
at least 90 per cent of its reachable nodes. The higher valuesof this metric may indicate the density of
the di�use invasion.

4 Experiments
The experiments are conducted on clinical data for brain tumors. We use the digital images of surgically
removed tissues to construct a graph representing the data as explained in Section 2. Each pixel of
these images is represented by its RGB values.
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Tissue image (normal cells) Clusters of k-means (normal cells) Cell representation (normal cells)

Tissue image (cancer cells) Clusters of k-means (cancer cells) Cell representation (cancer cells)

Figure 4: Extracting cell information: k-means algorithm i s used to �nd the clusters and each cluster
is assigned as cell or background.k is taken as 17.
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(a) Tissue image (b) Cell representation (c) Applying a grid

(d) Averaging (e) Thresholding (f) Graph representation

Figure 5: The steps to extract a graph from cell information (grid size = 50, node-threshold = 0.1,
edge-threshold = 1). These images are obtained on a cancer cell-graph.

We run the k-means algorithm on the data to learn cluster vectors on training samples and we use
these cluster values for our test samples. We have tried various k values and based on the clusters, and
based on human expertise have labeled these clusters as either cell or background. We illustrate these
steps in Figure 4 for both cancer and normal tissues. Remark that the images in this graph are from
the test set and are not used in training. The value ofk is selected as 17 in this graph.

After determining the cell and background regions, the nodes are to be extracted on these data.
The grid is embedded on them (Figure 5-c), and for each entry of a grid, a probability value of having
a cell is computed by averaging the labeled data in the grid entry. Note that we label cell regions as
1, and the background as 0 (Figure 5-d uses gray scale levels to represent the average values). A pair
of cells are connected if the distance between them is smaller than a edge-threshold (Figure 5-e). We
set these three parameters as follows: the grid size= 50 (i.e., 50 pixels are grouped to represent a cell
or not), the node-threshold = 0.1 (i.e., at least 10 per cent of a grid entry should consist of cell regions
to being a cell), and the edge-threshold = 1 (i.e., two nodes are to be connected if they are adjacent in
the grid.

In the next three subsections, we compare the cell-graphs extracted from the cancerous tissues to
three di�erent types of structures. Our �rst aim is to show th at the cell-graphs of cancerous tissues are
di�erent than those of healthy tissues. Since the degree distributions of cell-graphs for cancerous and
healthy tissues are obviously di�erent, we also examine other dense structures explained below.

The �rst dense structure we discuss is cell-graphs extracted from in
amed tissues. Our aim is to
show that the graph structure of glioma is di�erent than the s tructure of other biological phenomenon;
using cell-graphs they are also distinguished from in
ammation.
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Normal cells Normal cells Normal cells

Cancer cells Cancer cells Cancer cells

Figure 6: Di�erent cell-graphs representing cancer and normal cells.

Last, we show that cancerous cell-graphs are not random, andshow the properties of the scale-free
graphs. We compare them with synthetically generated random graphs of the same size. They are
completely separable and the clustering coe�cient C of the cancerous cell-graphs are much larger than
those of the generated random graphs as expected.

4.1 Distinguishing Cancer Cells from Normal Tissue Cells
The extracted cell-graphs for tumor and normal tissues can be seen in Figure 6. The sparsity (density)
of the graphs show that the tumor and normal tissues have completely di�erent graphs. We validated
this visual observation by computing the metric values to quantify these di�erences statistically. The
data histograms for each metric is shown in Figure 7. These histograms indicate that normal and cancer
cells can be distinguished by using these metrics.

4.2 Cancer Cell-graphs v.s. In
ammation Cell-graphs: \Dis tinguishing" Dense
Graphs

We compared the cancer cell-graphs with the in
ammation cell-graphs. The images of in
ammation and
tumor tissues and their corresponding graphs are given in Figure 8. The above two �gures correspond
to the in
ammation data, whereas the other two are for tumor d ata.

The histograms of the metrics computed on both in
ammation and tumor cell-graphs are given in
Figure 9. These histograms show that it is not so easy to distinguish them as in previous histograms.
We run a classi�er algorithm, a multilayer perceptron with 5 hidden units. Its average accuracy results
on training and testing sets are given in Table 1. They are more than 75 per cent which indicates
the classi�cation is based on the metric values. If it were random, the accuracy results would be
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Figure 7: Histograms of the metrics computed for normal and cancer cells.
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inflammation (original image) inflamed cell-graph

cancer (original image) cancer cell-graph

Figure 8: Images of two di�erent in
ammatory processes
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Figure 9: Histograms of the metrics computed for in
ammation and cancer cells.

approximately 50 per cent for two classes classi�cation. These results are just the preliminary results
and we believe that they will get better as we tune up the system parameters and the resolution of the
images.

4.3 Distinguishing Cancer Cell-graph from Random graphs
We also generated random graphs of the same size with the cancer subgraph, and computed the afore-
mentioned metrics on them. The data histograms of their metrics are given in Figure 10. These
histograms show that a tumor cell-graph is di�erent than the random graph. We run a classi�cation
algorithm to distinguish the cancer and normal cell-graphsas well as the random graphs. We use a
multilayer perceptron with 5 hidden units, the accuracy values on the trainig and test sets are given in
Table 2.

Table 1: The accuracy values on the training and test sets in the classi�cation of in
ammation and
tumor cells.

Average Standard deviation
Training set 91.23 0.08
Test set 76.83 0.10
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Figure 10: Histograms of the metrics computed for tumor cell-graph and random graph of the same
size.

Table 2: The accuracy values on the training and test sets forthree classes: normal, cancer, and random.

Average Standard deviation
Training set 94.98 0.05
Test set 94.52 0.08
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Tissue image Classification of cancer and normal cells

Figure 11: Classi�cation of unlabeled tissue image. In thisgraph, black regions indicate normal cells,
whereas gray ones show cancer cells.

4.4 Mixed Data
Some of the tissue images contains both cancer and normal cells. We also tested our algorithm on these
images. This images are not used in training of either k-means algorithm nor multilayer perceptrons.
A sample image can be seen in Figure 11. In this �gure gray cells represent for cancer cells, where the
black ones represent for normal cells.

5 Conclusion and Discussion
This work presents a novel approach for mathematical modeling of di�use gliomas based on graph
theory. It advances the current computational and mathematical modeling approaches by scaling up
the cell-graphs with large number of vertices. Our results are preliminary but promising. The graph
theoretical model is scalable and used by a machine learningalgorithm which can distinguish (1) gliomas
from surronding normal tissue, and (ii) gliomas from in
amm ation. We tested the model and algorithms
on real data to validate the proposed approach.
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