
Fast Sizing Calculations for Meshing

Gary L. Miller Todd Phillips Don Sheehy

Carnegie Mellon University
September 16, 2008

Abstract
Provably correct algorithms for meshing difficult domains
in three dimensions have been recently developed in the
literature. These algorithms handle the problem of sharp
angles (< π/2) between segments and between facets by
constructing protective collars around these regions. The
collars are approximately sized according to the local fea-
ture size of the input. With the eventual goal of developing
time-efficient algorithms for the same mesh generation
problems, we give a method for estimating the feature size
of a 3D piecewise-linear-complex of size n on domain Ω
in time O(n log ∆ + m), where ∆ is the spread of the in-
put. The linear term m ∈ O(

∫
Ω

1/ lfs3) is bounded above
by the output size of a quality generated mesh. Our algo-
rithm is based on early termination of the Sparse-Voronoi-
Refinement (SVR) meshing algorithm, which is not guar-
anteed to terminate in the presence of sharp angles.

1 Local Sizing Functions
There are several algorithms [1, 3, ?, ?] for computing
quality meshes of three-dimensional PLCs that all use
some form of “collars” as protective regions around sharp
angles. The sizing for these collars is determined by some
variant of the following two functions.

The first is the local feature size (lfs(x)), the smallest
x-centered ball that intersects two disjoint features of C,
originally due to Ruppert [4]. The second is the gap-size
(gs(x)), the smallest x-centered ball that intersects two
features of C, one of which does not contain x . The lfs is
bounded away from zero everywhere and is 1-Lipschitz.
The gs may be very discontinuous, but it is 1-Lipschitz
along the interior of any feature. The definitions imply
that gs ≤ lfs everywhere.

Meshing algorithms wish to know these values at cor-

ners and along creases. Some algorithms take these func-
tions as given, naively requiring brute-force computations
taking Ω(n2). Later algorithms calculate approximations
to sizing procedurally. This works well in practice, how-
ever the methods used do not have good runtime guaran-
tees. Our contribution is a work-efficient procedure for
approximating sizing functions.

The goal of this research is to develop a provably ef-
ficient algorithm for generating 3D meshes of arbitrary
PLCs. The ability to estimate sizing functions quickly is
an important first step.

We will return a pointwise sample of the domain with
the exact values of lfs and gs at every point. The Lips-
chitz conditions will provides enough smoothness to give
appropriate guarantees on the quality of our sample.

As desired by most of these algorithms, our sample in-
cludes as a subset all the corners of of the PLC and a good
sample along all the input segments.

2 SVR Algorithm
The problem of sizing estimation is in some sense iden-
tical to mesh generaiton, a proper mesh provides a siz-
ing estimater. It is no coincidence then that our size es-
timation procedure is obtained by modifying the work-
efficient SVR meshing algorithm [2].

The SVR algorithm iteratively maintains a Voronoi di-
agram V of inserted points. Additionally, it maintains
queue of uninserted points and protective circumballs
around unrecoved input features. The current Voronoi di-
agram contains bi-directional pointers maintaining the in-
tersection of the Voronoi diagram with the queue.

Secondly, V is always a τ -well-spaced Voronoi dia-
gram for some τ > 1. If V is a Voronoi cell of vertex
v in V , let Rv be the radius smallest v-centered ball con-

1

taining V , and let rv be the largest contained ball. V is
τ -well-spaced if Rv/rv < τ .

The iterative SVR algorithm proceeds as a work queue,
processing events until termination. Events can be prior-
itized according to the geometric size of the cells being
refined (approximately-smallest-first), so that when a ver-
tex v is inserted, there is a constant β such that any other
vertex u has Ru ≥ βRv . The algorithm terminates for a
non-sharp PLC with total work O(n log ∆ + m).

3 SVR with Feature Sizes
We will add to SVR, an invariant that every vertex at
any point during the algorithm knows it’s exact lfs and
gs. These will be calculated explicitly when a vertex is
initially added to the mesh. When a vertex v is added,
the termination proof of SVR gives a constant C such
that the new Voronoi cell is at least feature size, that is
CRv ≥ lfs(v) ≥ gs(v).

Let R = min{Rv,minf |v−f |} where f is any feature
in the new Voronoi cell V . R is then clearly a lower bound
on the gs. We can then calculate the function values at v
by searching out all features within a ball of radius CR.
Because we are refining smallest first, we need only look
at a constant number of nearby Voronoi cells.

There may be a very large number of uninserted fea-
tures in these nearby cells, and the work to determine lfs
and gs exactly will be linear in this number. We will
amortize this work and charge it to the features being
queried. An input feature is only queried when there is
a large empty region (the new Voronoi cell V) relatively
nearby (constant C). Packing arguments identical to those
bounding the work for point location in [2] can show that
this implies each input feature will be charged at most
O(log ∆) many times. Thus, the additional new calcula-
tions can be added to SVR without any new asymptotic
work.

4 Terminating SVR
Without modification, the previous scheme is correct, ex-
cept that it will not terminate (because SVR will not ter-
minate) in the presence of sharp angles.

Since we know the sizing at the center of all our current
Voronoi cells, we can determine the quality of our sample
by how much smaller the current Voronoi cell is than the
actual local feature size.

The items on the work queue for SVR are in general

one of two types. CLEAN moves that attempt to improve
the quality of mesh vertex distribution, and BREAK moves
that attempt to recover unresolved features.

To ensure termination, we add the following additional
rule to the iterative SVR algorithm: - If any Voronoi cell
V ∈ V centered on at point v is small enough, let i be the
dimension of the lowest dimensional feature containing v.
Ignore any BREAK moves on the queue of dimension > i
that intersect V .

The argument for termination follows because of the
work removed by the new rule. Normally, SVR could
recurse indefinitely when BREAK moves mutually create
each other on adjacent features, as happens at sharp an-
gles. With the new rule, once the corner where these fea-
tures meet becomes disjoint-empty, the ping-pong effect
of mutual encroachment is circumvented.

References
[1] D. Cohen-Steiner, Éric Colin de Verdière, and M. Yvinec.

Conforming Delaunay Triangulations in 3D. In Proceedings
of the Eighteenth Annual Symposium on Computational Ge-
ometry, pages 199–208, Barcelona, Spain, June 2002. Asso-
ciation for Computing Machinery.

[2] B. Hudson, G. Miller, and T. Phillips. Sparse Voronoi Re-
finement. In Proceedings of the 15th International Meshing
Roundtable, pages 339–356, Birmingham, Alabama, 2006.
Long version available as Carnegie Mellon University Tech-
nical Report CMU-CS-06-132.

[3] S. E. Pav and N. J. Walkington. Robust Three Dimensional
Delaunay Refinement. In Thirteenth International Meshing
Roundtable, pages 145–156, Williamsburg, Virginia, Sept.
2004. Sandia National Laboratories.

[4] J. Ruppert. A Delaunay refinement algorithm for quality
2-dimensional mesh generation. J. Algorithms, 18(3):548–
585, 1995. Fourth Annual ACM-SIAM Symposium on Dis-
crete Algorithms (SODA) (Austin, TX, 1993).

2

