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TABLE 7 Logical Equivalences
Involving Conditional Statements.

p→ q ≡ ¬p ∨ q

p→ q ≡ ¬q → ¬p

p ∨ q ≡ ¬p→ q

p ∧ q ≡ ¬(p→ ¬q)

¬(p→ q) ≡ p ∧ ¬q

(p→ q) ∧ (p→ r) ≡ p→ (q ∧ r)

(p→ r) ∧ (q → r) ≡ (p ∨ q)→ r

(p→ q) ∨ (p→ r) ≡ p→ (q ∨ r)

(p→ r) ∨ (q → r) ≡ (p ∧ q)→ r

TABLE 8 Logical
Equivalences Involving
Biconditional Statements.

p↔ q ≡ (p→ q) ∧ (q → p)

p↔ q ≡ ¬p↔ ¬q

p↔ q ≡ (p ∧ q) ∨ (¬p ∧ ¬q)

¬(p↔ q) ≡ p↔ ¬q

false. We also display some useful equivalences for compound propositions involving condi-
tional statements and biconditional statements in Tables 7 and 8, respectively. The reader is
asked to verify the equivalences in Tables 6–8 in the exercises.

The associative law for disjunction shows that the expression p ∨ q ∨ r is well defined,
in the sense that it does not matter whether we first take the disjunction of p with q and then
the disjunction of p ∨ q with r , or if we first take the disjunction of q and r and then take the
disjunction of p with q ∨ r . Similarly, the expression p ∧ q ∧ r is well defined. By extending this
reasoning, it follows that p1 ∨ p2 ∨ · · · ∨ pn and p1 ∧ p2 ∧ · · · ∧ pn are well defined whenever
p1, p2, . . . , pn are propositions.

Furthermore, note that De Morgan’s laws extend to

¬(p1 ∨ p2 ∨ · · · ∨ pn) ≡ (¬p1 ∧ ¬p2 ∧ · · · ∧ ¬pn)

and

¬(p1 ∧ p2 ∧ · · · ∧ pn) ≡ (¬p1 ∨ ¬p2 ∨ · · · ∨ ¬pn).

We will sometimes use the notation
∨n

j=1 pj for p1 ∨ p2 ∨ · · · ∨ pn and
∧n

j=1 pj for
p1 ∧ p2 ∧ · · · ∧ pn. Using this notation, the extended version of De Morgan’s laws can be
written concisely as ¬

(∨n
j=1 pj

)
≡∧n

j=1 ¬pj and ¬
(∧n

j=1 pj

)
≡∨n

j=1 ¬pj . (Methods for
proving these identities will be given in Section 5.1.)

Using De Morgan’s Laws

The two logical equivalences known as De Morgan’s laws are particularly important. They tell
When using De Morgan’s
laws, remember to change
the logical connective
after you negate.

us how to negate conjunctions and how to negate disjunctions. In particular, the equivalence
¬(p ∨ q) ≡ ¬p ∧ ¬q tells us that the negation of a disjunction is formed by taking the con-
junction of the negations of the component propositions. Similarly, the equivalence ¬(p ∧ q) ≡
¬p ∨ ¬q tells us that the negation of a conjunction is formed by taking the disjunction of the
negations of the component propositions. Example 5 illustrates the use of De Morgan’s laws.
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TABLE 5 A Demonstration That p ∨ (q ∧ r) and (p ∨ q) ∧ (p ∨ r) Are Logically
Equivalent.

p q r q ∧ r p ∨ (q ∧ r) p ∨ q p ∨ r (p ∨ q) ∧ (p ∨ r)

T T T T T T T T
T T F F T T T T
T F T F T T T T
T F F F T T T T
F T T T T T T T
F T F F F T F F
F F T F F F T F
F F F F F F F F

EXAMPLE 4 Show that p ∨ (q ∧ r) and (p ∨ q) ∧ (p ∨ r) are logically equivalent. This is the distributive
law of disjunction over conjunction.

Solution: We construct the truth table for these compound propositions in Table 5. Because
the truth values of p ∨ (q ∧ r) and (p ∨ q) ∧ (p ∨ r) agree, these compound propositions are
logically equivalent. ▲

The identities in Table 6
are a special case of
Boolean algebra identities
found in Table 5 of
Section 12.1. See Table 1
in Section 2.2 for
analogous set identities.

Table 6 contains some important equivalences. In these equivalences, T denotes the com-
pound proposition that is always true and F denotes the compound proposition that is always

TABLE 6 Logical Equivalences.

Equivalence Name

p ∧ T ≡ p Identity laws
p ∨ F ≡ p

p ∨ T ≡ T Domination laws
p ∧ F ≡ F

p ∨ p ≡ p Idempotent laws
p ∧ p ≡ p

¬(¬p) ≡ p Double negation law

p ∨ q ≡ q ∨ p Commutative laws
p ∧ q ≡ q ∧ p

(p ∨ q) ∨ r ≡ p ∨ (q ∨ r) Associative laws
(p ∧ q) ∧ r ≡ p ∧ (q ∧ r)

p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (p ∨ r) Distributive laws
p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r)

¬(p ∧ q) ≡ ¬p ∨ ¬q De Morgan’s laws
¬(p ∨ q) ≡ ¬p ∧ ¬q

p ∨ (p ∧ q) ≡ p Absorption laws
p ∧ (p ∨ q) ≡ p

p ∨ ¬p ≡ T Negation laws
p ∧ ¬p ≡ F
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TABLE 1 Rules of Inference.

Rule of Inference Tautology Name

p

p→ q

∴ q

(p ∧ (p→ q))→ q Modus ponens

¬q

p→ q

∴ ¬p

(¬q ∧ (p→ q))→ ¬p Modus tollens

p→ q

q → r

∴ p→ r

((p→ q) ∧ (q → r))→ (p→ r) Hypothetical syllogism

p ∨ q

¬p

∴ q

((p ∨ q) ∧ ¬p)→ q Disjunctive syllogism

p

∴ p ∨ q

p→ (p ∨ q) Addition

p ∧ q

∴ p

(p ∧ q)→ p Simplification

p

q

∴ p ∧ q

((p) ∧ (q))→ (p ∧ q) Conjunction

p ∨ q

¬p ∨ r

∴ q ∨ r

((p ∨ q) ∧ (¬p ∨ r))→ (q ∨ r) Resolution

EXAMPLE 3 State which rule of inference is the basis of the following argument: “It is below freezing now.
Therefore, it is either below freezing or raining now.”

Solution: Let p be the proposition “It is below freezing now” and q the proposition “It is raining
now.” Then this argument is of the form

p

∴ p ∨ q

This is an argument that uses the addition rule. ▲

EXAMPLE 4 State which rule of inference is the basis of the following argument: “It is below freezing and
raining now. Therefore, it is below freezing now.”

Solution: Let p be the proposition “It is below freezing now,” and let q be the proposition “It is
raining now.” This argument is of the form

p ∧ q

∴ p

This argument uses the simplification rule. ▲


