
CONTROLLER FOR JUMPING ANIMATIONS TO

ACHIEVE TARGET POSITIONS

By

Ian Charles Ooi

A Thesis Submitted to the Graduate

Faculty of Rensselaer Polytechnic Institute

in Partial Fulfillment of the

Requirements for the Degree of

MASTER OF SCIENCE

Major Subject: COMPUTER SCIENCE

Examining Committee:

Barbara Cutler, Thesis Adviser

Charles Stewart, Member

Shawn Lawson, Member

Rensselaer Polytechnic Institute
Troy, New York

March 2016
(For Graduation May 2016)

CONTENTS

LIST OF TABLES . iv

LIST OF FIGURES . v

ACKNOWLEDGMENT . vi

ABSTRACT . vii

1. INTRODUCTION . 1

1.1 A Description of 3D Animation Creation 6

1.2 Contributions . 8

1.3 Summary . 8

2. PREVIOUS WORK . 10

2.1 Background of Computer Generated Animation 10
2.1.1 Motion Capture . 10
2.1.2 Muscle-based Simulation . 12
2.1.3 Non-Muscle Simulations . 13
2.1.4 Inverse Kinematics . 14

2.2 Commercial Software . 15

2.3 Summary . 15

3. SIMULATION METHOD FOR A JUMPING MOTION 17

3.1 Overview of a Jumping Motion . 17

3.2 Model Initialization and Setup . 18
3.2.1 Creation of the Model and Rig 18
3.2.2 Environmental and Jump Constants 20
3.2.3 Skeleton, Joints, and Muscles 23

3.3 Center of Mass and Maintaining Balance 28

3.4 Inverse Kinematic Solving for Ankle and Knee Position 29

3.5 Torque-Based Simulation . 31
3.5.1 Calculation of Required Velocity and Acceleration Given Time

Constraints . 32
3.5.2 Windup Animation of the Character Based on Required Ac-

celeration . 34

ii

3.5.2.1 Sampling of Torque Values at Uniformly Distributed
Pelvis Positions . 35

3.5.3 Extension of the Character’s Body and Takeoff from Ground . 37

3.6 Energy-Based Simulation . 38
3.6.1 Calculation of Required Energy to Produce Target Velocity

and Acceleration . 39
3.6.2 Solutions to the Energy Assignment Problem 40
3.6.3 Thrust, In-Air, and Landing 41

3.7 Functionality Provided by Unity3D 43

3.8 Summary . 45

4. VISUALIZATION . 46

4.1 Motivation and Inspiration . 46

4.2 Motion Visualization . 47

4.3 Debugging Visualizations and Controls 50

4.4 Discussion . 51

4.5 Summary . 52

5. RESULTS . 54

5.1 Proportional Derivative Controller Constants 54

5.2 Muscle Constants and Strength Intuition 55

5.3 Simulation Speed and Frame Collection 57

5.4 Output Animations . 58

5.5 Limitations . 59

5.6 Summary . 62

6. FUTURE WORK AND CONCLUSION 69

6.1 Future Work . 69

6.2 Conclusion and Summary . 70

References . 72

iii

LIST OF TABLES

3.1 Calculated required velocities for a jump given skeleton and desired air
and windup times . 22

3.2 PID controller constants for my simulation 23

3.3 Table of estimated forces given k values and joint angles 41

5.1 Table of spring constants for each trial 58

iv

LIST OF FIGURES

1.1 Example of a 2D Sprite Animation . 2

1.2 Example of stages of jumping . 3

1.3 Diagram of muscle setup . 4

3.1 Example of Rigged 3D Character Model 19

3.2 Diagram of muscle definition showing anchor points and joints used for
specification . 25

3.3 Diagram of spring displacement calculation 27

3.4 Diagram of the process of CCD Inverse Kinematics 30

3.5 A plot of a sample field for the torque based simulation 36

3.6 A plot of a sample field for energy based simulation 40

3.7 Screenshot of the Unity3D Editor . 44

4.1 Marker trail visualization of motion . 47

4.2 Ghost image visualization . 48

4.3 Composite frame visualization . 49

4.4 Screenshot of Handles used for setting and visualizing joint constraints
in Unity3D . 50

4.5 Screenshot of Gizmos used for debug visualizations in Unity3D 53

5.1 Animation of a jump over an obstacle 60

5.2 Frame sequences for forward and box jumps, k = 20000 global 63

5.3 Frame sequences for sideways jumps, k = 20000 global 64

5.4 Frame sequences for forward and box jumps, k = 20000 varying 65

5.5 Frame sequences for jumps with uneven leg strengths, k = 20000 global 66

5.6 Frame sequences for forward jumps, k = 1⇥ 10

10 global 67

5.7 Frame sequences for box jumps, k = 1⇥ 10

10 global 68

v

ACKNOWLEDGMENT

I would like to thank Rosa Tung and Jim McCarthy for acting as consultants for

existing artistic methods as well as usage of tools which allowed me to produce the

mesh and rig used in this thesis and showed me an artist’s view of animation. I

would like to thank Jon Holman for discussing the mathematics of optimization

problems with me, which helped to direct my choice for how to solve the problems.

Finally, thanks to my parents for their support and help with proofreading as well

as sanity-checking my math.

vi

ABSTRACT

Animating a character for video games and films is difficult and time consuming,

requiring hours of artist labor to produce each animation. These animations are set

and inflexible, requiring changes to the animation or sometimes fully new animations

to suit new characters or situations for natural looking movements. Jumping is one

such animation, where the size, mass, strength, and environment affect the move-

ment of the character. Traditionally these animations are produced by manually

posing the character for certain key frames and interpolating between the frames

to produce a smooth animation. The more detailed or lengthy an animation, the

more work required to specify it. Physics-based simulation for animation production

can reduce this work, creating animations for a variety of situations based on con-

stants set for the character and environment. These animations can then be easily

recreated or adjusted for different environments by changing the constants set for

generation.

This thesis work presents a simulation-based method of control for a character,

focusing on the lower body, to produce jumping animations for a variety of situations

and body parameters. Two methods of simulation are described, one using a torque

calculation and the other using an energy calculation to determine poses for the

character. My simulation takes as input a mesh representing the character, a tree

of joints describing the skeleton, a set of muscles, mass assigned to each limb of

the body, and a description of the desired path through desired timings, gravity,

and desired displacement. An inverse kinematic solver is used to aid in posing the

character.

Contributions of this thesis include an implementation of a simulation to pro-

duce jump animations in Unity3D, a description of character poses based on torque

as well as another based on energy, a sampling-based method for choosing a target

position, and visualization of the produced animations in several ways to aid in

debugging, analysis and presentation.

vii

CHAPTER 1

INTRODUCTION

Animations of human characters are used heavily in video games, movies, and other

fields. Especially with the increasing usage of complex environment traversal in both

film and video games, many similar animations of athletic motions must be created

with small changes to tune the motion to the particular situation, environment, and

character. Creation of such animations is largely done by hand by artists, posing

the character for each time step of the animation. In 2D animation this takes the

form of an animation cel, also referred to as sprite sheets in 2D computer animation,

as shown in Figure 1.1. These sprites may be drawn by hand or generated through

3D models.

Artists will frequently use a method called keyframing, which originated in

traditional 2D animation but was later applied to 2D computer animation and 3D

animation with some modifications. In a keyframe animation, certain “key” parts of

the animated sequence are specified, with the remaining frames filled in in a process

called "in betweening or “tweening,” using an automated interpolation method or

manual frame addition. For 2D animation, the artist will need to generate the inter-

mediate images themselves or have a program interpolate between images, though

traditionally it was performed by hand in animation cels as described in Goldberg [1],

Solomon [2], Thomas [3], and Blair [4]. In 3D, keyframe animations are performed

on a 3D model, storing transformation data about the model for each frame and

playing back the animation by repeating the transformations, interpolating between

them to produce smooth animations, performing the tweening without additional

input.

Specifying these animation frames is work intensive, taking up significant time

and resources to produce for a single character. Additionally, similar animations may

need to be produced for slightly different scenarios, with only minor modifications

required. These minor modifications can be made to fit a different setting, such as

a character jumping on Earth or on the moon, or can be for different characters,

1

2

Figure 1.1: A 2D sprite sheet used to produce a jumping animation (top
row) and a walking animation (bottom row) for a stick fig-
ure character. The frames in this case are laid out in a single
image for demonstration purposes, progressing in order start-
ing with frame 0, the frame farthest left in this sprite sheet.
An artist may create keyframes and then fill in intermediary
poses to produce a full sprite sheet as above. These sprite
sheets were created by Clint Bellanger using a 3D model and
are licensed under Creative Commons Attribution 3.0, re-
trieved from opengameart.org.

such as a large person moving in contrast with a small child. Though the movement

itself may be similar, manual changes must be made, requiring artist time which

could be spent generating new assets.

Recent work in animation generation seeks to automate this process, replacing

the manual process with a procedural one. Physics-based simulations can be used

to produce controllers for the skeleton, determining joint positions and rotations

for keyframes automatically. Not only does this reduce the effort involved in the

creation process, but this also provides a basis for dynamic interaction between a

character’s animation and the environment. With manual keyframe animations this

is not possible, as any specific interaction between a character and the environment

must be manually created by an animator

I present a controller that takes a skeleton as input, with additional parame-

ters describing the character. I then simulate a jumping motion on the character,

determining a sequence of poses based on the character’s muscles to produce a

keyframe animation. The additional character parameters describe the character’s

mass, muscles, the constraints placed on each joint to prevent unnatural rotations,

3

and a description of the jump indicating desired time and distance. Mass is specified

per-limb, with each mass stored in the joint object affecting the limb to allow for

calculation of the character’s center of mass.

(a) Windup (b) Takeoff (c) In-Air

Figure 1.2: An example 2D sprite animation of a simple human character
jumping, with the jump divided into the windup, takeoff, and
in-air stages. A landing is absent from this sequence. The
windup consists of a short crouch to prepare for the jump,
creating an opportunity for the body to extend and thus ac-
celerate. The takeoff performs this acceleration, shifting its
center of mass forward past its feet and the character be-
comes airborne. During the in-air phase the character moves
its body to control the fall, in this case spreading its arms
and shifting its feet from behind its pelvis to in front of its
pelvis.

I divide a jump into five stages: path estimation, windup, thrust, in air maneu-

vering, and landing. My controller works with the initial path estimation, windup,

and thrust stages of the motion as shown in Figure 1.2. Poses are calculated by mod-

eling muscles as Hookean springs attached to the skeleton at 2 points and crossing

a joint as shown in Figure 1.3. Spring constants for the muscles are specified by the

user, allowing my simulation to animate characters of various strengths and body

makeups. Spring displacement from rest is calculated using the bend in the joint

and constants describing the skeleton. Using the spring displacement, a particular

pose of a joint is related to the usage of the character’s muscle and the elasticity of

the connective tissue of the muscle and joint.

Two approaches are described in this thesis, one using torque and one using

elastic energy. As the springs contract, they produce forces on the bones, which

result in torques at each joint. These torques are then used to calculate a windup

pose for the character by calculating resultant linear acceleration for the character’s

4

point

Figure 1.3: Visual representation of the setup of bones and muscles for
a single joint. This illustrates the method by which I calcu-
late the spring displacement, taking the bones as rigid blocks
which separate and stretch the string as the joint bends.

center of mass, which is compared to a calculated necessary acceleration to make

the jump. This linear acceleration is then used to compute the motion of the takeoff

and in-air phases of the jump, which are sampled to create frames of an animation.

The second approach uses the spring displacement to calculate the elastic

potential energy of each muscle, which is modeled by a single linear spring. By

assuming perfect conservation of energy, I compare the total elastic potential energy

of the character’s muscles to a calculated necessary kinetic energy for the jump to

be completed.

To control the motion and maintain plausibility, I calculate the character’s

center of mass and supporting polygon each frame. This allows the character to

maintain balance while flexing its joints, the position of the character’s joints are

adjusted to keep the center of mass positioned over the supporting polygon. While

flexing, the character constantly checks the position of its center of mass against the

calculated supporting polygon, ensuring the center of mass is over the support and

as close to the center as possible.

I use an inverse kinematic solver to help determine poses of intermediate joints.

This allows me to find the necessary pose for the ankle and knee of the character

5

given the position of its foot and hip. Many solutions in this region are possible,

so I constrain the skeleton such that only those poses where the joints are within

human ranges of motion are possible.

The next stage of the motion is the thrust stage where the character releases

from the ground by using the potential energy of the spring-muscles to accelerate

its center of mass upward. This is handled by applying the calculated accelerations

from the windup stage to the character’s pelvis to accelerate the center of mass,

with the inverse kinematic solver determining the poses of the legs as they unbend.

Balance must be maintained, and the relative rate of rotation of the different joints

of the leg must be balanced with each other to maintain foot position while the body

is transformed. As the skeleton is a tree with its root at the character’s pelvis, this

can be a challenge, necessitating the use of the inverse kinematics solver. Due to

the nature of the inverse kinematics algorithm used, the extension propagates from

the hip to the feet.

The character then proceeds through the in-air portion of the jump, where

the acceleration changes due to gravity before they finally land. I assume a simple

trajectory for the in-air phase, though more complex motions with turns, flips, or

interaction with the environment could be created. My simulation ends when the

character’s feet contact the ground, ending the in-air phase. Other work, such as

that by Ha et al., has handled landing and creating a separate controller to handle

this is beyond the scope of this thesis [5].

My controller is made to be a module, able to be used with other controllers

as part of a larger system. Its modularity takes the form of detecting and handling

its state at each stage, consisting of its position, velocity, acceleration, pose, muscle

state, and any collisions or forces applied. The controller performs actions when

it has a response to its current state and ends control when it no longer has an

appropriate response to allow a separate controller to handle the situation. This

allows each controller to do a smaller job well, and to act as a portion of a larger state

machine handling a character’s actions. Several such controllers can be connected

to produce more complex animations or animation sequences, utilizing bounded

starting and finishing conditions for the character as well as bounds on expected

6

conditions during operation to allow handling of stimuli during operation.

1.1 A Description of 3D Animation Creation

To motivate the necessity for an automated animation method, I present an

example of the method for producing an animation by hand. First a mesh and

rig must be produced, which I also require for my simulation. This is a time and

skill intensive process, requiring the artist to exercise their technical and creative

knowledge and ability to create the character’s figure, the mesh, and to create and

attach a skeleton, the rig.

A mesh is constructed of faces which are in turn made of vertices, and each

vertex must be assigned a weight for each joint of the rig to indicate the way the

vertex should transform when the joint in the rig is transformed. These joints serve

not only as a joint in the anatomical sense, but as a tracked point in the skeleton.

The joints are connected by bones, but the information is stored at the joint, which

sometimes necessitates a joint to be placed in a non-anatomical way. For example,

in my rig I have a joint placed at the head, which not only allows me to rotate

the head but tracks the position. A similar situation arises with the toe and heel,

where a joint is used to facilitate the placement of a connecting bone. Once the

mesh and rig are created and the weights for the rig are assigned to the mesh, an

animator may create controls to manipulate several joints at once, such as creating

a controller to facilitate grasping motions in which many bones of the hand must

be manipulated at once. These controls are formed from an object such as a simple

spline to which several joints are constrained, allowing movement of several joints

through manipulation of the control object.

Once the rig and mesh are set up, an animator must manipulate the mesh to

pose the model. Study of real subjects may be used to help ensure realism. For

a jumping motion the animator would need to decide how they want to start the

animation to allow blending from other movements such as walking, running, or

standing. They must then position the model and record a keyframe. Keyframes

are hand-created frames of the animation which a renderer or game engine may

interpolate between to produce a final animation, allowing an animator to create and

7

store few frames, while still creating a smooth animation in the final setting. This

allows few frames to be stored to produce any frame rate of animation, while also

reducing the storage requirements in exchange for a minor increase in computation,

which is an extra interpolation for each joint in the character.

While the key frames can be sparse and there are tools for aiding in generation,

this process requires heavy manual input for each animation for each character,

as well as prior knowledge of the motion to be produced. Animators commonly

use live footage or subjects as a basis for their work, as done by Disney for Snow

White, which used footage of Marge Champion, and animal references for the Lion

King [2, 3]. Life drawing is also used as a practice or reference for hand drawn

animation [6]. Characters that move differently due to differences in weight or

body makeup must be animated separately, requiring an artist to perform similar,

time consuming work. For example, a character with extremely strong legs may

bend less, applying the same force as a weaker character over a shorter distance to

achieve the same acceleration. A heavier character would need to apply much more

force to achieve the same acceleration and thus jump height as a lighter character,

necessitating stronger muscles or a greater distance over which the force is applied,

thus requiring a deeper squat than the light character. With a simulation-based

approach this work could be reduced, especially repeated work, to setting variables

such as weight, height, and musculature for the different characters and generating

the set of animations desired. As techniques and technologies improve, a simulation

could be used in place of a stored key frame animation, creating the animation

in place based on its environment and situation, thus shifting the burden on an

animator from preparing poses and keyframes to adjusting body dimensions, weight,

strength, and constraints.

For a jump specifically, a human loads the muscles in their legs, quickly moving

to a particular bend based on the feedback they feel in their muscles and joints, as

well as balance feedback and their knowledge of the jumps they have performed

in the past. The appearance of bearing and lifting weight is difficult to achieve,

as the animator must visually match the poses to their knowledge of bodies or to

a visual of a similar human to their character performing the motion. Simulation

8

allows a computer to calculate movement based on physical aspects of the character,

incorporating knowledge such as the character’s weight and body make up, allowing

an animator to produce animations of unfamiliar motions with a higher degree of

physical plausibility.

1.2 Contributions

This thesis describes a controller which simulates a jumping motion of a char-

acter. The generated animation is created to be plausible in appearance, using

a simplified physical representation. I sacrifice some physical accuracy in favor

of speed and simplicity of creating, describing, and implementing the simulation.

Specifically, I contribute a description for the windup, thrust, and in air phases of

a jump and created a controller using a physical simulation and an implementation

in Unity3D. In short, my contributions are:

• A controller which simulates a windup and thrust phase of a jump, moving

the character from the ground into the air

• A description of character poses based on torque generated by muscles

• A description of character poses based on elastic energy of the muscles

• A sampling-based method for choosing a pose given muscles and a desired

output

• Visualizations of the animations and values for analysis and presentation

1.3 Summary

In this chapter, I introduced the problem of animating a character to perform

a jump motion and the simulation-based approach to animation. I then presented

an example of a current method of creating animations in Section 1.1, describing

how an artist would create a character and animate it for a video game or film. I

then gave a summary of the contributions of this thesis.

Expanding on the ideas introduced in this chapter, Chapter 2 discusses exist-

ing work in simulation, motion capture, and inverse kinematics which inspired and

9

directed the work of this thesis. Chapter 3 discusses my method, describing the

torque-based and energy-based simulations I used to produce animations. Visual-

ization for debugging, understanding, and presenting these animations is discussed

in Chapter 4, and the results themselves are discussed in Chapter 5. Lastly, I discuss

future work and draw final conclusions in Chapter 6.

CHAPTER 2

PREVIOUS WORK

In this chapter, I introduce previous work in the field that inspired and directed my

work. First I discuss the production of animation using motion capture in Section

2.1.1, then muscle-based simulations in Section 2.1.2. Muscle-based simulations were

a major inspiration for my work, as well as rigid-body simulations that control the

character through means other than muscle simulations which I describe in Section

2.1.3.

2.1 Background of Computer Generated Animation

2.1.1 Motion Capture

Producing athletic animations for human characters is difficult. Motion cap-

ture is one method used for production of realistic animations for human athletics

and other motions. Cameras are used to capture the movements of live actors that

are then applied to 3D models, allowing the actor’s performance to control the vir-

tual character. In marker-based capture, numerous tracking points are attached to

the actor, aiding a system of connected cameras in following the movements of the

actor. Other methods attempt pose estimation without markers by extracting sil-

houettes and edges of the actor from images, though these methods are less capable

of capturing detail. Richard Radke gives an overview of these methods, as well as

of the necessary calibration of the systems and processing of the data collected [7].

In marker-based capture optical marks are worn by the actor. These marks

are then used to determine the position of the actor in 3-dimensional space by a set

of cameras surrounding the actor. The camera system must be calibrated before

capture can be performed. The markers are then tracked by the camera system,

estimating positions in space by leveraging multiple cameras’ views of a each marker.

One method of tracking these markers is framed as a learning problem as per Liu

and McMillan, using principal component analysis to build a linear model [8].

After acquiring the marker data, the pose of the body is estimated using for-

10

11

ward kinematics. Inverse kinematics is then used to determine the angles of the

skeleton’s joints from the tracked positions of the skeleton. I use inverse kinematics

as part of my simulation, and so discuss relevant background in Section 2.1.4. How-

ever, the problem for motion capture is slightly different as the skeleton is usually

over-constrained by many markers, as opposed to the inverse kinematics problem in

my simulation where the problem is to position a handful of points on the skeleton

at specified target positions. The same principles apply in these situations, but

utilize cost functions to minimize error across the entire set of markers and learning

models to determine the most likely motion the actor is performing.

The motion captured must then be applied to the virtual model. Several

separately recorded motions may need to be blended together to produce longer an-

imation sequences, requiring interpolation and blending between captured motions.

Witkin and Popović provide one method for blending and editing both keyframe and

captured animations using motion curves, which are descriptions of the parameters

of the model over time.

In marker-less capture, the images are segmented to determine the position

of the actor. Depth sensing may be used, such as that described by Shotton et

al [9], which is used in the Kinect created by Microsoft. This method utilizes a large

amount of training data, both captured from humans and synthesized, to build a

decision forest to be used for classification.

Motion capture overall provides a strong method of creating realistic anima-

tions for characters, but has several shortcomings. For each animation desired, a

capture must be made, requiring large amount of actor or performer time. Addi-

tionally, the equipment for motion capture systems can be costly both in money and

time, requiring large amounts of setup and calibration for a capture session. These

motions also require positioning of markers for detailed capture, necessitating props

and prostheses in cases where the actor is not proportioned like the character desired,

e.g. when an actor plays another species with longer limbs than a human.

12

2.1.2 Muscle-based Simulation

Another method of producing animations simulates a complex muscle model

mimicking the biology of the human body. Muscle-based approaches produce realis-

tic motions which adapt to the environment, using a complex model of the musculo-

skeletal structure. These methods are often complicated to produce, requiring learn-

ing methods and complex constructions of the character’s body, though they react

well to applied stimuli and are often flexible in the animations produced.

Grzeszczuk and Terzopoulos produce animations of animals, mostly those with

many degrees of freedom such as fish, by producing actuator control functions for

the muscles of the controlled character [10]. An objective function provides feed-

back which can then be used to learn muscle activations, modeling neural signals,

required to produce motions. Controllers are then learned for low-level tasks such as

moving at different speeds and turning. By composing numerous learned controllers,

complex motions are produced such as a fish jumping out of the water.

Geijtenbeek et al. [11] use a rough, user-created muscle routing on a skeleton

to produce various gaits that are learned based on the velocity and environment.

The muscle routing is optimized to remain within a physical region while providing

optimal forces on the skeleton based on freedom of motion of the skeletal joints and

the calculated optimal length of the muscle. This model is then used to compute

sequences of muscle activations that produce the final animations. This method is

effective, producing good results in various levels of gravity on at least 10 different

bipedal skeletons which can react to external stimuli.

My simulation utilizes a muscle-based approach, though in a simpler manner

than in the work described above. I use a simplified muscle model to reduce user-

specified biology and to reduce complexity of the problem of moving the character.

By avoiding a learning method, I reduced time spent on precomputation and also at-

tempted to reduce overall compute time to achieve interactive performance. I chose

the simpler model also to limit the scope of this thesis, though attempting similar

work with a learning model and complex muscle model would provide interesting

work in the future.

13

2.1.3 Non-Muscle Simulations

Instead of complex muscle systems, some physical simulations utilize a rigid-

body character with a user-defined skeleton to find optimal poses based on desired

conditions other than muscle simulation. Ha et al. utilize such a scheme to gener-

ate landing motions for human characters based off linear velocity, global angular

velocity, and angle of attack [5]. The system chooses either a feet first or hands first

landing strategy and moves into a roll to reduce stress on the body using principles

from biomechanics and robotics. A sampling method is applied to determine suc-

cessful conditions, producing bounding planes for the data. The movement is broken

into stages of airborne and landing, in which the character re-positions for the desig-

nated landing strategy, and executes the landing strategy respectively. Each of these

is separated into impact, roll, and get-up stages. Movement and joint positions are

produced using PID servos.

Other work on producing such controllers was produced by Faloutsos et al. who

described a method of composing such controllers by giving pre-conditions, post-

conditions, and intermediate state requirements [12]. The composed controllers are

then chosen at each step based on the current pose and which controller is deemed

most suitable. By providing a state-machine-style construction for the controllers,

they create a way to build many smaller controllers into a more complex motion.

Hodgins et al. created several controllers for running, vaulting, and bicycling,

creating realistic motions and secondary motion using rigid bodies and spring-mass

simulations [13]. Geijtenbeek and Pronost provide a detailed review of physics based

simulations [14].

Koga et. al use path planning, inverse kinematics, and forward simulation to

generate animations of arm motions for robots and humans working cooperatively.

They produce arm manipulations that avoid collisions and result in final positions

and orientations for specified parts of the arm to produce motions such as a human

putting on glasses and a robot arm and human cooperating to flip a chessboard [15].

My work was inspired heavily by these simulations, though I chose to incorpo-

rate muscles into the simulation. These control schemes helped inspire the method

of control and optimization used in my simulation. The descriptions of controllers as

14

modules that can be fit together into a larger state machine of controllers to handle

many situations led to the creation of my controller as one such module, intended to

be used alongside other controllers for handling landing and in-air maneuvers such

as that created by Ha et al..

2.1.4 Inverse Kinematics

Solving the inverse kinematics problem is necessary to my simulation for po-

sitioning of the feet. As described in Section 3.4 in more detail, the setup of my

skeleton requires a method of posing the character such that if the pelvis is moved to

a different position, the character’s feet remain in the same place. Several different

methods exist of varying complexity. A simple, cyclic-coordinate-descent method

allows solving for a single chain of joints as described by Lander [16,17]. A detailed

description of this method can be found in 3.4. This method was chosen for simplic-

ity and the minimal extra infrastructure required, as other methods required matrix

math libraries not easily available.

Buss surveys inverse kinematics methods, describing the classical Jacobian

transpose, Jacobian pseudoinverrse, and damped least squares methods [18]. End

effectors are defined as particular points on the skeleton. The positions of the end

effectors are defined by the joitn angles of the skeleton. The Jacobian matrix is

a function of the angles of the joints, describing the relationship between the joint

angles and the position of each end effector. The Jacobian for a particular state of the

skeleton can be computed, with further Jacobian matrices computed by choosing

changes in the angles of the skeleton. The inverse of the Jacobian gives a value

for this choice of change. As the Jacobian is likely not invertible, approximations

and alternatives are used. The transpose provides a fast approximation, though it

is a different solution than the inverse. The pseudoinverse provides a good, fast

approximation, but lacks stability around singularities. The damped least squares

method avoids this issue of stability by incorporating a damping constant.

Another method by Aristidou and Lasenby frames the problem as finding a

point on a line [19]. The system, termed Forward And Backward Reaching Inverse

Kinematics (FABRIK) uses an iterative approach. Iterating over the the joints of

15

the body, the algorithm repeatedly finds a new joint position along the line between

the current and desired positions with an appropriate distance from its neighbor.

Which neighbor is used for calculation is determined by if the iteration is currently

working forwards or backwards.

2.2 Commercial Software

Several technologies exist to similarly aid in animation production. Unity3D

MecAnim applies constructed animations of various types to similar skeletons, pro-

viding joint constraints and muscle definitions in a similar manner to my simula-

tion [20]. MecAnim provides functionality for constraining range of motion and

blending between existing animations, utilizing existing clips to produce complex

animations in a manner similar to the composable controllers described by Falout-

sos et al., as well as inverse kinematics solving. Due to a lack of understanding of

the features and limitations, as well as what level of control is available, I chose

not to utilize MecAnim for my current implementation. As discussed in chapter 6,

future work would ideally take advantage of MecAnim.

3ds Max footsteps offer a method of positioning feet and producing walk, run,

and jump cycles based on number of parameters [21]. Without knowledge of the

algorithm, analysis is difficult, but it seems to produce animations by specifying

timing and parameters about the stride. Parameters defined include stride width,

length, and height. My simulation seeks to produce more natural looking anima-

tions through use of a muscle simulation. The footstep style of animation may be

preferable to artists however as it gives very strong control over the timing and

spacing of the individual events of the animation, such as foot falls.

2.3 Summary

In this chapter I discussed the previous works that guided my research as well

as existing solutions to the problem of animating characters. I discussed existing

work in motion capture, which offers a method of producing realistic animations,

but must be performed offline and requires significant actor time as well as setup of

a capture system. I described muscle and non-muscle simulations used to generate

16

animations, both of which inspired the work described in Chapter 3, and discussed

approximate solutions to the inverse kinematics problem, which is expanded upon

in Section 3.4. Finally, I discussed some existing solutions and tools in commercial

software which perform similar tasks to the work in this thesis, but ultimately fill

different roles in the production of animation. In the next chapter, I discuss my

simulation in detail.

CHAPTER 3

SIMULATION METHOD FOR A JUMPING MOTION

In this chapter I describe my method for simulating a character. I begin by describ-

ing the motion, breaking it into stages in Section 3.1. In Section 3.2 I then describe

the setup of the problem and inputs to my simulation. As part of my description of

the inputs to the simulation, I describe the representation of a skeleton in detail in

Section 3.2.3 as well as the other user specified constants in Section 3.2.2. Follow-

ing the problem setup, I describe my implementation of a CCD inverse kinematics

solver in Section 3.4, and balancing of the character in Section 3.3. I then describe

two methods of simulation: the first using torque on a joint to describe the motion

in Section 3.5 and the second using energy of the muscles to describe the motion in

Section 3.6. The stages of jumping are described for each of these calculation paths.

Section 3.7 discusses the features provided by Unity3D used in the simulation as

well as some implementation details.

3.1 Overview of a Jumping Motion

Jumping is the acceleration of a character’s center of mass upward. Acceler-

ation is applied in excess and in opposition to gravity, resulting in the character

breaking contact with the ground and traveling a short distance before contact is

re-established. This acceleration results due to the character pushing against the

ground, first bending to create space and lengthen muscles, then extending, con-

tracting the muscles.

Jumping motions can be divided into several stages. First is the lead-up or

wind-up stage in which the character flexes, preparing their muscles for contraction

and providing space for their body to extend. This takes the form of a slight

crouch. Next comes the thrust stage, in which the character extends and exerts a

force against the ground to accelerate upward. The character pushes against the

floor with their feet, the contractions of the muscles causing joints to unbend and

as a result displace the character’s center of mass causing work to be done. This

17

18

extension and resulting thrust is caused by the contraction of muscles, which produce

torques on the skeleton.

Once the character has broken contact with the ground, they travel through

the air in the in-air stage, their velocity decreasing steadily due to gravity, air

resistance, and other forces until they eventually land. Once they regain contact

with the ground, the character absorbs or disperses the kinetic energy of their jump

in the landing stage.

I attempted two main approaches to producing a jump motion through muscle

simulation. The first method focused heavily on the torques produced by the mus-

cles, but ultimately failed to converge, and consistently moved towards a solution

that appears incorrect, where the character begins to lean towards the right. These

calculated values were also extremely small as compared to the calculated required

values, despite repetitions of the math derivation and careful debugging. The sec-

ond method focused on the kinetic energy and performed calculations to match the

energy of the muscles, which simplifies the movement and produced a successful

simulation.

3.2 Model Initialization and Setup

3.2.1 Creation of the Model and Rig

The character in my system consists of a mesh, a skeleton or rig, and a con-

troller which has itself several sub-components. First I constructed a mesh, a 3D

visual representation of my character. My mesh is a simple, blocky humanoid, lack-

ing arms in order to focus on the motion of the lower body. A more complex human

character, or non-human bipedal characters could be substituted. This mesh con-

sists of vertices, which each have a position as well as other information not relevant

to my simulation such as normal and texture coordinate, which are used by Unity3D

for displaying the mesh. This mesh can also be referred to as a character model,

but in the context of this simulation I will refer to it as the mesh. Three vertices

form a triangular face, though these are often created as quadrilaterals by the artist

as the topology of the model can be simpler to work with due to the grid patterns

formed. In the case of quad meshes, the mesh is often treated as a triangle mesh by

19

Figure 3.1: An example of a character model with a mesh and rig in
AutoDesk Maya, the character used for my simulation. The
character skin or mesh is shown in gray, with a rig shown
in multi-color. While it is visualized as a series of spherical
joints with connecting solids, the rig itself does not have a
separate visual component in practice and is visualized by
the attached mesh. The rig acts as a skeleton, deforming
the mesh of the character model to make animation easier.
Additional tools such as user-specified skeletal controls and
inverse kinematic handles can be used to further simplify the
creation of animations for artists. While these tools simplify
movement of the model, the artist still must position each
joint for each frame of the animation, which is then stored
for later playback. This rig contains 11 bones and 12 joints:
a pelvis, two hips, two knees, two ankles, two toes, two heels,
and one head. In this visual, orange bones and joints are
connected directly to the root, the pelvis, yellow are the first
level of the tree, green the second, light blue the third, and
dark blue the fourth level of the tree.

20

the game engine or renderer, with each quad split into two triangles.

My mesh was created using AutoDesk Maya [22], positioning the vertices in

groups or individually, using several rectangular prisms as a base. Using the edge

loop tool, more vertices were inserted, with loops of edges circling the torso and

legs to produce the final shape. This mesh was then rigged, meaning a skeleton

was added. As described in further detail in section 3.2.3, joints were positioned

individually relative to the mesh, attempting to mimic the positioning of joints in

the human skeleton. The connections were made simply, with each joint acting as a

ball and socket joint, meaning that constraints needed to be specified at a later stage

to facilitate hinge joints such as the knee and ankle and that complex, multi-boned

structures as found in the human foot and shin were simplified to a single bone

connecting two joints. The hierarchy of joints for the skeleton was rooted at the

pelvis with three children: one leading to the upper body and one to each hip. From

there a single joint was used for the manipulation of the upper body, with separate

joints for each hip, knee, ankle, toe, and heel. Though there is no movement in the

toe, placing a bone for the foot requires an end joint for the bone to connect to.

Joints are then associated with the mesh through weight painting, in which

each vertex of the mesh is assigned a weight for each joint. This weight designates

if and how much a vertex transforms when a joint is moved. Each vertex must be

assigned a weight for each joint of the model. Careful weight assignment is highly

important as this determines the behavior of the character’s “skin” when they move,

affecting how the mesh twists or bends as well as which parts move with which

bones. The joints may then be used to manipulate the mesh to produce animations,

with each key frame in an animation storing information about each joint instead of

each vertex. Knowledge of this process was obtained from several sources, including

an article by Hayes [23], The Animation Bible by Furniss [24], and discussions with

3d artists.

3.2.2 Environmental and Jump Constants

Within the controller there are a number of constants the user can specify,

outside of the character itself. These specify constants for the simulation environ-

21

ment as well as some constants describing the animation to be produced. My only

environmental constant is gravity, which I specify as -10 m

s

2 , where the negative in-

dicates the downward direction. Other constants include the air time, windup time,

error allowance, and constants for the PID controllers which specify a multiplica-

tive factor for the proportional, integral, and derivative components of each PID

controller.

The times indicate how much time the character is expected to spend in the

air and winding up for the jump. Air time in my case consists of the portion of

the animation where the character’s feet are not in contact with the ground plane.

Windup time refers to the time in which the character has their feet on the ground

and is in the process of accelerating their mass upwards as the initial takeoff portion

of the jump. A long windup time gives a very slow, exaggerated jumping motion

while a short windup gives a very rapid, clipped motion. While I allow the user

to specify any time for both air and windup, in practice there is a limited range of

values that are possible for the character. Values outside of the reasonable range

produce indeterminate or strange behaviors in the simulation, such as either failing

to find a muscle load that can feasibly produce the jump or attempting to produce

the jump and failing partway.

Error allowance in my simulation is a widely used value indicating a percent er-

ror tolerance. This tolerance is used for determining the allowable difference between

the desired values of either resultant linear acceleration and desired acceleration for

the torque based simulation, or calculated kinetic energy and total elastic energy

for the energy based simulation. The allowable difference is used for choosing sam-

ples and determining if the character has satisfied either the energy or acceleration

requirements to complete the windup stage. The same error allowance is also used

to determine if the limb usage is greater than a minimum to complete the windup

stage, which is used to force a degree of bend in extreme cases, where very little

bend is required as the muscles are extremely strong or the jump distance is very

small. This minimum is applied to compensate for the contraction rates of muscles,

which would require a higher degree of bend than my muscle model does, leading

to a more realistic simulation. I use an ✏ = 0.05 for calculating my percent error

22

Input ta (s) Calculated a (m

s

2) Calculated v0 (m)
0.1 (0, 2.5, 50) (0, 0.5, 10)
0.2 (0, 5, 25) (0, 1, 5)
0.3 (0, 7.5, 16.67) (0, 1.5, 3.33)
0.4 (0, 10, 12.5) (0, 2, 2.5)
0.5 (0, 12.5, 10) (0, 2.5, 2)
0.6 (0, 15, 8.33) (0, 3, 1.67)
0.7 (0, 17.5, 7.14) (0, 3.5, 1.43)
0.8 (0, 20, 6.25) (0, 4, 1.25)
0.9 (0, 22.5, 5.56) (0, 4.5, 1.11)
1.0 (0, 25, 5) (0, 5, 1)
1.1 (0, 27.5, 4.55) (0, 5.5, 0.91)
1.2 (0, 30, 4.17) (0, 6, 0.83)
1.3 (0, 32.5, 3.85) (0, 6.5, 0.77)
1.4 (0, 35, 3.57) (0, 7, 0.71)
1.5 (0, 37.5, 3.33) (0, 7.5, 0.67)

Table 3.1: Values for calculated necessary velocity given air and windup
times for a skeleton with muscle k values around 20000. This
table shows calculated necessary acceleration and velocity for
the character given constant jump displacement of x � x0 =

(0, 0, 1)m, gravity g = (0,�10, 0)

m

s

2 , and windup time t

w

= 0.2s,
where windup time refers to the amount of time the force of
the jump is applied to the character. Values are calculated
with variable desired air time t

a

in range [0.1, 1.5]s with a step
of 0.1s, where v0 is the velocity when the character leaves the
ground, and a is acceleration required to reach v0 from rest.

allowance, and a separate, floating point epsilon of 0.001 for comparison of floating

point numbers. Below is an example of the inequality using the error allowance.

E

kinetic

� E

elastic

 ✏E

kinetic

Lastly, I utilize proportional-integral-derivative (PID) controllers, which re-

quire 3 constants for each controller. A PID controller modifies an input based on

error in 3 ways: proportional to the error, proportional to the integral of the error,

and proportional to the derivative of the error [25]. This allows changes to the sys-

tem to have gains directly related to the error through the proportional component,

eliminate steady-state error with the integral component, and to adjust gain with

23

Windup Balance
k

p

0.25 1
k

i

0 0
k

d

0.25 1

Table 3.2: The proportional (k
p

), integral (k
i

), and derivative (k
d

) con-
stants for the two PID controllers used in my simulations.
One controller handles feedback control of the bend of the
character, working with the error between the required out-
put of the muscles and the desired output while the second
handles the balance of the character, minimizing the distance
of the character’s center of mass from the center of the char-
acter’s supporting polygon through feedback control. These
constants act as a weight on the different components of the
controller, adjusting the rate of control and the rate of con-
trol relative to the error, constant error, and change in error
through the proportional, integral, and derivative components
respectively.

the derivative to improve stability of the changes. My system does not require an

integral component, meaning my controllers are just PD controllers with their con-

stant for I set to 0. For my controllers, as I work in discrete frames, my controller

calculation is as follows.

u(t) = k

p

e(t) + k

i

tX

⌧=0

e(⌧) + k

d

(e(t)� e(t� 1))

3.2.3 Skeleton, Joints, and Muscles

For the purposes of animation, a joint is an object with an associated position,

associated transformation, a parent joint, and some number of child joints. In the

case of the root, the parent joint is absent and in the case of the end joints such

as tips of the fingers there are no child joints. Each child joint is connected to the

parent by a rigid bone, which protrudes from the parent at a given resting angle.

These joints are structured in a tree, as the parent and child joints imply, with the

root of the tree at the pelvis. This tree serves as a hierarchy for transformations.

Figure 3.1 shows the skeleton for my character.

Joints are associated with a set of vertices from the mesh to be animated. Each

of these may be associated with multiple joints, and are assigned a weight for each

24

joint which acts as a scale factor for the transformations performed on the vertex.

When a joint is transformed, the transformation is propagated to the children, with

the parent as the origin of the child node’s coordinate system.

In addition to the animation-related functions, joints in my system handle a

number of other functions and values. Each joint keeps track of its constraints on

rotation. Rotations are performed axis-angle, that is a rotation is specified as a

rotation ✓ degrees around an arbitrary axis e 2 R3. This makes the constraints

somewhat more complicated as compared to Euler angles in exchange for simpler,

smoother rotations without the issue of gimbal lock that affects Euler angle rotations.

Constraints, however, are specified through Euler angles: pitch, roll, and yaw.

These correspond to a rotation about the x, z, and y axes respectively in Unity3D’s

coordinate system. When rotating using a traditional rotation matrix through Euler

angles, constraints simply prevent any of the angles from exceeding the bounds.

The other issue was how to constrain a joint when rotation about a certain axis

was fully prohibited, such as the knee joint which can only rotate about the x-axis.

To constrain the axis-angle rotation thus, simply zero the undesirable component of

the vector. Constraining the axis-angle rotation to a region with degree minima and

maxima for rotations around the x, y, and z axes requires definition and constraint

to the region of a sphere the rotation constraints covers. Instead of solving this

complex problem, I instead clamp the Euler angles to their constrained regions after

each rotation, forcing the controller and the inverse kinematics solver to operate

within the region and thus reducing the possible solutions for each to only those

solutions within the region.

Along with constraints, each joint tracks a weight, which allows distribution

of weight over the body. This distribution affected the torque simulation heavily

as the torque of each joint resulted in a different angular momentum depending on

the mass distribution. The energy simulation considered the character as a rigid

body, not considering the changes occurring due to weight distribution except for

balance issues and the effects on the muscles as described shortly. Joints also provide

functions for calculating the direction to the next joint for muscle calculations, and

a utility function for returning to a resting position.

25

joint1 joint2

centerJoint muscle

bone1 bone2

length1 length2 anchor2anchor1

Figure 3.2: A diagram of how a muscle is defined. Three joints are used:
joint1, joint2, and centerJoint, where centerJoint is the joint
the muscle crosses. The center of rotation for the joint is
conceptualized as at the edge of the bone as shown above,
with the movement modeled after connecting a pair of blocks
with a rubber band, though the joint is positioned at the
center of the bone. As the bone used to calculate the muscle
forces is only loosely related to the bone of the character’s rig,
this does not introduce errors as the model is kept internally
consistent with only the angle and relative positions of the
joints used for the calculation.

Several joints form a muscle. Though any number of joints is possible, my

muscles only utilize 3 joints each. These joints serve as anchor points for the muscles,

with each anchor point specified as a number in [0, 1] between the center joint, i.e.

the joint the muscle crosses, and the other joint the bone connects to. In this way

three joints describe the path of a muscle in my system. The muscle itself is a linear

spring, obeying Hooke’s law. This gives force (F) and elastic energy (E
elastic

) as

F = �ks

E =

1

2

ks

2

where k is the spring constant for the muscle and s is the displacement of the spring.

The negation of k in the force calculation indicates the force restores the spring to

rest. These anchor points and the method of muscle specification are shown in

Figure 3.2. While the muscle in Figure 3.2 is at rest when the joint is straightened,

the rest angle can be specified arbitrarily to handle, for example, the right angles

of the muscles crossing the ankles and hips, as the hip muscles span from pelvis to

26

hip to knee.

Intuitively, this models the bones as blocks, with a spring representing a com-

bination of the muscle and tendons connecting the blocks. When the joint rotates,

the spring necessarily stretches, producing a restoring force attempting to retract

the spring to its initial length. This then produces a torque on the blocks involved,

causing a torque on the blocks at the joint. As one block is more strongly anchored

than the other, i.e. the part of the joint chain closer to the foot and thus the ground

is less able to move freely as more of the character’s weight is resting on it, one bone

rotates about the joint center. The user is free to then restrict this motion further

by specifying ranges of motion for the joint to mimic human capabilities.

Considering a muscle as a spring models a muscle at maximum activation. A

relaxed muscle has very little contractual or restoring force, and thus a low value for

k, while a flexed muscle has a large k. While the muscle model could take muscle

activation level into account, I chose the simpler system, allowing the user to specify

k for their particular case. This gives more control for the animation, but also allows

for more errors and issues. The results with poorly chosen k values resemble the

results with poorly chosen times.

Along with the s values, a muscle keeps track of its center joint, anchor joints,

and the bone width. A muscle has two anchor points and crosses the center joint.

The positions of the anchors are specified as values in the range [0, 1] along the bone

between the center joint and the anchors. Bones are considered to be rectangular

prisms with a square cross-section, with a width r specified by the user. Spring

displacement can then be calculated directly from the angle of the joint using these

constants and my assumptions as illustrated in Figure 1.3 with the equation below

derived from the law of sines:

s =

r sin (⇡ � ✓)

sin

✓

2

I derive this equation by calculating the supplementary angle, opposite the spring

displacement. This angle can therefore be expressed as ⇡ � ✓. The sum of the

remaining angles of the triangle formed by the spring displacement and bone ends

27

point

Figure 3.3: Visual representation of the angles used to calculate the
spring displacement. The angle of the joint, ✓, is used to cal-
culate the displacement s using the bone width r and the law
of sines. Angles for the joint are restricted to the range (0, ⇡),
with values outside of this range producing an undefined s.
As a bend in the reverse direction, considering rotation about
each axis separately, produces an equivalent situation, the
absolute value of the angle is used and the equivalent angle
within the range is found. For negative angles, an adjustment
is made in the direction to account for the difference in the
direction of the forces produced after calculating the displace-
ment, reversing the sign on the resulting torque or altering
the direction of acceleration for the energy calculation.

can then be expressed as ✓

2 . These angles are shown in Figure 3.3. I assume uniform

bone width, which allows a simpler calculation of the angles.

For calculating the extension of the limb and for debugging purposes I have

each muscle calculate its utilization, giving a value in [0, 1]. Utilization is a number

used to determine if a muscle is being stretched and producing a force, indicating if

the muscle is too weak or is simply not being used by the simulation. This utilization

is calculated as the dot product of the normalized vectors between the center joint

and the anchor points. The value is then scaled from [�1, 1] to [0, 1] by adding 1

and dividing by 2. A modification to this function is required for joints at rest at

angles other than 0 or ⇡ radians, instead using a comparison to the stored rest angle

28

and range of motion of the joint.

As an additional debugging tool and method of determining the expected

ranges of values, I calculated the values in Table 3.3. By testing different ranges of

values and comparing with some expected values, I determined empirically a range of

values that should produce “normal” human simulation, i.e. expected strength values

required for several different heights given body mass and proportions. A military

study of male aviators in 1988 provided information on mass, mass distribution,

and the dimensions of different body sections. Range of motion data was obtained

from Boone and Azen who compared clinical measurements with estimations in the

handbook of The American Academy of Orthopaedic Surgeons as a reference [26].

My simulation used muscles defined crossing the left and right hips, left and

right knees, and left and right ankles. These choices of muscle positions were moti-

vated by information retrieved from work by Zajac studying the hind-limb muscle

activity of cats when performing jumping motions [27,28].

3.3 Center of Mass and Maintaining Balance

The center of mass (CoM) is calculated as the centroid of the character. More

specifically, joint positions are averaged, with a weight assigned to each joint based

on the weight of the limb associated. The CoM must be recalculated with each

update to the character’s pose as the shift in weight changes the position.

Using the calculated CoM, the balance of the character can be determined by

the position of the CoM relative to the supporting polygon of the character. The

supporting polygon is a polygon determined by the points of contact of the character

with the ground or other supports which provide a normal force to counteract gravity

and other external forces. During the windup and thrust phases, the character

maintains contact with the ground through their feet, with the outer edges of the

feet forming two sides of a quad, a line between the two feet at the toes forming a

third, and a line between the heels of the character forming the fourth side. This

polygon should be parallel to the ground plane, and is positioned at the bottom

of the feet. If the character’s center of mass is over this supporting polygon, the

character is balanced.

29

To quantify balance, the vector between the center of the supporting polygon

and the position of the CoM is measured. This vector is then projected into the

same plane as the supporting polygon, giving a 2 dimensional error between where

the CoM is currently and where it would need to be to be perfectly centered. The

PD controller then attempts to minimize the magnitude of this vector by moving

in the prescribed direction while bending to achieve the desired force, constraining

the number of solutions possible to provide the desired force.

As the character bends for the windup and extends for thrusting, the character

must rebalance with minimal change in flexion, i.e. height of the hips, in order to

maintain the calculated load on the muscles. For these cases, the upper body is

used to rebalance. The character bends forwards, backwards, left, and right to shift

the weight of the upper body to offset the balance error created by the lower body

pose. This is performed using a PD controller, with the error input as the balance

error as calculated above, and the output as the amount to rotate in each direction

subject to skeletal constraints.

3.4 Inverse Kinematic Solving for Ankle and Knee Position

As the skeleton is a hierarchy assumed to be rooted at the hip, a problem

arises with applying rotations to joints. To keep a character’s feet rooted to the

floor as is expected, positions must be solved for using inverse kinematics. Given

the desired position for the hip, and the desired position of the foot, I solve for the

joint angles and positions of the knee and ankle. Constraints are placed on each

joint, limiting the range of motion to an expected range as well as limiting the axes

about which each joint can rotate, preventing unnatural directions of motion. These

values are specified per joint and can be edited by the user to simulate varied levels

of flexibility or alternate body shapes.

A solution to the joint positions is found greedily using these constraints and

a gradient descent method which works on single chains of joints. A single chain of

joints is a sequence of joints in which each joint has a single child and a single parent,

with one root joint and one leaf joint which lack a parent and child respectively. This

hierarchy may be specified as a subtree of the skeleton in which these conditions hold

30

root

E

D

R

Figure 3.4: Depicted is a chain of joints, with a root joint, an end joint E,
and two joints in the middle of the chain. To move the end
joint E, which may for example be a hand or foot, to position
D, iterate over the chain of joints and calculate the vectors
between the current and end joint positions as well as the
vector between the current joint position and the destination
for the end joint. The dot product of the normalized vectors
then gives the cosine of the angle between these vectors. Ro-
tating R by this angle will then align the vectors, moving E
towards position D. The dotted gray circle shows an example
target area in which the joint E is considered “close enough”
to position D, allowing the algorithm to terminate if the cen-
ter of E is anywhere within that circle. If D is farther away
than the total length of the joint chain, the algorithm is set
to terminate after a user-specified number of iterations, in
my case 30.

true, as in my simulation where the joints from the hip to the heel are considered

separately for each leg. Given the hierarchy of joints and a desired position for

one of the non-root nodes of the chain, cyclic-coordinate descent (CCD) is used to

determine rotations of the joints between the joint in question and the root that

will minimize the distance between the joint in question and the desired position as

done by Lander [16, 17]. This algorithm is shown in Algorithm 3.1, with a visual

representation of a calculation for a single joint in the chain shown in Figure 3.4.

This approach is simpler to implement than other approaches such as the

31

Algorithm 3.1: Given chain of joints C, move end effector joint E to position D
using cyclic coordinate descent. This process iteratively moves joint E closer to the
location D, concentrating on each joint R in the chain one at a time and solving the
geometric problem of minimizing distance between E and D by rotating R. D is the
desired position of the body part, such as where the toe should be placed and E is
the joint that should be moved to the desired position. The vectors RD and RE
are the vectors between the positions of joints R and E, and joint R and the desired
location D in R3.

function SingleChainIK(C, D, E)
repeat

for all Joints R between the end effector E and the root, starting with
E do

✓ = cos

�1
(RD ·RE)

Rotate R by ✓

end for
until Desired number of iterations performed or E is close enough to D

end function

pseudo-inverse of the Jacobian for the specific case of single chains of joints. In ad-

dition, this approach allows some flexibility, specifically in constraints of the joints.

As each joint is addressed individually instead of the system as a whole, any con-

straints placed on the joint can easily be accounted for by simply preventing the

joint from rotating out of the desired range while the rest of the system continues to

move as close as possible to the solution. One downside is that a halting condition

must be determined, through a minimum acceptable distance. Additionally, the

algorithm does not halt if D is farther from the root position of the chain than the

length of the chain, i.e. it is farther away than the length of the limb. To handle the

case where the joint cannot be moved within this minimum distance, a maximum

number of iterations must be designated. In practice, 100 iterations is enough to

converge, with as few as 30 working well for my simulation.

3.5 Torque-Based Simulation

One method of simulation I attempted used springs placed along the length of

each limb to produce a torque on the joints of the character. Torques on the joints

result from the force of the muscle pulling a bone to rotate about the joint, resulting

in a complex system of motion with each bone rotating around the joints. These

32

rotations combine to move the body in a direction, allowing a character’s control to

be centered around degree and timing of muscle activation.

My method for this type of simulation was inspired by the other work in

complex muscle based simulation for bipeds such as in Geijtenbeek et al. [11]. In

my case, I take the muscle as constantly activated, which means that its spring

constant defines the strength of the muscle, allowing the user to set the activation

manually. This muscle is then stretched to produce the desired torque by bending

the affected limb. The restoring force of the spring-muscles produce torques which

are used to calculate angular momentum, and from that linear momentum. Linear

momentum is then used to calculate the resulting acceleration.

3.5.1 Calculation of Required Velocity and Acceleration Given Time

Constraints

Before calculations relating to the model’s skeleton are performed, an initial

estimate of the jump path is performed. The estimate uses a forward kinematic

calculation to determine the velocity required to move an object through the air

from the initial position of the model to a final position. This path is specified

indirectly by the user by setting time in-air, gravity, and desired displacement in

three dimensional space, which necessarily describe a parabolic path assuming that

displacement and gravity are not 0, and that gravity is an attractive force pulling

the character toward the ground. While perhaps somewhat less intuitive than po-

sitioning the character exactly how the artist wants it for each frame, this allows a

wide range of physically plausible, simple jumps to be produced. This reduces work

excepting special case jumps, such as a game character hanging in the air for an

exaggerated amount of time.

The user specifies a desired time (t
air

) that indicates the time the character

will spend airborne during the animation, i.e. the time between when the character’s

feet break contact with the ground and when they regain contact with the ground.

Changes to this time affect the animation length as well as modify the peak height

of the jump, as a longer time will necessarily require the character to be airborne

longer, and thus be higher in the air. While this reduces the direct control the artist

33

has, this provides a simple way to control animation length.

The initial velocity is given by a manipulation of a simple kinematic equation

x = x0 + v0tair +
1

2

at

2
air

derived from the relationships between acceleration (a), velocity (v), and displace-

ment (x� x0), namely

v =

dx

dt

a =

dv

dt

.

This relationship gives me the velocity, given a known start position (x0),

destination (x), acceleration (a), and time (t
air

). As this describes the path of the

character once it breaks contact with the ground, the time referred to only covers

the time between the character breaking contact with the ground and when their

feet touch again at the end of the jump The only force, and therefore acceleration

acting upon the character while in the air is gravity, thus giving

v0 =

x� x0

t

air

� gt

2

to describe the initial velocity my character has upon breaking contact with the

ground, which then decays over the course of the jump due to gravity to produce a

parabolic path. The equation considers the character as a point mass traveling in a

vacuum, meaning there is no consideration of friction, drag, or rotational movements.

Acceleration can then be determined as

a =

dv

dt

=

vf � vi

t

windup

=

v0 � v

i

t

windup

34

where vi is the initial velocity of the character before the jump calculations began.

This accommodates jumps where the character is already moving.

3.5.2 Windup Animation of the Character Based on Required Acceler-

ation

Using the calculated velocity and acceleration, I compare the desired values to

achieve a particular path with the values produced by the muscles on the skeleton.

To compute a resultant instant linear acceleration, I start from the muscle and

calculate the torque resulting from the muscle’s contraction. First I calculate the

scalar force of the muscle-spring as F = �ks where s is the spring displacement as

calculated in section 3.2.3. Using the scalar force, I calculate the torque and the

angular momentum. Torque magnitude can be calculated as

⌧ = rF

where r in this case is the scalar distance between the pivot point and the location

of force application. In my case, this is the distance from the center of the joint

to the major anchor point, which I consider to be the anchor point highest in the

hierarchy, which is the bone most expected to move. The direction of the torque is

the normal vector to the plane of rotation, calculated as the cross product between

the directions to each anchor point which gives the plane of rotation about the joint.

Angular momentum is derived from torque, as

⌧ =

dL

dt

where ⌧ is torque and L is the angular momentum. The angular momentum can then

be calculated as ⌧ t
windup

. Angular momentum is used to calculate linear momentum

by finding the tangent to the circle at the moment of takeoff. The magnitude of the

linear momentum is then calculated as

p =

L

r

35

which then gives the acceleration as follows

a =

1

m

✓
dp

dt

◆

where m is the mass of the character.

3.5.2.1 Sampling of Torque Values at Uniformly Distributed Pelvis Po-

sitions

In order to determine the position of the character that produces this acceler-

ation, I sample uniformly over a region in which the character is balanced, excluding

some points where the character may be balanced in favor of a simpler region. A

sample is described by the position of the pelvis joint, the resulting linear momen-

tum, and a vector describing the displacement of the character’s center of mass

from the center of its support to indicate balance as described above. Samples were

restricted to a box defined by a rectangle around the character’s feet with a height

reaching the position of the character’s pelvis when standing at rest. Any sample

outside of this volume was assumed to put the character off balance due to the lack

of upper body definition in my simulation.

Samples were then taken at uniformly distributed positions in this region. The

calculated acceleration was projected onto the desired acceleration vector through

the dot product, with values greater than or equal to the desired acceleration’s

magnitude indicating a plausible solution. These plausible solutions are then ordered

by their balance error, calculated as the difference in position between the center

of mass and the center of the supporting polygon. The first result of this list is

then chosen as the candidate answer and the pelvis is moved towards this sample.

At each iteration this is repeated until the desired acceleration is achieved. A plot

of samples for a particular set of values, in this case all muscle constants set to

k = 20000, is shown in Figure 3.5. An equation for the described calculation is

shown below.

E

accel

= adesired
2 � adesired · acalc ✏

�
adesired

2
�

36

Figure 3.5: A plot of instant linear acceleration samples at different pelvis
positions within the balanced region. The axes shown corre-
spond to the axes of the world, with x, y, and z of the plot
corresponding to the x, y, and z position in space. Color
indicates the magnitude, with the red, green, and blue chan-
nels corresponding to the x, y, and z components respectively
of the acceleration sample. Lighter color indicates a larger
magnitude. This is a clear example of the failures of this sim-
ulation method, as the samples seem to continuously increase
from the one corner of the bounding box to the opposite di-
agonally, which does not produce a plausible animation as
the character heavily favors one side, even with symmetric
strengths.

Each iteration the error for the skeleton is calculated by comparing the current

state of the skeleton to the desired acceleration and a sample is selected. If the error

is above the tolerance, a new position for the hip is calculated using proportional-

derivative control, where the new position for the iteration of the controller, u(i), is

calculated as

u(i) = k

p

E

all

(i� 1) + k

d

(E

all

(i� 1)� E

all

(i� 2))

where i is the iteration, and k

p

and k

d

are weights which determine the rate of

change. The input to this PD controller is calculated by selecting a sample from

37

the set of samples based on the acceleration error of the sample. After filtering all

plausible candidates from the samples, the candidate which minimizes balance error

is selected and the vector between the current pelvis position and the sample pelvis

position is given to the PD controller.

The pelvis is repositioned based on the output of the PD controller, and the

inverse kinematics component then iterates to calculate the positions of the remain-

ing leg joints, assuming the feet should remain in the same position on the ground

and the pelvis should remain at the chosen position. This chooses a solution for the

intervening joints. At the next iteration, these new joint positions and angles are

then used to compute the instant linear acceleration, center of mass, balance error,

and acceleration error which are then passed back to the PD controller until the

error in acceleration is below the tolerance.

3.5.3 Extension of the Character’s Body and Takeoff from Ground

Upward acceleration is animated by calculating the angular accelerations of

the joints given the forces acting upon them and the resulting torques. Torque

is the change in angular momentum over time, allowing for the acceleration to be

calculated as the mass can be assumed to be constant:

⌧ =

dL

dt

= m

dv

✓

dt

= ma

✓

where ⌧ is the torque of a joint, L is the angular momentum, m is the mass of the

limb, which must take into account the mass of the rest of the body which is also

moved by the limb, v

✓

is the angular velocity and a

✓

is the angular acceleration.

This results in the below equation for determining angular acceleration.

a

✓

=

⌧

m

Using angular acceleration, the intermediary poses for the model can be deter-

mined at each time step. For each frame, an explicit Euler integration is performed

to determine first angular velocity and finally angle. As the character continues to

extend, a check is made for if the character has yet reached full extension by calcu-

38

lating muscle utilization as described in Section 3.2.3. At full extension, when the

limbs are no longer in use, the character can no longer accelerate in the direction

of the jump, and the character breaks contact with the ground to enter the in-air

phase.

As the windup phase of the torque based simulation fails, it is difficult to

quantify or qualify the success and failure of this portion of the simulation. For

values where the simulation could not complete the windup phase, the in-air portion

is unavailable and for values where the windup phase completes, the values are

erratic and fail to produce valid poses, often resulting in extreme contortions of the

model.

3.6 Energy-Based Simulation

Another way I simulated jumping motions was energy based. I assumed that

the kinetic energy of the character traveling at a calculated velocity from its start

position to the destination position is equivalent to the summed elastic potential

energies of the leg muscles. The direction of the velocity is determined by the

direction the center of mass is accelerated after the windup phase, and I assume

that this is achievable given that the character can achieve the desired energy.

Change in direction is accomplished through usage of the feet and shift of

weight during the acceleration and windup phases, applied through balance and

inverse kinematic calculations. If a character wishes to move forward, they shift

their weight back farther during windup, allowing them to accelerate forward farther

before becoming airborne. In the same way, shifting to one side can allow the

character to accelerate in the opposite direction for non-forward jumps. As with the

torque-based simulation, the jump follows the stages of path estimation, windup,

thrust, in-air, and landing.

39

3.6.1 Calculation of Required Energy to Produce Target Velocity and

Acceleration

Kinetic energy is calculated as

E

k

=

1

2

mv

2

where m is the mass of the character and v is the velocity. Mass is a constant

specified by the user, and I calculate the desired velocity and acceleration as in the

torque based path estimation as described in section 3.5.1.

Like with the torque-based method, I took samples in the region where the

character maintains balance as in section 3.5.2.1. Samples were collected at regular

intervals within a bounding box defined by the character’s supporting polygon, the

ground, and the the height of the character’s pelvis at full extension. The pelvis

was repositioned and the resulting elastic potential energy measured. Candidate

samples were selected by finding all samples with

E

kinetic

� E

elastic

 ✏(E

k

inetic)

and the candidate with the lowest incurred balance error was selected.

My sampling method does not guarantee an optimal solution, but can be

seen as guaranteeing an approximate minimum. I choose a sample with minimum

balance error and iteratively approach it, which greedily finds the nearest sample to

the rest pose which satisfies the energy equivalence, E
kinetic

=

X
E

elastic

. While not

guaranteed to be the minimum, this guarantees that I find a near-minimum value.

Figure 3.6 is a graph of samples for a particular run with all muscle k values set

to 20000. Color indicates the calculated energy for the sample point, with higher

saturation of blue indicating a higher energy value for the sample. The higher energy

samples tend to be clustered towards the center of the sample group, which meets

expectations as most humans will bend to a position such that their hip is between

its normal position when standing and the level of their knees. This is expected

as when the knee bends past 90

�, the muscle has decreasing leverage as the angle

between the shank and thigh sharpens.

40

Figure 3.6: A graph of samples for the character with all muscle k values
set to 20000. The pelvis positions are plotted, with the color of
the data point indicating the energy. A darker point indicates
a higher total elastic energy calculated for the skeleton when
the pelvis is positioned at that point.

Table 3.3 shows examples of estimated values produced by the muscle crossing

the knee joint given several different k values over a range of joint angles. By

comparing the summed calculated energy output with the desired, I check if the

current pose produces enough elastic energy for the intended motion.

3.6.2 Solutions to the Energy Assignment Problem

The setup of the problem resembles a quadratic programming problem. In

this problem, I minimize:

x

T

Qx

subject to

x

T

Px r

where x 2 R

6 and Q and P are square, 6 ⇥ 6 matrices. Q for my problem is a

diagonal matrix, where the diagonals contain the spring constants {k1, k2, ..., k6}
and P is �Q. I can introduce additional constraints in the form of maximum and

minimum values for all x
i

2 x, where the minimum and maximum are calculated at

41

Inputs Outputs
k(

kg

s

2) r(m) ✓deg ✓rad s(m) F(N) E(J)

200000 0.05 170 2.96 0.0087 1743.110 7.59
200000 0.05 160 2.79 0.0173 3472.960 30.15
200000 0.05 150 2.61 0.0258 5176.380 66.98
200000 0.05 140 2.44 0.0342 6840.400 116.97
200000 0.05 130 2.26 0.0422 8452.360 178.60
200000 0.05 120 2.09 0.0500 10000.000 250.00
200000 0.05 110 1.91 0.0573 11471.500 328.98
200000 0.05 100 1.74 0.0642 12855.700 413.17
200000 0.05 90 1.57 0.0707 14142.100 500.00
20000 0.05 170 2.96 0.0087 174.311 0.75
20000 0.05 160 2.79 0.0173 347.296 3.01
20000 0.05 150 2.61 0.0258 517.638 6.69
20000 0.05 140 2.44 0.0342 684.040 11.69
20000 0.05 130 2.26 0.0422 845.236 17.86
20000 0.05 120 2.09 0.0500 1000.000 25.00
20000 0.05 110 1.91 0.0573 1147.150 32.89
20000 0.05 100 1.74 0.0642 1285.570 41.31
20000 0.05 90 1.57 0.0707 1414.210 50.00
24000 0.05 90 1.57 0.0707 1697.050 60.00
16000 0.05 90 1.57 0.0707 1131.370 40.00
40000 0.05 90 1.57 0.0707 2828.420 100.00

Table 3.3: Different spring displacement (s), force (F), and energy (E)
values calculated given a constant bone width of 0.05m, varying
k and varying angle of the joint. These values are for a single
knee, with one muscle crossing the joint.

the minimum and maximum rotations of the joint, producing the extremes in spring

displacement.

This problem of quadratically constrained quadratic programming is NP-hard

and as such I sought a simpler problem or approximation to solve to obtain a solu-

tion. As with the torque method, I choose a sampling-based approach as there is a

known limit on the possible solutions in my case: balance.

3.6.3 Thrust, In-Air, and Landing

Thrust for the energy based simulation works off of explicit Euler integration.

The calculated acceleration from the path estimation stage is used to accelerate the

42

character over the duration of t
windup

. At each time step, the pelvis is translated

by v

takeoff

, which begins at 0 and gains adt per frame. Each frame the character’s

extension is checked using the function described in section 3.2.3, and when it falls

below a tolerance of 0.1, the character is considered fully extended and the in-

air phase begins. While a jump could be performed without the character fully

extending, the character maximizes their jump by extending fully to maximize the

time force is applied against the ground to produce acceleration. During the thrust,

the movement can sometimes proceed faster than the IK solver can converge, so I

pause the simulation briefly and only iterate the solver until it converges.

The in-air phase proceeds similarly, with the character translated by the calcu-

lated velocity from the path estimate each frame. Velocity is modified by gdt where

g is the acceleration due to gravity, resulting in the desired parabolic path of the

player through the air. Ray casts are performed to check if the character’s feet have

contacted a surface to land on. A ray cast is used instead of the collision detection

of a capsule collider as is normally used for physics interactions with characters in

Unity3D as it provides more information about the distance from surfaces. This

allows the prevention of intersection errors where the rougher shape of the collider,

which is usually a box, sphere or capsule, causes the character to fail to collide prop-

erly and intersects a shape. Performing per-triangle collision would also solve this

issue, but as characters are expected to contain tens of thousands of triangles. These

ray casts are made from above toe, heel, and middle of the foot, starting above and

passing through the points to produce a longer ray for more stable results. Once

one of these ray casts indicates the feet have touched such a surface, the character

enters the landing phase.

A landing controller is beyond the scope of this thesis, and thus I end the

simulation as the character’s feet touch a suitable surface. As described in chapter

2, other controllers can be composed with this controller to produce a full animation,

handling the complexities of the landing motion as a separate, modular controller.

43

3.7 Functionality Provided by Unity3D

To help separate the work performed for this thesis from features provided

by Unity3D and to elucidate the implementation, I give a brief description of what

Unity3D provides. Unity3D was chosen due to familiarity, lack of cost, and the

selection of features available. While I chose Unity3D, this system could be imple-

mented in other engines, requiring that the engine provides rendering, physics, and

scene management capabilities, which are provided by most game engines.

Unity3D is a game engine which I used to develop this system [29]. It provides

infrastructure for rendering, scene management, skeletal animation, asset import

and management, lighting, and scripting. My simulation leverages the provided

features through the Unity3D scripting interface, which allows a developer to write

scripts in C# to use the functions available. I developed scripts for calculation of

muscle forces, as well as for applying the force to an imported model. Models were

created in AutoDesk Maya and imported using Unity3D’s asset import as Unity3D

GameObjects with attached Transform components which allow arbitrary trans-

formations. The skeleton, specified in AutoDesk Maya, was imported as a tree with

each joint as a separate GameObject node of the tree, with a parent GameObject

as the root node, which also was parent to the GameObjects carrying the created

mesh.

Unity3D tracks and manages each GameObject, running the update loop

for the user. Unity3D uses a component-object model, where GameObjects are

given behaviors by having a particular Component. Each Component has sev-

eral different update functions for different stages of the engine’s pipeline such as

FixedUpdate for fixed spacing of calls instead of actually calling once per frame or

OnPostRender for operations performed after rendering, but the main function is

Update, which is called every frame. Components allow rendering and simulation

behaviors to be separated from each other, decoupling them from each other and

the objects. The update loop handles rendering related updates as well as running

Update for each component on the object. My simulation is implemented as sev-

eral Component scripts attached to the character, with additional Components to

carry extra information with each joint of the skeleton and Components on each hip

44

for inverse kinematic solving. The scene manager provided by Unity3D allows for

simple access and manipulation of these Components and their objects, managing

many useful data structures, namely the tree of all objects present in the scene.

Unity3D also provides matrix and vector math libraries as well as generalized

math libraries to aid in physics calculations and subsequent transformations on

the objects. There are rigid body and physics components available, but for the

purposes of my simulation I performed the physics calculations ourselves to gain

greater control. I utilized Unity3D ray casts for detecting collisions between the

character’s feet and the floor.

Figure 3.7: Pictured is the Unity3D Editor. At left a representation of
the scene called the Hierarchy, allowing for visualization and
manipulation of the tree of objects that make up the scene.
At right is the Inspector, showing the interface for setting
and editing the values specified in my simulation, the Jump-
Controller Component. In the center is a visual of the scene,
allowing for intuitive placement and manipulation of objects,
showing the character. At the bottom is a window showing
console output and errors. These windows may be moved by
the user.

For managing the numerous user-specified values, I use the Unity3D Inspector.

Unity3D provides the Unity Editor for creating and managing scenes and objects

45

within, which is depicted in Figure 3.7. Within the Editor the Inspector is a window

showing the Components attached to the selected GameObject. Unity3D utilizes

serialization to allow public class variables to be set and modified through the In-

spector, providing a form of fields into which numbers can be entered. Using this, I

allow the user to specify the desired constants for the simulation.

3.8 Summary

The character is modeled as a mesh with a skeleton and muscles. The skeleton

was created as a tree of joints with the root at the hip. Muscles were placed along

the limbs, crossing a single joint and anchored to the bones on either side. Force

and energy outputs of the muscles were calculated as linear springs, with spring

displacements calculated from the angle of the joint. An inverse kinematic solver

was used to aid in creating poses.

Two methods were used for the simulation, one using torque based calculations

and the other using energy based calculations. Each method proceeded through the

stages of path estimate, windup, thrust, in-air, and landing, with similar calculations

used to produce an error function to quantify character poses. In the torque based

simulation, error was calculated by using the muscles to calculate torques, and from

the torques accelerations. In the energy based simulation, error was calculated as

the difference between elastic potential energy and target kinetic energy.

Samples were collected using these error functions, with the selected best sam-

ple minimizing both the balance error and either the acceleration or energy errors for

the torque and energy simulations respectively. A PD controller iteratively moved

the character’s pelvis position towards the selected sample until the error between

the calculated values for the frame and the desired values were below a tolerance.

After the character moved its pelvis to the chosen sample position to reduce the error

below tolerance, it performed the thrust and in-air portions of the jump treated as a

rigid body, with the simulation ending when the character’s feet touch the ground.

In Chapter 4 I discuss visualization methods for the simulation for debugging pur-

poses as well as presenting results, and discuss results of the simulation methods in

Chapter 5.

CHAPTER 4

VISUALIZATION

In this chapter I discuss methods of visualization for the animations produced in

Chapter 3, as well as the difficulty of visualizing character animation in print format

as well as video. I present some sources of inspiration for my visualizations and

motivate the need for visualizations. I then discuss techniques I utilized to visualize

my data for presentation as well as for debugging and analysis.

4.1 Motivation and Inspiration

Showing a motion in a static medium such as print presents numerous chal-

lenges. The static image or images must convey a sense of time that is understand-

able, such that a viewer may intuit the direction and rate of movement. Especially

for a complex object such as a figure, occlusion can obstruct information, and pre-

vent understanding of the motion of hidden portions of the body. The projection of

a 3D scene can also create similar issues as occlusion, creating ambiguity in depth

and obscuring motions in some dimensions.

I drew from several sources for inspiration on how to visualize my results.

A video by KORB created for the CCTV Documentary Channel shows “motion

sculptures,” in which the people in the scene leave trails of material as they move1.

These sculptures very cleverly captured the movement of the body throughout the

space of the video, creating aesthetically pleasing, if somewhat difficult to parse,

visuals.

Another film of a similar nature is Choros by Michael Langan and Terah Ma-

her 2. Images of a single dancer follow her through her her movements, leaving a

traceable pattern of movement. This technique was inspired by chronophotography,

a precursor to video which utilizes multiple successive photographs or multiple ex-

posures on the same film to visualize movement of a figure or object. These can be
1https://vimeo.com/69948148 [Accessed: Nov. 23, 2015]
2http://langanfilms.com/choros.html [Accessed Nov. 18, 2015]

46

47

laid out in animation strips or superimposed to create a single image.

4.2 Motion Visualization

Markers were used to highlight motion of particular parts of the body, such

as the pelvis or center of mass. Other indicators placed on or around the figure can

indicate other values, such as arrows to represent vectors of force. This however can

result in clutter within the images, scene, or frame of video, occluding or distrac-

tion from the primary animation. Copies of the character could be left behind to

produce an after image effect such as in the videos discussed in section 4.1. I used

these techniques in conjunction with each other, enabling and disabling them as the

situation required.

Figure 4.1: An example of the markers tracking joints. With a high sam-
ple rate, a curve forms trailing along the path of the joint.
Markers were placed at a rate of 10 per second of simulation
time.

Markers were implemented as camera-facing “billboard” planes with a texture

that were spawned with a user-specified frequency, following an arbitrary joint of

48

the character. Each frame the orientation of the planes adjusts such that it faces the

main active camera, allowing very little geometry to be used to produce an always

visible visual to be placed in the scene. I used one of these for each joint in the legs as

well as one for the pelvis in order to track the paths of the joints. This visualization

was an interesting one to view, and gave a similar effect to motion sculptures, but

was very difficult to understand without a reference to know which color of marker

corresponded to which joint. Even with knowledge of which joint followed which

trail of markers, the visualization was difficult to understand, though it gave a good

overview of the whole motion. These marker trails are shown in Figure 4.1.

Figure 4.2: Pictured above are examples of a ghost image visualization
achieved by placing copies of the character model at a rate
of 1 per 0.5s (pictured left) and 1 per 0.2s (pictured right).

I used a ghost image visualization as well in 2 ways: leaving copies of the

character behind at a user defined rate and layering collected frame data. In the first

method, I make a copy of only the model and necessary skeleton components, leaving

out the extra data such as mass, constraints, and muscles used in my simulation, and

match the positions and rotations of each of its joints to the character at the current

time. The ghosts use a semi-transparent material to help differentiate between them

and the model, as well as to provide some clarity as to each ghost’s pose and combat

the issues of occlusion. Examples of this visualization are shown in Figure 4.2.

An alternate method of forming the ghost image visualization was to layer

numerous collected frames in an image editing program. This method was very

work intensive, requiring each layer to be matte painted by hand. Algorithms and

49

Figure 4.3: An example of the composited frames visualization, in which
several frames of the animation are layered on top of each
other, and matte painted to produce a combined image with
all frames superimposed.

techniques in image processing and computer vision for automating this process,

but for my purposes it was necessary to manually select the desired region in each

image that should be visible in the final combined image. To reduce the negative

effects of occlusion, layers above the first were given an opacity of 75%. Though

work intensive, this produced an excellent visual for still media to show the path

of the entire motion, but was a poor visual in many cases for showing detail of

the movement as images often occlude each other. Examples of this visualization

are shown in Figure 4.3 and in Figure 5.1. As a compliment to this visual, I used

animation strips, in which the frames were simply presented adjacent to each other

in order from left to right. These strips are also found in the data tables presented

in Section 5.4 and in Figure 5.1.

50

4.3 Debugging Visualizations and Controls

For debugging visuals, I used a feature in Unity3D called Gizmos 3, which

allowed debug drawing of primitive shapes. I used small spheres of various colors to

show sample positions, target positions for the IK solver, corners of the supporting

polygon, and the position of the center of mass. Rays were used to visualize velocity,

acceleration, distance to the destination, and value of the samples. A screenshot of

my Gizmos active for an energy based simulation are shown in Figure 4.5.

Figure 4.4: Screenshots of Handles, a tool in Unity3D which allows the
user to create custom UI elements in the editor for changing
a value in the game or simulation. In this case, the Handles
affect the minimum and maximum rotation for the joints.
Handles are only visible when the corresponding object is se-
lected by the user, reducing clutter. All three Handles are
shown in the left image, allowing the user to set the con-
straints for pitch (red), yaw (green), and roll (blue) as the
pelvis is set to allow rotations about all three axes. At right,
I show the Handle for adjusting the constraints of the left
knee, which is only able to rotate about the x-axis (pitch).

Similar to the Gizmos, I utilized a feature called Handles 4 to ease setting and

visualization of the joint constraints on the skeleton. Unlike a Gizmo, a Handle can

be manipulated by the user to affect values in the simulation before run time. As

shown in Figure 4.4, three handles were used to adjust pitch, yaw, and roll, color

coded as red, green, and blue. Colors were chosen to correspond to the colors of the

reference axes placed in the scene to aid the user, showing the red, green, and blue

handles as limiting rotation about the x, y, and z axes respectively.
3http://docs.unity3d.com/ScriptReference/Gizmos.html [Accessed: August 10, 2015]
4http://docs.unity3d.com/ScriptReference/Handles.html [Accessed Aug. 13, 2015]

51

4.4 Discussion

The hope for the visualizations was to provide simple, at-a-glance diagnostics

that would show an animation’s strengths and shortcomings. Tracking individual

joints with markers provided surprisingly little information, though I had hoped it

would provide a simplified way of looking at the overall motion of the character,

eliminating unnecessary visuals of the character model and providing information

purely about the skeleton. While less useful than I had hoped, the trails following the

joints did provide information about the general path of the character, though detail

was often obscured by overlapping portions of the trail. One such case was where

the character’s foot was becoming trapped in the ground and ended up twisting in

place, instead of remaining stationary as a support. The twisting trail around the

foot joint provided a simple visual that there was movement where there should not

be. This visualization also indicated that the information provided by the character

model is necessary to understanding the animation of the character, leading to the

ghost image visualization.

The ghost image visualization provided similar information, but kept the char-

acter model. Due to the regular sampling of the character’s position, this visualiza-

tion was good for finding temporal issues, where the character spent too great or

too small a time in different portions of the jump. One such instance was that the

character had an issue where the inverse kinematic solver could not keep up with

the rate at which the character moved when performing the windup animation for

a “superman” jump, in which the muscles were tuned such that the character could

jump to the top of a 200m block. The motions occurred too quickly due to the

large values involved, necessitating a finer timestep so that the simulation would

not overshoot. This visualization showed the back-and-forth adjustments occurring

due to the simulation constantly passing the target pose by over-adjusting.

The Gizmo visuals were used out of necessity. The dots were inserted in order

to visualize the samples and the values that each produced, as the output anima-

tions for early iterations were very far from expected motions and the animation

itself provided very little information about the target or calculated values. These

visualizations helped to find mathematical errors in the torque-based simulation, as

52

well as leading to the abandonment of the torque-based simulation in favor of the

energy-based simulation when the values of the torque-based simulation remained

very far from expected, but the energy-based simulation produced similar values to

those expected. The gizmos were also used to visualize the balance of the character,

showing center of mass and the supporting polygon.

Handles were used as a utility, as setting the angle constraints on the joints of

the character was a long and difficult process, with very little to indicate if the range

was “realistic” or “expected.” The angles in Unity3D3d are not always as expected,

since a rest angle of the joint may be 0

�, while biologically the rest angle may be

defined as 180

�. Handles provided a way to have not only a visual representation

of the constraints on the joints, but also a more intuitive method of entering them.

Instead of typing in the numbers in the Unity3D3d Inspector, the Handles may be

dragged to modify the values. Creating Handles for the specification of muscles

would likely make the process of setting up the skeleton much easier and more

intuitive for animators, and is of high priority for future iterations of this system.

4.5 Summary

In this chapter I discussed some difficulties in visualizing animations in both

animated and non-animated settings. I presented some sources of inspiration and

discussed the different methods I used to visualize data for presentation, analysis,

and debugging. Methods I used for analysis and presentation included trails of

markers, ghost images created by duplicating the player model in the scene, layering

frames to create a single image, and animation strips. My debugging visualizations

took advantage of Unity3D utilities, using Gizmos and Handles to allow the user to

see information about the simulation, as well as to more easily adjust constraints

on the skeleton.

53

Figure 4.5: Screenshots of Gizmos in the Unity3D Editor. The green
points illustrate the sample field taken at the beginning of
the jump, while the gray lines show the energy measured at
this sample. The rays beginning at the player’s pelvis show
the magnitude and direction of the acceleration (magenta)
and velocity (blue) of the character. The green line at the
player’s feet shows the displacement from the start position
to the destination, and the cyan line starting at the player’s
pelvis shows the calculated kinetic energy. At right, a closer
view of the samples is shown to show the blue dots which
outline the balanced region which the samples were restricted
to. The character is distanced from these samples as the
Gizmos are drawn at the character’s start position, and the
character in this scene has completed its jump and is at the
destination position. The orange particle is a marker placed
at the start position.

CHAPTER 5

RESULTS

In this chapter I discuss results of my simulation. First in Section 5.1, I describe

choosing of the constants for the proportional derivative controllers, which required

proportional (k
p

) and derivative (k
d

) constants to control the rate at which changes

were applied to the simulation, motivating the choice of values in Table 3.2. I

then discuss choice of muscle strength constants, as well as the length and height

of trial jumps in Section 5.2. This section also gives an estimate for how strong

a human leg with similar dimensions would be. Section 5.3 describes performance

of the simulation as well as my method of collecting frame data. Examples of this

collected frame data is shown in Section 5.4. Finally, I discuss limitations of my

simulation and method in Section 5.5.

5.1 Proportional Derivative Controller Constants

The windup PD controller was given constants of k
p

= 0.25 and k

d

= 0.25.

These were chosen empirically to offset irregularities due to time step and slow

convergence in the inverse kinematic solver. With higher values, the translation

of the pelvis results in the character’s feet embedding in the ground plane due to

too great a movement in a single frame. The feet then fail to adjust as the inverse

kinematic solver cannot converge quickly enough. As opposed to a performance

issue, this is a limitation of the inverse kinematics algorithm used, which was chosen

due to simplicity so focus of this project could remain on the jump simulation.

In most cases, the inverse kinematic solver converged within 30 iterations, but

in this situation more than 300 iterations were required. To compensate, I chose PD

controller constants to adjust the rate of of change of the animation. These values

were found to generally produce smooth windup phases without compromising on

speed of the animation too much, where speed refers to the amount of movement

in each frame, which requires the frames to be played back at a different rate to

achieve the desired rate of movement in the final animation.

54

55

The controller for re-balancing performed well with k

p

= k

d

= 1, with little

noticeable change in results and only a change in rate of convergence for values at

k

p

= k

d

= 0.5 and k

p

= k

d

= 1.5. This showed that the main bottleneck for control

in the model was the windup control, leading me to choose the value 1.

5.2 Muscle Constants and Strength Intuition

Muscle spring constants were tested in various configurations, with several

trials run for each set of constants for varying distances, directions, and situations.

Animations were created for forward jumps between 1m and 2m for the normal

human values and at 1m, 10m, and 100m for the super human, based on the analysis

of the standing long jump by Wu et al [30]. A jump onto a box was also simulated,

with 0.5m and 0.75m boxes for the normal human and 1m and 100m boxes for

the super human, with normal human values chosen based on the work done by

Aragón-Vargas and Gross [31]. The values chosen were round numbers near the

values presented in the cited works, with the longer range jumps of 2m forward

and 0.75m and 1m boxes were chosen as an example of a highly athletic, but still

“normal” human as opposed to a superhuman. The normal human muscle constants

were additionally used for sideways jumping animations, as well as a more complex,

jump-over scene in which the character is made to jump from on top of a box, over

an obstacle before finally landing on the ground.

Jump animations appear plausible though imperfect in my view, drawing upon

my experience as a researcher, game developer, and gamer. The spring values result

in forces similar to a human muscle. Human muscles have about 30

N

cm

2 force per

cross-sectional area [32]. I perform the following calculation as an intuitive estima-

tion of the expected leg strength of the character. The character’s leg thickness is

about 0.20m forward to back narrowing towards the knee, with a left-right thickness

of around 0.15m. If I assume that skin is about 0.002m thick (2mm) and about 10%

of the remainder is subcutaneous fat as per Tarulli et al [33], the dimensions of the

area left over are 0.1782m by 0.1332m. This gives an axial cross sectional area of

approximately 0.024m

2. I use a bone width of 0.05m, giving a cross sectional bone

area of 0.0025m2 which leaves an area of 0.022m2 of non-bone muscle. If half of this

56

is extensor muscle, then I have an approximate cross sectional area of 0.011m2 or

110cm

2. This means that the estimated maximum isometric force for the muscle is

F =

�
30

N

cm

2

�
(110cm

2
) = 3300N . With a k of 20000, my muscle produces

F = �k

r sin(⇡ � ✓)

sin

✓

2

!

which for a joint bend of ⇡

2 radians is 1414N . This k value was determined empiri-

cally, following the assumption that an average person has a max long jump in the

range of 1.5m to 2m, estimated based on Wu et al [30].

For comparison, a character with mass 80kg requires approximately 800N of

force to counteract gravity’s effects on their body, with additional force providing

upward acceleration. Using Table 3.3, a joint with angle ✓ can be matched to a

spring displacement s. At ✓
deg

= 90, displacement is s = 0.0707m which would give

a k value for the muscle with 3300N of force as 3300 = 0.0707k, giving k = 46676

kg

s

2 ,

indicating that my k value is about half of what it should be for the thigh muscle.

A likely explanation for this is that my trials were usually run with uniform k values

for all muscles as variable k values did not produce noticeable results, allowing the

other muscles of the leg to make up the difference in force for the thigh muscle.

Another possible explanation is that my simulated character can perfectly execute

the movement, maintaining balance and applying force, either handling or ignoring

extraneous movements due to the simplifications and assumptions of my simulation.

This extra work that a real human must perform may contribute to this difference,

though the uniform strengths of muscles in my character’s legs is more plausible.

The produced animations are plausible and recognizable as jump animations.

The character loads its limbs appropriately, giving the appearance of weight, and

extends its knees, hips, and lastly ankles to show thrust corresponding to the usage

of its muscles. As in a real jump, the character extends its ankles last, the calf

muscle providing the final thrust of the motion.

57

5.3 Simulation Speed and Frame Collection

The simulation runs in an interactive frame rate, with a delay on start up for

the calculation of the sample field. An example of the sample field is visualized

as green dots in Figure 4.5 and plotted in Figures 3.5 and 3.6. As long as the

mass and the muscle constants remain the same, the sample field need not be re-

calculated. The sample field calculation is linear in the number of samples taken.

A major bottleneck aside from populating the sample field is the convergence of the

inverse kinematic solver. The solver is required to run every frame, usually for many

iterations unless it has already converged. While the cost is manageable due to the

linear nature of the algorithm, the main issue is when convergence does not occur

and the simulation must either stop and wait for the solver to catch up, or continue

on and risk corrupting the simulation due to misplaced joints or limbs. There are two

major cases of this occurring: the character’s feet sinking into the ground instead

of the knees bending during windup and the character’s feet prematurely breaking

contact with the ground during thrust. My simulation suspends its activities when

a compromising situation is detected, iterating the inverse kinematic solver until

the issue is resolved. The solver usually converges within a few frames, but this

can add undesired time to the simulation and undesired frames to the animation.

This extra time in the simulation was measured between 0.004s and 1.2s across

different trials, with as many as 10 unwanted frames added to the simulation during

slow convergence. These unwanted frames were repeated frames, with very small or

undetectable changes in the position of the character, making the character appear

still for a section of the animation before continuing to move.

Frame data of the produced animations was collected at a rate of 1 frame

per 0.1s of simulation time, giving a frame rate of 10 frames per second. This

granularity was used to ensure capture of any irregularities in the simulation and to

ensure changes in pose were recorded as shorter trials ran in under 1s of simulation

time, though the real time was several seconds. Finer granularity was found to have

little benefit. I show one of five frames in the tables discussed in section 5.4 to

reduce the size of the animation strips presented and thereby reduce the size of my

tables.

58

Left Hip Left Knee Left Ankle Right Hip Right Knee Right Ankle
Global, Normal 20000 20000 20000 20000 20000 20000
Varying, Normal 20000 24000 16000 20000 24000 16000

Uneven Global, Normal 16000 16000 16000 24000 24000 24000
Uneven Varying, Normal 24000 28000 20000 16000 20000 12000

Global, Super 1⇥ 1010 1⇥ 1010 1⇥ 1010 1⇥ 1010 1⇥ 1010 1⇥ 1010

Table 5.1: This table shows muscle spring constants (k) values used for
several trial runs. Each column represents a muscle, described
by the center joint which indicates the joint the muscle crosses
and affects. Each row represents a different trial, with a set of
k values. Global runs used a uniform k for one or both sides of
the body, while varying runs used different spring constants
for each muscle. Uneven runs were meant to mimic a character
with an injury or other source of imbalance where one leg was
significantly stronger than the other.

5.4 Output Animations

Several trials were run with different, empirically determined k values as shown

in Table 5.1. The destination position was chosen for each to demonstrate the range

of motions possible with my simulation. Trials can be divided into several types:

forward jumps, sideways jumps, and box jumps. In a forward jump, the character

starts from standing and jumps forward to a destination. A sideways jump is the

same, except requiring the character to jump to the right without first turning. Box

jumps required the character to jump from standing to land on an obstacle in front

of them. Additionally, a jump-over scene was constructed, in which the character

starts standing on a box. The character then jumps off the box, over an obstacle,

and lands on the floor below. The jump-over scene is pictured in Figure 5.1. The

box on which the character starts is 1m in height, and the obstacle is 1.4m in height.

To achieve the path shown, the destination was set at (0, 1.5, 1), with the starting

position at (0, 0, 0). Muscle spring constants were set for all muscles globally as

k = 20000.

Forward jumps are shown in Figures 5.2, 5.4, and 5.6. For the super human,

jump destinations were set 1m and 100m in front of the character’s starting position.

For the normal human, jumps were set at 1m, 1.3m, 1.6m, and 1.9m, shown in Figure

5.2 for a globally set k and in Figure 5.4 for a varying k. Box jumps are also included

in these figures, with 1m, 10m, and 100m boxes for the super human and 0.5m and

59

1m for the normal human. Animations were produced for normal human strength

with both a globally set k = 20000, where each muscle had the same constant, and

varying with k = 20000± 4000 as shown in Table 5.1.

The inclusion of the box jump is to demonstrate a vertical jump with a par-

ticular target, as well as to demonstrate a situation that arises in film and video

games. While the standing forward long jump is used as a metric of athletic perfor-

mance, the box jump is not normally performed for height, with the running and

standing vertical jump measuring performance for upward jump ability. The box

jump however is not usually performed for height, though it is more appealing in

animations and athletic performances to watch a jump onto or over an object as

opposed to a high jump with no reference point.

In Figure 5.5 I show forward jumping motions of 1.6m and 1.9m where the

character has uneven strength in their legs. These values were chosen similar to the

normal human test case. There is little effect, which is why lengths shown were only

at the extreme of distance possible for the character. However, the character’s right

leg can be seen to dangle in the trial with varying k values, indicating that more

load is on the left leg.

To demonstrate the flexibility of a simulation-based animation, I also include a

jump to the side. The destination was specified as 1m, 1.3m, and 1.6m to the right,

i.e. the direction (1, 0, 0) relative to the character, of the character’s start position.

Instead of the pelvis thrusting forward and up, in these trials the pelvis thrust is to

the side and upwards as expected. These animations are shown in Figure 5.3 and

were collected with a global k = 20000.

5.5 Limitations

My system has a number of limitations and failure cases. First is that there

are many constants to be specified, which is work intensive but gives freedom to

make wide changes to the animation by tuning parameters

There are numerous small issues with the calculations caused by strange or

unexpected interactions. Foremost is the behavior of rotations and angle measure-

ment in Unity3D. Angles are read and interacted with as Euler angles, pitch, roll,

60

Figure 5.1: Pictured is an animation of the jump-over scene, in which
the character must jump from on top of a box, over another
box and land on the ground. The first image in the figure
shows the frames composited into one image to visualize the
full motion, while the remaining images show the individual
frames. This run used t

windup

= 0.2s and t

air

= 0.5s.

and yaw, or rotation about the x, z, and y axes respectively. Rotations, however,

are stored and calculated by the engine in the form of quaternions in order to avoid

gimbal lock and allow smoother interpolation between rotations. Due to the con-

versions between the two, and various manipulations that occur in the scene, this

can result in angles not restricted to [�360, 360] degrees, and can result in jumps

between positive and negative angles. A solution would be to restrict the angles to

positive angles in the range [0, 360] for all calculations and manipulations, but this

makes specifying constraints more complex.

61

Problems with angle also arise as the angle of the joint given by Unity3D does

not necessarily reflect the angle between the bones. For example, when the knee

is fully extended, the joint angle stored in the object is 0, but the angle between

the bones is ⇡ radians. A solution is to calculate the angle between the bones of

the joint when needed using the dot product of the vectors between the joint and

its parent and the joint and its child. I did not realize that there was still an issue

with angle specification as the issue was balanced out as the supplementary angle

was used erroneously, but a fully correct implementation would be desirable for true

consistency. The data was collected with the flawed implementation, though as

previously stated it produced similar results.

Movement of the upper body is very minimal, and is quite unlike a human

performing a long jump. This is likely due to the restriction of pelvis reposition

to the region over the supporting polygon. Humans frequently move their pelvises

far behind their supporting polygon, compensating using the weight of their upper

body. The usage of rapid movement of the upper body to aid in acceleration is also

a factor I do not consider, such as the effects of arm swing on a jump. A major

aspect of humans performing any jump is the swing of the arms, as shown in Lees et

al [34], studies of the long jump by Wu et al [30] and The Parkour and Freerunning

Handbook [35]. As my simulation lacks definition in the upper body, this is a major

limitation of the animations produced. Adding in control of the arms and upper

body is a good candidate for future work.

As my simulation was focused on the movements leading to the airborne phase,

the handling of in air maneuvers and landing are overly simplistic. After the char-

acter becomes airborne, the pelvis will generally be displaced in the direction of

acceleration relative to the feet. The character should maneuver while airborne

such that their feet are in front of their body to prepare for landing. For landing, a

reverse of the windup for the energy simulation could be used, loading the muscles

in the legs to offset the kinetic energy the character has from the jump, converting

it to elastic energy in the muscles. Landing and airborne phases should be handled

ideally by a separate controller.

My inverse kinematic solver is also very simple, and brings its own issues due to

62

this simplicity. This algorithm was chosen specifically to minimize time, effort, and

resources spent on the inverse kinematic component, in favor of the simulation itself.

With a different inverse kinematic solver, more stable results could be achieved that

more strongly follow and account for constraints than the method used with faster

convergence. One preferable method is the Jacobian transpose method, which is

described in Section 2.1.4, but was rejected due to the need for matrix math libraries

that allow arbitrary sizes of matrix which were not readily available and would have

required additional time to implement. Another option would be to utilize features

available in Mecanim, an animation system provided by Unity3D which also provides

a state machine for animation control.

The output of my simulation is currently image frames as well as the direct

visualization through Unity3D, as opposed to a key frame animation in a format such

as FBX5, which could be utilized in video games. An AutoDesk Maya plugin that

runs my simulation would also be more useful for allowing creation of animations if

a real-time frame rate cannot be achieved.

5.6 Summary

Plausible animations were created, with PD constants of k
p

= k

d

= 0.25 and

empirically determined muscle k values around 20000. Analysis shows different val-

ues would be theoretically more realistic, but the empirically determined values still

produced reasonable animations. Animations were produced for a normal strength

human as well as a super human for forward standing jumps, sideways standing

jumps, and box jumps. A jump-over scene was constructed in which the character

jumped from on top of a box, over an obstacle, and landed on the ground below to

show a more complex scene. I discussed in this chapter the values used and method

for collecting data, and presented sets of frames collected from several simulations

with a variety of scenes. Animations depicted forward, sideways, and box jumps for

a normal human range of strength and for a super human strength. An animation

of a character jumping over an obstacle was also presented.

5AutoDesk FBX Format. http://www.autodesk.com/products/fbx/overview [Accessed: Jan-
uary 14, 2016]

63

1m for-
ward

1.3m
forward

1.6m
forward

1.9m
forward

0.5m
box

0.75m
box

Figure 5.2: Forward and box jump motions for a character with global
k = 20000, t

windup

= 0.2s, and t

air

= 0.5s. The boxes were placed
0.75m in front of the character, with the character’s target
destination set 0.3m in front of the character on top of the
box.

64

1m
right

1.3m
right

1.6m
right

Figure 5.3: Right jump motions for a character with global k = 20000,
t

windup

= 0.2s, and t

air

= 0.5s. The target was placed at the
distance listed in the figure in the direction (1, 0, 0) relative to
the character.

65

1m for-
ward

1.3m
forward

1.6m
forward

1.9m
forward

0.5m
box

0.75m
box

Figure 5.4: Forward and box jump motions for a character with varying
k ⇡ 20000, t

windup

= 0.2s, and t

air

= 0.5s. The boxes were placed
0.75m in front of the character, with the character’s target
destination set 0.3m in front of the character on top of the
box.

66

1.6m
forward
(global
k =

20000)

1.9m
forward
(global
k =

20000)

1.6m
forward
(varying
k =

20000)

1.9m
forward
(varying
k =

20000)

Figure 5.5: Forward jumping motions with uneven muscle strengths be-
tween legs, using t

windup

= 0.2s and t

air

= 0.5s.

67

1m for-
ward

10m for-
ward

Figure 5.6: Generated frame sequences for the super human trial, where
the k values were chosen such that the character could leap
over a tall building, a 100m tall box. Animations above were
generated for 1m, 10m, and 100m forward jumps. The 100m
forward jump is not pictured due to the difficulty of capture,
as either the jump was out of the range of the camera or the
camera was too far to clearly see the animation.

68

1m box

100m
box

Figure 5.7: Animations of 1m and 100m box jumps for the super human.
This trial uses t

windup

= 1s and t

air

= 5s.

CHAPTER 6

FUTURE WORK AND CONCLUSION

In this chapter I discuss future work and conclude my discussion of research on this

simulation. Section 6.1 discusses possible and planned work on this topic, as well as

potential future work in this and closely related lines of study. Section 6.2 concludes

this document with final thoughts and a summary of the document.

6.1 Future Work

I planned some further work that I decided was beyond the scope of this thesis.

My current system does not allow much flexibility with specification of the path the

character travels for its jump. Jumping path estimation could be performed based

on a policy. Possible policies are achieving a height while jumping to a target

destination, pathing to clear an object or intersect with an object, follow a path

defined by the user, and jumping with a user specified velocity or speed. These

policies would require a smarter handling of the in air phase of the jump, which

would be best implemented as a secondary controller to allow controller composition

for more complex motions. A more complex in air controller would ideally handle

cases such as acrobatics, in air maneuvers, and checking for and handling collisions.

Current work exists for landing motions such as described in chapter 2. Ha

et al. [5] describes an example of one such controller for a falling and landing mo-

tions. Incorporation of such other controllers would allow creation of more complex

animations. A separate controller could also be used for improving the motions of

the upper body for each of these phases. This could be used to create complex

freerunning animations such as vaults and wall runs which are becoming prevalent

in video games such as Mirror’s Edge [36].

To help with choosing values, a learning model could be applied as in the

muscle-based simulations described in Section 2.1.2. Animations could be marked

as successful and desirable by humans to train an algorithm to choose desirable

constants for the muscles given target destinations. Machine learning could also be

69

70

applied for learning a function to determine muscle load in the windup phase of my

simulation. Intuitively the situation seems to fit a learning model well, but more

study would be required.

Both simulations were solved using a sampling solution, but could have been

solved using an optimization problem. Solving the optimization problem, such as the

quadratic program in Section 3.6.2 would likely provide a better solution and would

give stronger guarantees of optimality. This would likely decrease performance.

My animation output is currently images. A more desirable animation output

would be key frames storing the positions and orientations for each joint of the

character’s skeleton, which could then be used in a game or video as a pre-baked

animation. An implementation as a plugin for AutoDesk Maya could also be more

desirable, as it could then be incorporated into an artist’s work flow. I chose not to

use AutoDesk Maya initially for an implementation initially due to familiarity with

Unity3D and so that I could obtain live visuals of the simulation with debugging

information easily as the simulation was performed and animation played.

Another option would be to utilize Mecanim, a feature of Unity3D. I chose not

to use this feature while performing the initial research, due to lack of understanding

of the limitations and features available in Mecanim. After completing further re-

search, there are many components of Mecanim that would improve my simulation

and increase its ease of incorporation into game development and animation work-

flows. My simulation could be re-tooled to output animation clips for Mecanim,

and my constraint system replaced with the one provided by Mecanim. Mecanim

muscles do not provide the functionality required, so my muscle component would

need to be modified and reapplied to the skeleton. As is, my simulation is very

close to producing output that could be used as an input to Mecanim, making this

a promising direction for future work on the implementation.

6.2 Conclusion and Summary

In this thesis, I discussed the need for a more efficient way to produce character

animations for video games and film. I then presented a simulation based approach

for creating such animations for a jumping motion of a character to reach a given

71

target position. My system used two different types of simulation: torque based

and energy based. The torque based simulation failed to produce good results, but

I collected frame data for a variety of situations using the energy based simulation.

I then described my methods for visualizing the animations to quantify and qualify

the performance, giving visual information in an animated format and still format.

References

[1] E. Goldberg, Character Animation Crash Course! Silman-James Press, 2008.

[2] C. Solomon, The History of Animation: Enchanted Drawings. Wings Books,

1994.

[3] B. Thomas, Disney’s Art of Animation, 2nd ed. Hyperion, 1997.

[4] P. Blair, Cartoon Animation. Walter Foster Publishing, Inc., 1994.

[5] S. Ha, Y. Ye, and C. K. Liu, “Falling and landing motion control for character

animation,” ACM Trans. Graph., vol. 31, no. 6, pp. 155:1–155:9, Nov. 2012.

[Online]. Available: http://doi.acm.org/10.1145/2366145.2366174

[6] S. Càmara, All About Techniques in Drawing for Animation Production.

Parramón Ediciones S. A., 2004.

[7] R. J. Radke, Motion Capture. Cambridge University Press, 2013, ch. 7, pp.

255–297.

[8] G. Liu and L. McMillan, “Estimation of missing markers in human motion

capture,” The Visual Computer, vol. 22, pp. 721–728, September 2006.

[9] J. Shotton, A. Fitzgibbon, M. Cook, T. Sharp, M. Finocchio, R. Moore,

A. Kipman, and A. Blake, “Real-time human pose recognition in parts from

single depth images,” in Proceedings of the 2011 IEEE Conference on

Computer Vision and Pattern Recognition, ser. CVPR ’11. Washington, DC,

USA: IEEE Computer Society, 2011, pp. 1297–1304. [Online]. Available:

http://dx.doi.org/10.1109/CVPR.2011.5995316

[10] R. Grzeszczuk and D. Terzopoulos, “Automated learning of muscle-actuated

locomotion through control abstraction,” in Proceedings of the 22Nd Annual

Conference on Computer Graphics and Interactive Techniques, ser.

SIGGRAPH ’95. New York, NY, USA: ACM, 1995, pp. 63–70. [Online].

Available: http://doi.acm.org/10.1145/218380.218411

72

http://doi.acm.org/10.1145/2366145.2366174
http://dx.doi.org/10.1109/CVPR.2011.5995316
http://doi.acm.org/10.1145/218380.218411

73

[11] T. Geijtenbeek, M. van de Panne, and A. F. van der Stappen, “Flexible

muscle-based locomotion for bipedal creatures,” ACM Transactions on

Graphics, vol. 32, no. 6, 2013.

[12] P. Faloutsos, M. van de Panne, and D. Terzopoulos, “Composable controllers

for physics-based character animation,” in Proceedings of the 28th Annual

Conference on Computer Graphics and Interactive Techniques, ser.

SIGGRAPH ’01. New York, NY, USA: ACM, 2001, pp. 251–260. [Online].

Available: http://doi.acm.org/10.1145/383259.383287

[13] J. K. Hodgins, W. L. Wooten, D. C. Brogan, and J. F. O’Brien, “Animating

human athletics,” in Proceedings of the 22Nd Annual Conference on Computer

Graphics and Interactive Techniques, ser. SIGGRAPH ’95. New York, NY,

USA: ACM, 1995, pp. 71–78. [Online]. Available:

http://doi.acm.org/10.1145/218380.218414

[14] T. Geijtenbeek and N. Pronost, “Interactive character animation using

simulated physics: A state-of-the-art review,” Computer Graphics Forum,

vol. 31, no. 8, pp. 2492–2515, 2012. [Online]. Available:

http://dx.doi.org/10.1111/j.1467-8659.2012.03189.x

[15] Y. Koga, K. Kondo, J. Kuffner, and J.-C. Latombe, “Planning motions with

intentions,” in Proceedings of the 21st Annual Conference on Computer

Graphics and Interactive Techniques, ser. SIGGRAPH ’94. New York, NY,

USA: ACM, 1994, pp. 395–408. [Online]. Available:

http://doi.acm.org/10.1145/192161.192266

[16] J. Lander, “Oh my god, i inverted kine!” Game Developer, pp. 15–22,

September 1998.

[17] J. Lander, “Making kine more flexible,” Game Developer, pp. 15–22,

November 1998.

[18] S. R. Buss, “Introduction to inverse kinematics with jacobian transpose,

pseudoinverse and damped least squares methods,” 2009.

http://doi.acm.org/10.1145/383259.383287
http://doi.acm.org/10.1145/218380.218414
http://dx.doi.org/10.1111/j.1467-8659.2012.03189.x
http://doi.acm.org/10.1145/192161.192266

74

[19] A. Aristidou and J. Lasenby, “Fabrik: A fast, iterative solver for the inverse

kinematics problem,” Graphical Models, pp. 243–260, 2011.

[20] Unity Technologies, “Mecanim animation system,” 2016. [Online]. Available:

http://docs.unity3d.com/460/Documentation/Manual/

MecanimAnimationSystem.html

[21] Autodesk Inc., “3ds max,” 2016. [Online]. Available:

http://www.autodesk.com/products/3ds-max/overview-dts

[22] Autodesk Inc., “Maya,” 2016. [Online]. Available:

http://www.autodesk.com/products/maya/overview-dts

[23] J. Hayes, “Creating character animation assets,” pp. 2–3, November 1999.

[Online]. Available: http://www.gamasutra.com/view/feature/131796/

creating_character_animation_assets.php

[24] M. Furniss, The Animation Bible - A Practical Guide to the Art of

Animating, from Flipbooks to Flash. North American Publishing, 2008, ch.

12-13, pp. 101–102, 285–321.

[25] S. Bennett, “Nicholas minorsky and the automatic steering of ships,” IEEE

Control Systems Magazine, vol. 4, no. 4, pp. 10–15, November 1984.

[26] D. C. Boone and S. P. Azen, “Normal range of motion of joints in male

subjects.” The Journal of Bone & Joint Surgery, vol. 61, no. 5, pp. 756–759,

1979. [Online]. Available: http://jbjs.org/content/61/5/756

[27] F. E. Zajac, M. R. Zomlefer, and W. S. Levine, “Hindlimb muscular activity,

kinetics and kinematics of cats jumping to their maximum achievable

heights,” Journal of Experimental Biology, vol. 91, no. 1, pp. 73–86, 1981.

[Online]. Available: http://jeb.biologists.org/content/91/1/73

[28] F. E. Zajac, “Thigh muscle activity during maximum-height jumps by cats,”

Journal of Neurophysiology, vol. 53, no. 4, pp. 979–994, 1985. [Online].

Available: http://jn.physiology.org/content/53/4/979

http://docs.unity3d.com/460/Documentation/Manual/MecanimAnimationSystem.html
http://docs.unity3d.com/460/Documentation/Manual/MecanimAnimationSystem.html
http://www.autodesk.com/products/3ds-max/overview-dts
http://www.autodesk.com/products/maya/overview-dts
http://www.gamasutra.com/view/feature/131796/creating_character_animation_assets.php
http://www.gamasutra.com/view/feature/131796/creating_character_animation_assets.php
http://jbjs.org/content/61/5/756
http://jeb.biologists.org/content/91/1/73
http://jn.physiology.org/content/53/4/979

75

[29] Unity Technologies, “Unity3d,” 2016. [Online]. Available: https://unity3d.com/

[30] W.-L. Wu, J.-H. Wu, H.-T. Lin, and G.-J. Wang, “Biomechanical analysis of

the standing long jump,” Biomedical Engineering Applications, Basis &

Communications, vol. 15, pp. 186–192, 2003.

[31] L. F. Aragón-Vargas and M. M. Gross, “Kinesiological factors in vertical jump

performance: Differences among individuals,” Journal of Applied

Biomechanics, vol. 13, pp. 24–44, 1997.

[32] P. M. McGinnis, Biomechanics of Sport and Exercise. Champaign, IL, USA:

Human Kinetics, March 2013.

[33] A. W. Tarulli, A. B. Chin, K. Lee, and S. B. Rutkove, “Impact of

skin-subcutaneous fat layer thickness on electrical impedance myography

measurements: An initial assessment,” Clinical NeurophysiologyâĂŕ: Official

Journal of the International Federation of Clinical Neurophysiology, vol. 118,

pp. 2393–2397, 2007.

[34] A. Lees, J. Vanrenterghem, and D. D. Clercq, “Understanding how an arm

swing enhances performance in the vertical jump,” Journal of Biomechanics,

pp. 1929–1940, 2004.

[35] D. Edwardes, Standing Precision Jumps. Elwin Street Limited, 2009, ch. 3,

pp. 90–91.

[36] EA DICE, “Mirror’s edge,” 2008.

[37] i. Pei-shan Xie1 and i. Xing Cai2, “Research on computer modeling of human

movement.” Advanced Materials Research, no. 926-930, pp. 4190 – 4193, 2014.

[38] S. Jain and C. K. Liu, “Controlling physics-based characters using soft

contacts.”

[39] M. Alexander and A. Honish, “Footwork for the volleyball block.”

https://unity3d.com/

76

[40] T. Amasay, “Static block jump techniques in volleyball: Upright versus

squatting start position,” The Journal of Strength and Conditioning Research,

vol. 22, no. 4, pp. 1242–1248, July 2008.

[41] S. Jain, Y. Ye, and C. K. Liu, “Optimization-based interactive motion

synthesis,” ACM Trans. Graph., vol. 28, no. 1, pp. 10:1–10:12, Feb. 2009.

[Online]. Available: http://doi.acm.org/10.1145/1477926.1477936

[42] R. Lobietti, S. Fantozzi, R. Stagni, and S. G. Coleman, “A biomechanical

comparison of jumping techniques in the volleyball block and spike.”

[43] S. Coros, P. Beaudoin, and M. van de Panne, “Robust task-based control

policies for physics-based characters,” ACM Trans. Graph., vol. 28, no. 5, pp.

170:1–170:9, Dec. 2009. [Online]. Available:

http://doi.acm.org/10.1145/1618452.1618516

[44] H. C. Sun and D. N. Metaxas, “Automating gait generation,” in Proceedings of

the 28th Annual Conference on Computer Graphics and Interactive

Techniques, ser. SIGGRAPH ’01. New York, NY, USA: ACM, 2001, pp.

261–270. [Online]. Available: http://doi.acm.org/10.1145/383259.383288

[45] J. Babič and J. Lenarčič, Vertical Jump: Biomechanical Analysis and

Simulation Study. InTech, June 2007, ch. 31.

[46] F. E. Zajac, M. R. Zomlefer, and W. S. Levine, “Hindlimb muscular activity,

kinetics and kinematics of cats jumping to their maximum achievable

heights,” The Journal of Experimental Biology, vol. 91, pp. 73–86, 1980.

[47] F. E. Zajac, “Thigh muscle activity during maximum-height jumps by cats,”

Journal of Neurophysiology, vol. 53, no. 4, pp. 979–994, 1985.

[48] A. Witkin and Z. Popovic, “Motion warping,” in Proceedings of the 22Nd

Annual Conference on Computer Graphics and Interactive Techniques, ser.

SIGGRAPH ’95. New York, NY, USA: ACM, 1995, pp. 105–108. [Online].

Available: http://doi.acm.org/10.1145/218380.218422

http://doi.acm.org/10.1145/1477926.1477936
http://doi.acm.org/10.1145/1618452.1618516
http://doi.acm.org/10.1145/383259.383288
http://doi.acm.org/10.1145/218380.218422

77

[49] M. Furniss, The Animation Bible - A Practical Guide to the Art of

Animating, from Flipbooks to Flash. North American Publishing, 2008.

	LIST OF TABLES
	LIST OF FIGURES
	ACKNOWLEDGMENT
	ABSTRACT
	INTRODUCTION
	A Description of 3D Animation Creation
	Contributions
	Summary

	PREVIOUS WORK
	Background of Computer Generated Animation
	Motion Capture
	Muscle-based Simulation
	Non-Muscle Simulations
	Inverse Kinematics

	Commercial Software
	Summary

	SIMULATION METHOD FOR A JUMPING MOTION
	Overview of a Jumping Motion
	Model Initialization and Setup
	Creation of the Model and Rig
	Environmental and Jump Constants
	Skeleton, Joints, and Muscles

	Center of Mass and Maintaining Balance
	Inverse Kinematic Solving for Ankle and Knee Position
	Torque-Based Simulation
	Calculation of Required Velocity and Acceleration Given Time Constraints
	Windup Animation of the Character Based on Required Acceleration
	Sampling of Torque Values at Uniformly Distributed Pelvis Positions

	Extension of the Character's Body and Takeoff from Ground

	Energy-Based Simulation
	Calculation of Required Energy to Produce Target Velocity and Acceleration
	Solutions to the Energy Assignment Problem
	Thrust, In-Air, and Landing

	Functionality Provided by Unity3D
	Summary

	VISUALIZATION
	Motivation and Inspiration
	Motion Visualization
	Debugging Visualizations and Controls
	Discussion
	Summary

	RESULTS
	Proportional Derivative Controller Constants
	Muscle Constants and Strength Intuition
	Simulation Speed and Frame Collection
	Output Animations
	Limitations
	Summary

	FUTURE WORK AND CONCLUSION
	Future Work
	Conclusion and Summary

	References

