
Chapter 2

λ Calculus

The λ (lambda) calculus [7] created by Church and Kleene in the 1930’s is at
the heart of functional programming languages. We will use it as a foundation
for sequential computation. The λ calculus is Turing-complete, that is, any
computable function can be expressed and evaluated using the calculus. The
λ calculus is useful to study programming language concepts because of its high
level of abstraction.

In the following sections, we will motivate the λ calculus and introduce its
syntax and semantics (Section 2.1,) present the notion of scope of variables (Sec-
tion 2.2,) the importance of the order of expression evaluation (Section 2.3,)
the notion of combinators (Section 2.4,) currying (Section 2.5,) η-conversion
(“eta-”conversion) (Section 2.6,) the sequencing and recursion combinators (Sec-
tions 2.7 and 2.8,) and higher-order programming in the λ calculus including an
encoding of natural numbers and booleans (Section 2.9.)

2.1 Syntax and Semantics

We will briefly motivate the calculus and then introduce its syntax and seman-
tics. The mathematical notation for defining a function is with a statement
such as:

f(x) = x2, f : Z→ Z,

where Z is the set of all integers. The first Z represents the domain of the
function, or the set of values x can take. The second Z represents the range of
the function, or the set containing all possible values of f(x).

Suppose f(x) = x2 and g(x) = x + 1. Traditional function composition is
defined as:

f ◦ g = f (g(x)) .

With our functions f and g,

f ◦ g = f (g(x)) = f(x + 1) = x2 + 2x + 1.

19

20 CHAPTER 2. λ CALCULUS

Similarly,
g ◦ f = g (f(x)) = g(x2) = x2 + 1.

Therefore, function composition is not commutative.
In the λ calculus, we can use a different notation to represent the same

concepts. To define a function f(x) = x2, we instead may write1:

λx.x2.

Similarly for g(x) = x + 1 we write:

λx.x + 1.

To describe a function application such as f(2) = 4, we write

(λx.x2 2) ⇒ 22 ⇒ 4.

The syntax for λ calculus expressions is

e ::= v – variable
| λv.e – functional abstraction
| (e e) – function application

The semantics of the λ calculus, or the way of evaluating or simplifying
expressions, is defined by the rule:

(λx.E M) ⇒ E{M/x}.

The new expression E{M/x} can be read as “replace ‘free’ x’s in E with M”.
Informally, a “free” x is an x that is not nested inside another lambda expression.
We will cover free and bound variable occurrences in detail in Section 2.2.

For example, in the expression:

(λx.x2 2),

E = x2 and M = 2. To evaluate the expression, we replace x’s in E with M ,
to obtain:

(λx.x2 2) ⇒ 22 ⇒ 4.

In the λ calculus, all functions may only have one variable. Functions with
more than one variable may be expressed as a function of one variable through
currying. Suppose we have a function of two variables expressed in the standard
mathematical way:

h(x, y) = x + y, h : (Z× Z) → Z.

With currying, we can input one variable at a time into separate functions. The
first function will take the first argument, x, and return a function that will take

1Being precise, the λ calculus does not directly support number constants (such as ’1’) or
primitive operations (such as ’+’ or x2) but these can be encoded as we shall see in Section 2.9.
We use this notation here for pedagogical purposes only.

2.1. SYNTAX AND SEMANTICS 21

the second variable, y, and will in turn provide the desired output. To create
the same function with currying, let:

f : Z→ (Z→ Z)

and:
gx : Z→ Z.

That is, f maps every integer x to a function gx, which maps integers to integers.
The function f(x) returns a function gx that provides the appropriate result
when supplied with y. For example,

f(2) = g2, where g2(y) = 2 + y.

So:
f(2)(3) = g2(3) = 2 + 3 = 5.

In the λ calculus, this function would be described with currying by:

λx.λy.x + y.

To evaluate the function, we nest two function application expressions:

((λx.λy.x + y 2) 3).

We may then simplify this expression using the semantic rule, also called β-
reduction (“beta”-reduction,) as follows:

((λx.λy.x + y 2) 3) ⇒ (λy.2 + y 3) ⇒ 2 + 3 ⇒ 5.

The composition operation ◦ can itself be considered a function, also called
a higher-order function, that takes two other functions as its input and returns
a function as its output; that is if the first function is of type Z → Z and the
second function is also of type Z→ Z, then:

◦ : (Z→ Z)× (Z→ Z) → (Z→ Z).

We can also define function composition in the λ calculus. Suppose we want
to compose the square function and the increment function, defined as:

λx.x2 and λx.x + 1.

We can define function composition as a function itself with currying as follows:

λf.λg.λx.(f (g x)).

Applying two variables to the composition function with currying works the
same way as before, except now our variables are functions:

((λf.λg.λx.(f (g x)) λx.x2) λx.x + 1)
⇒ (λg.λx.(λx.x2 (g x)) λx.x + 1)
⇒ λx.(λx.x2 (λx.x + 1 x)).

22 CHAPTER 2. λ CALCULUS

The resulting function gives the same results as f(g(x)) = (x + 1)2.
In the Scheme programming language we can use λ calculus expressions.

They are defined using a similar syntax. To define a function we use the code:

(lambda([x y z ...]) expr)

where variables x, y, z, etc. are optional. Scheme syntax allows you to have
functions of zero variables, one variable, or more than one variable. The code:

(lambda(x) (* x x))

describes the square function. Note that even common operations are considered
functions and are always used in a prefix format. You may define variables
(which may themselves be functions) with:

(define a b).

For example,
(define f (lambda(x) (* x x)))

defines a function f(x) = x2. To perform a procedure call, use the code:

(f [x y z ...])

where x, y, z, etc. are additional parameters that f may require. The code:

(f 2)

evaluates f(2) = 4.

2.2 Free and Bound Variables in the λ Calculus

The process of simplifying (or β-reducing) in the λ calculus requires further
clarification. The general rule is to find an expression of the form

(λx.E M),

called a redex (for reducible expression,) and replace the “free” x’s in E with
M ’s. A free variable is one that is not bound by a lambda expression representing
a functional abstraction. The functional abstraction syntax, λv.e, defines the
scope of the variable v to be e, and effectively binds occurrences of v in e. For
example, in the expression

(λx.x2 x + 1)

the second x is bound by the λx, because it is part of the expression defining
that function, i.e., the function f(x) = x2. The final x, however, is not bound
by any function definition, so it is said to be free. Do not be confused by the fact
that the variables have the same name. The two occurrences of the variable x
are in different scopes, and therefore they are totally independent of each other.

An equivalent C program could look like this:

2.2. FREE AND BOUND VARIABLES IN THE λ CALCULUS 23

int f(int x) {
return x*x;

}

int main() {
int x;
...
x = x + 1;
return f(x);

}

In this example, we could substitute y (or any other variable name) for all x
occurrences in function f without changing the output of the program. In the
same way, the lambda expression

(λx.x2 x + 1)

is equivalent to the expression

(λy.y2 x + 1).

We cannot replace the final x, since it is unbound, or free. To simplify the
expression

(λx.(λx.x2 x + 1) 2)

You could let E = (λx.x2 x + 1) and M = 2. The only free x in E is the final
occurrence so the correct reduction is

(λx.x2 2 + 1).

The x in x2 is bound, so it is not replaced.
However, things get more complicated. It is possible when performing β-

reduction to inadvertently change a free variable into a bound variable, which
changes the meaning of the expression. In the statement

(λx.λy.(x y) (y w)),

the second y is bound to λy whereas the final y is free. Taking E = λy.(x y)
and M = (y w), we could mistakenly arrive at the simplified expression

λy.((y w) y).

But now both the second and third occurrences of y are bound, because they are
both a part of the functional abstraction starting by λy. This is wrong because
one of the y occurrences should remain free as it was in the original expression.
To solve this problem, we can change the λy expression to a λz expression:

(λx.λz.(x z) (y w)),

24 CHAPTER 2. λ CALCULUS

which again does not change the meaning of the expression. This process is
called α-renaming (“alpha”-renaming.) Now when we perform the β-reduction,
the original two y variable occurrences are not confused. The result is:

λz.((y w) z)

where the free y remains free.

2.3 Order of Evaluation

There are different ways to evaluate λ calculus expressions. The first method
is to always fully evaluate the arguments of a function before evaluating the
function itself. This order is called applicative order. In the expression:

(λx.x2 (λx.x + 1 2)),

the argument (λx.x + 1 2) should be simplified first. The result is:

⇒ (λx.x2 2 + 1) ⇒ (λx.x2 3) ⇒ 32 ⇒ 9.

Another method is to evaluate the left-most redex first. Recall that a redex is
an expression of the form (λx.E M), on which β-reduction can be performed.
This order is called normal order. The same expression would be reduced from
the outside in, with E = x2 and M = (λx.x + 1 2). In this case the result is:

⇒ (λx.x + 1 2)2 ⇒ (2 + 1)2 ⇒ 9.

As you can see, both orders produced the same result. But is this always
the case? It turns out that the answer is a qualified yes: only if both orders of
expression evaluation terminate. Otherwise, the answer is no for expressions
whose evaluation does not terminate. Consider the expression:

(λx.(x x) λx.(x x)).

It is easy to see that reducing this expression gives the same expression back,
creating an infinite loop. If we consider the expanded expression:

(λx.y (λx.(x x) λx.(x x))),

we find that the two evaluation orders are not equivalent. Using applicative
order, the (λx.(x x) λx.(x x)) expression must be evaluated first, but
this process never terminates. If we use normal order, however, we evaluate the
entire expression first, with E = y and M = (λx.(x x) λx.(x x)). Since
there are no x’s in E to replace, the result is simply y. It turns out that it is only
in these particular non-terminating cases that the two orders may give different
results. The Church-Rosser theorem (also called the confluence property or the
diamond property) states that if a λ calculus expression can be evaluated in two
different ways and both ways terminate, both ways will yield the same result.

Also, if there is a way for an expression to terminate, using normal order
will cause the termination. In other words, normal order is the best if you want
to avoid infinite loops. Take as another example the C program:

2.4. COMBINATORS 25

int loop() {
return loop();

}

int f(int x, int y) {
return x;

}

int main() {
return f(3, loop());

}

In this case, using applicative order will cause the program to hang, because the
second argument loop() will be evaluated. Using normal order will terminate
because the unneeded y variable will never be evaluated.

Though normal order is better in this respect, applicative order is the one
used by most programming languages. Why? Consider the function f(x) =
x+x. To find f(4/2) using normal order, we hold off on evaluating the argument
until after placing the argument in the function, so it yields

f(4/2) = 4/2 + 4/2 = 2 + 2 = 4,

and the division needs to be done twice. If we use applicative order, we get

f(4/2) = f(2) = 2 + 2 = 4,

which only requires one division.
Since applicative order avoids repetitive computations, it is the preferred

method of evaluation in most programming languages, where short execution
time is critical. Some functional programming languages, such as Haskell, use
call-by-need evaluation, which will avoid performing unneeded computations
(such as loop() above) yet will memoize the values of needed arguments (such
as 4/2 above) so that repetitive computations are avoided. This lazy evaluation
mechanism is typically implemented with thunks, or zero-argument functions
that freeze the evaluation of an argument until it is actually used, and futures
or references to these thunks that trigger the thawing of the expression when
evaluated, and keep its value for further immediate access.

2.4 Combinators

Any λ calculus expression with no free variables is called a combinator. Because
the meaning of a lambda expression is dependent only on the bindings of its
free variables, combinators always have the same meaning independently of the
context in which they are used.

There are certain combinators that are very useful in the λ calculus:
The identity combinator is defined as:

I = λx.x.

26 CHAPTER 2. λ CALCULUS

It simply returns whatever is given to it. For example:

(I 5) ⇒ (λx.x 5) ⇒ 5.

The identity combinator in Oz2 can be written:

declare I = fun {$ X} X end

Contrast it to, for example, a Circumference function:

declare Circumference = fun {$ Radius} 2*PI*Radius end

The semantics of the Circumference function depends on the definitions of
PI and *. The Circumference function is, therefore, not a combinator.

The application combinator is:

App = λf.λx.(f x),

and allows you to evaluate a function with an argument. For example

((App λx.x2) 3)
⇒ ((λf.λx.(f x) λx.x2) 3)
⇒ (λx.(λx.x2 x) 3)
⇒ (λx.x2 3)
⇒ 9.

We will see more combinators in the following sections.

2.5 Currying

The currying higher-order function takes a function and returns a curried ver-
sion of the function. For example, it would take as input the Plus function,
which has the type

Plus : (Z× Z) → Z.

The type of a function defines what kinds of values the function can receive and
what kinds of values it produces as output. In this case Plus takes two integers
(Z× Z,) and returns an integer (Z.)

The definition of Plus in Oz is

declare Plus =
fun {$ X Y}

X+Y
end

2We use examples in different programming languages (Scheme, C, Oz) to illustrate that the
concepts in the λ calculus are ubiquituous and apply to many different sequential programming
languages.

2.6. η-CONVERSION 27

The currying combinator would then return the curried version of Plus,
called PlusC, which has the type

PlusC : Z→ (Z→ Z).

Here, PlusC takes one integer as input and returns a function from the integers
to the integers (Z→ Z.) The definition of PlusC in Oz is:

declare PlusC =
fun {$ X}

fun {$ Y}
X+Y

end
end

The Oz version of the currying combinator, which we will call Curry, would
work as follows:

{Curry Plus} ⇒ PlusC.

Using the input and output types above, the type of the Curry function is

Curry : (Z× Z→ Z) → (Z→ (Z→ Z)).

So the Curry function should take as input an uncurried function and return a
curried function. In Oz, we can write Curry as follows:

declare Curry =
fun {$ F}

fun {$ X}
fun {$ Y}

{F X Y}
end

end
end

2.6 η-Conversion

Consider the expression
(λx.(λx.x2 x) y).

Using β-reduction, we can take E = (λx.x2 x) and M = y. In the reduction
we only replace the one x that is free in E to get

β→ (λx.x2 y).

We use the symbol β→ to show that we are performing β-reduction on the ex-
pression (As another example we may write λx.x2 α→ λy.y2 since α-renaming is
taking place.)

28 CHAPTER 2. λ CALCULUS

Another type of operation possible on λ calculus expressions is called η-
conversion (“eta”-reduction when applied from left to right.) We perform η-
reduction using the rule

λx.(E x) η→ E.

η-reduction can only be applied if x does not appear free in E.
Consider the expression, λx.(λx.x2 x), we can perform η-reduction to

obtain
λx.(λx.x2 x) η→ λx.x2.

We can also apply η-reduction to sub-expressions, i.e., starting with the
same expression as before, (λx.(λx.x2 x) y), we can perform η-reduction to
obtain

(λx.(λx.x2 x) y) η→ (λx.x2 y),

which gives the same result as β-reduction.
Another example of η-reduction follows:

λx.(y x) η→ y.

η-reduction can be considered a program optimization. For example, con-
sider the following Oz definitions:

declare Increment = fun {$ X} X+1 end

declare Inc = fun {$ X} {Increment X} end

Using η-reduction, we could statically reduce {Inc 6} to {Increment 6}
avoiding one extra function call (or β reduction step) at run-time. This compiler
optimization is also called inlining.

η-conversion can also affect termination of expressions in applicative order
expression evaluation. For example, the Y reduction combinator has a terminat-
ing applicative order form that can be derived from the normal order combinator
form by using η-conversion (see Section 2.8.)

2.7 Sequencing Combinator

The normal order sequencing combinator is:

Seq = λx.λy.(λz.y x)

where z is chosen so that it does not appear free in y.
This combinator guarantees that x is evaluated before y, which is important

in programs with side-effects. Assuming we had a “display” function sending
output to the console, an example is

((Seq (display “hello”)) (display “world”))

2.8. RECURSION COMBINATOR 29

The combinator would not work in applicative order (call by value) eval-
uation because evaluating the display functions before getting them passed
to the Seq function would defeat the purpose of the combinator: to sequence
execution. In particular, if the arguments are evaluated right to left, execution
would not be as expected.

The applicative-order sequencing combinator can be written as follows:

ASeq = λx.λy.(y x)

where y is a lambda abstraction that wraps the original last expression to
evaluate.

The same example above would be written as follows:

((ASeq (display “hello”)) λx.(display “world”))

with x fresh, that is, not appearing free in the second expression.
This strategy of wrapping a λ calculus expression to make it a value and

delay its evaluation is very useful. It enables to simulate call by name parameter
passing in languages using call by value. The process of wrapping is also called
freezing an expression, and the resulting frozen expression is called a thunk.
Evaluating a thunk to get back the original expression is also called thawing.

2.8 Recursion Combinator

The recursion combinator allows defining recursive computations in the λ cal-
culus. For example, suppose we want to implement a recursive version of the
factorial function:

f(n) = n! =
{

1 if n = 0
n(n− 1)! if n > 0 .

We could start by attempting to write the recursive function f in the λ calcu-
lus (assuming it has been extended with conditionals, and numbers) as follows3:

f = λn.(if (= n 0)
1
(∗ n (f (− n 1)))).

The problem is that this function definition uses a free variable f , which is
the very factorial function that we are trying to define. To avoid this circular
definition, we can extend the definition with another functional abstraction
(lambda expression) to take the factorial function as follows:

f = λg.λn.(if (= n 0)
1
(∗ n (g (− n 1)))).

3We will use prefix notation for mathematical expressions to be more consistent with
function application syntax in the λ calculus as introduced in Section 2.1

30 CHAPTER 2. λ CALCULUS

Before we can input an integer to the function, we must input a function to
satisfy g so that the returned function computes the desired factorial value. Let
us call this function X. Looking within the function, we see that the function
X must take an integer and return an integer, that is, X’s type is Z→ Z. The
function f will return the proper recursive function with the type Z → Z, but
only when supplied with the correct function X. Knowing the input and output
types of f , we can write the type of f as

f : (Z→ Z) → (Z→ Z).

What we need is a function X that, when we apply f to it, it returns the correct
recursive factorial function, that is, (fX) = λn.(if(= n0)1(∗n(X(−n1)))) = X,
and so we need to solve the fixed point X of the function f , i.e., the solution to
the equation (fX) = X.

We could try applying f to itself, i.e.,

(f f).

This does not work, because f expects something of type Z→ Z, but it is taking
another f , which has the more complex type (Z → Z) → (Z → Z). A function
that has the correct input type is the identity combinator, λx.x. Applying the
identity function, we get:

(f I) ⇒ λn.(if (= n 0)
1
(∗ n (I (− n 1))))

⇒ λn.(if (= n 0)
1
(∗ n (− n 1))),

which is equivalent to

f(n) =
{

1 if n = 0
n ∗ (n− 1) if n > 0 .

We need to find the correct expression X such that when f is applied to X,
we get X, the recursive factorial function. It turns out that the X that works
is:

X = (λx.(λg.λn.(if (= n 0) 1 (n (g (− n 1)))) λy.((x x) y))
λx.(λg.λn.(if (= n 0) 1 (n (g (− n 1)))) λy.((x x) y))).

Note that this λ calculus expression has a structure similar to the non-
terminating expression:

(λx.(x x) λx.(x x)),

and explains why the recursive function can keep going.

2.9. HIGHER-ORDER PROGRAMMING 31

X can be defined as (Y f) where Y is the recursion combinator,

(f X) ⇒ (f (Y f)) ⇒ (Y f) = X.

The recursion combinator that works for applicative evaluation order is de-
fined as:

Y = λf.(λx.(f λy.((x x) y))
λx.(f λy.((x x) y))).

The normal order evaluation version of the recursion combinator is:

Y = λf.(λx.(f (x x))
λx.(f (x x))).

How do we get from the normal order evaluation recursion combinator to the
applicative order evaluation recursion combinator? We use η-expansion (that
is, η-conversion from right to left.) This is an example where η-conversion can
have an impact on the termination of an expression.

2.9 Higher-Order Programming

Most imperative programming languages, e.g., Java and C++, do not allow us
to treat functions or procedures as first-class entities, for example, we cannot
create and return a new function that did not exist before. A function that can
only deal with primitive types (i.e., not other functions) is called a first-order
function. For example, Increment, whose type is Z→ Z, can only take integer
values and return integer values. Programming only with first-order functions,
is called first-order programming.

If a function can take another function as an argument, or if it returns a
function, it is called a higher-order function.

For example, the Curry combinator, whose type is:

Curry : (Z× Z→ Z) → (Z→ (Z→ Z)).

is a higher-order (third order) function. It takes a function of type Z× Z → Z
and returns a function of type Z→ (Z→ Z). That is, Curry takes a first-order
function and returns a second-order function. The ability to view functions as
data is called higher-order programming.4

2.9.1 Currying as a higher-order function

Higher-order programming is a very powerful technique, as shown in the follow-
ing Oz example. Consider an exponential function, Exp, as follows:

4The ability in some imperative programming languages to pass pointers to functions, as
in a generic sort routine that can receive different element ordering functions, is only half of
the equation. Truly higher-order programming requires the ability to create arbitrary new
functions as done in the currying example in the text.

32 CHAPTER 2. λ CALCULUS

declare Exp =
fun {$ B N}

if N==0 then
1

else
B * {Exp B N-1}

end
end.

And recall the Curry combinator in Oz:

declare Curry =
fun {$ F}

fun {$ X}
fun {$ Y}

{F X Y}
end

end
end.

We can create a function to compute the powers of 2, TwoE, by just using:

declare TwoE = {{Curry Exp} 2}.

To illustrate the execution of this expression, consider the following Oz com-
putation steps (equivalent to two β-reduction steps in the λ calculus):

TwoE = {{Curry Exp} 2}
= {{fun {$ F}

fun {$ X}
fun {$ Y}

{F X Y}
end

end
end Exp} 2}

= {fun {$ X}
fun {$ Y}

{Exp X Y}
end

end 2}
= fun {$ Y}

{Exp 2 Y}
end

If we want to create a Square function, using Exp, we can create a reverse
curry combinator, RCurry, as:

declare RCurry =

2.9. HIGHER-ORDER PROGRAMMING 33

fun {$ F}
fun {$ X}

fun {$ Y}
{F Y X}

end
end

end,

where the arguments to the function are simply reversed.
We can then define Square as:

declare Square = {{RCurry Exp} 2}.

Higher-order programming enables us to view functions as data. Lisp is a
functional programming language that uses the same syntax for programs and
for data (lists.) This enables meta-circular interpretation: a full Lisp interpreter,
written in Lisp, can be an input to itself.

2.9.2 Numbers in the λ Calculus

The λ calculus is a Turing-complete language, that is, any computable function
can be expressed in the pure λ calculus. In many of the previous examples,
however, we have used numbers and conditionals.

Let us see one possible representation of numbers in the pure λ calculus:

|0| = λx.x
|1| = λx.λx.x
...

|n + 1| = λx.|n|
That is, zero is represented as the identity combinator. Each succesive num-

ber (n + 1) is represented as a functional (or procedural) abstraction that takes
any value and returns the representation of its predecessor (n.) You can think
of zero as a first-order function, one as a second-order function, and so on.

In Oz, this would be written:

declare Zero = I

declare Succ =
fun {$ N}

fun {$ X}
N

end
end

Using this representation, the number 2, for example, would be the λ calculus
expression: λx.λx.λx.x, or equivalently in Oz:

{Succ {Succ Zero}}

34 CHAPTER 2. λ CALCULUS

2.9.3 Booleans in the λ Calculus

Now, let us see one possible representation of booleans in the pure λ calculus:

|true| = λx.λy.x
|false| = λx.λy.y

|if| = λb.λt.λe.((b t) e)

That is, true is represented as a function that takes two arguments and re-
turns the first, while false is represented as a function that takes two arguments
and returns the second. if is a function that takes:

• a function b representing a boolean value (either true or false,)

• an argument t representing the then branch, and

• an argument e representing the else branch,

and returns either t if b represents true, or e if b represents false.
Let us see an example evaluation sequence for (((if true) 4) 5):

(((λb.λt.λe.((b t) e) λx.λy.x) 4) 5)
β→ ((λt.λe.((λx.λy.x t) e) 4) 5)
β→ (λe.((λx.λy.x 4) e) 5)
β→ ((λx.λy.x 4) 5)
β→ (λy.4 5)
β→ 4

Note that this definition of booleans works properly in normal evaluation
order, but has problems in applicative evaluation order. The reason is that ap-
plicative order evaluates both the then and the else branches, which is a problem
if used in recursive computations (where the evaluation may not terminate) or
if used to guard improper operations (such as division by zero.) The applicative
order evaluation versions of if, true, and false can wrap the then and else
expressions inside functional abstractions, so that they are values and do not
get prematurely evaluated, similarly to how the applicative order evaluation se-
quencing operator wrapped the expression to be evaluated last in the sequence
(see Section 2.7.)

In Oz, the following (uncurried) definitions can be used to test this repre-
sentation:

declare LambdaTrue =
fun {$ X Y}

X

2.10. EXERCISES 35

end

declare LambdaFalse =
fun {$ X Y}

Y
end

declare LambdaIf =
fun {$ B T E}

{B T E}
end

2.10 Exercises

1. α-convert the outer-most x to y in the following λ calculus expressions, if
possible:

(a) λx.(λx.x x)
(b) λx.(λx.x y)

2. β-reduce the following λ calculus expressions, if possible:

(a) (λx.λy.(x y) (y w))
(b) (λx.(x x)λx.(x x))

3. Simulate the execution of Square in Oz, using the definition of RCurry
given in Section 2.9.1.

4. Using the number representation in Section 2.9.2, define functions Plus,
PlusC (its curried version) in Oz, and test them using Mozart (Oz’s run-
time system.)

5. Write a function composition combinator in the λ calculus.

6. Define a curried version of Compose in Oz, ComposeC, without using the
Curry combinator. (Hint: It should look very similar to the λ calculus
expression from Exercise 5.)

7. η-reduce the following λ calculus expressions, if possible:

(a) λx.(λy.x x)
(b) λx.(λy.y x)

8. Use η-reduction to get from the applicative order Y combinator to the
normal order Y combinator.

9. What would be the effect of applying the reverse currying combinator,
RCurry, to the function composition combinator?

36 CHAPTER 2. λ CALCULUS

declare Compose =
fun {$ F G}
fun {$ X}
{F {G X}}

end
end

Give an example of using the {RCurry Compose} function.

10. Define a + operation for the representation of numbers given in Sec-
tion 2.9.2. Test your addition operation in Oz.

11. Give an alternative representation of numbers in the λ calculus (Hint:
Find out about Church numerals.) Test your representation using Oz.

12. Give an alternative representation of booleans in the λ calculus (Hint:
One possibility is to use λx.x for true and λx.λx.x for false. You need
to figure out how to define if.) Test your representation using Oz.

13. Create an alternative representation of booleans in the λ calculus so that
conditional execution works as expected in applicative evaluation order
(Hint: Use the strategy of wrapping the then and else branches to turn
them into values and prevent their premature evaluation.) Test your rep-
resentation using Oz.

14. For a given function f , prove that (f (Y f)) ⇒ (Y f).

