CSCI-1200 Computer Science II — Spring 2006
Homework 1 — Getting Started

This two-part homework explores the background and review material covered in Lectures 1 and 2.
Part 1 is a set of short problems, similar to problems that might appear on a test. Part 2 is a short pro-
gramming problem. These problems are not particularly difficult. Students who feel uncomfortable about
their programming background should view this as an opportunity to gauge their current skills. Program-
ming assignments will become more challenging soon, so if you struggle with this one, you should work
hard to practice and catch up. Before starting this assignment, make sure you have read and understood
the statement of Academic Integrity for Programming Assignments.

Part 1: Short Answer

While it is clearly possible for you to create a program file containing the code below and then compile and
execute the program, you will not have the luxury of doing this on a test. You should practice by studying
the code carefully yourself first and trying to determine the answers. This is a good skill to develop.

In your main CSII folder on your laptop, create a subfolder for homeworks and within that folder create
a subfolder hwil for this assignment. Create and open a plain text file named partl.txt and write your
solutions for Part 1 in this file.

1. What is the output of the following program, which is supposed to compute the average, max and
min of an array of numbers? Explain why this output occurs and give a small set of changes to the
code to fix it. Do not fix the code by changing its structure; in other words there must be a for loop
and a while loop in the stats_calculation function, and the while loop must count backwards.

#include <iostream>
using namespace std;

void stats_calculation(float values[], int &n, float &max_value,
float min_value, float &avg) {
// Find the average value
float sum = values[0];
for (int i=0; i<n; ++i)
sum += values([n];
avg /= n;

// Find the maximum and minimum values.
min_value = values[n-1], max_value = values[n-1];
while (n > 0) {
_—
if (values[n] > max_value) max_value = values[n];
else if (values[n] < min_value) min_value = values[n];
}
}

int main() {
// Initialize an array in order to test the function. The size of
// the array (6) is automatically determined from the number of
// values in the list.
float all = { 12.3, 15.4, 1.5, 7.8, 2.3, 8.9 };
int size = 6;
float min_value = 0, max_value = 0, average = 0;

stats_calculation(a, size, max_value, min_value, average);

cout << "Here are the values: ";

for (int i=0; i<size; ++i) cout << af[i] << " ";
cout << ’\n’;

cout << "average = " << average << ’\n’
<< "max = " << max_value << ’\n’
<< "min = " << min_value << ’\n’;
return O;

2. What is the output of the following program?

#include <iostream>
using namespace std;

int main() {
int x=5, y=4;
float al[3] = { 1.0, 2.0, 3.0 };

if (x> y) {
float y =
int a = 6;
cout << "x = " KK x <K<K ", y="<KLKy< ", a="<<a<< endl;
X = 2;

1.0;

cout << "x = " <K<K x K< ", y="<K<y<<", af[0] =" << a[0] << endl;
return O;

}

3. For each of the two functions in the following code, give an order notation count of the number of
operations it requires. Justify your answer briefly. For extra credit, rewrite the second function so
that it has a better order notation estimate, and give this estimate.

// Count the number of entries in an array that have both an even
// index (subscript) and an even value.
int count_evens(int arr[], int n) {
int count = 0;
for (unsigned int i=0; i<n; i+=2)
if (arr[i] % 2 == 0) ++count;
return count;

}

// Given an array of floats, form an array of sums. Entry O
// in the array of sums is the addition of all values in the
// array. Entry 1 is the addition of values in locations
// 1..n-1. 1In general, entry i is the addition of the values
// in locations i..n-1.
void subsequence_sum(float arr[], int n, float sums[]) {
for (int 1 = 0; i < n; ++i) {
sums[i] = 0.0;
for (int j=i; j<n; ++j)
sums [i] += arr([j];

Part 2: Circle Intersections

Write a program that reads in a set of circles and determines if any of the circles intersect. This is an
example of the kinds of problems that must be solved in graphics and game software. Put the code in a
file named circles.cpp. The input to the program, via std: :cin, will be an integer giving the number of
circles (at most 100) and then a list of circles, one per line of input. Each circle will be specified by 3 floats
giving the x and y values of the center of the circle and the radius of the circle. The output of the program,
via std: :cout, will be all pairs of intersecting circles, with the count of the number of intersections at the
end. When you output an intersection, you need only specify the indices of the two intersecting circles.
The first circle has index 0.

Here is an example of the input:

5

125

-2.5 38
79.13
15.4 4 2
0.5 0.5 13

And here is the correct output for this test case:

0 intersects 1
0 intersects 4
1 intersects 4
2 intersects 4
Number of intersections = 4

You should make the format of your output exactly this way to aid the TAs in grading and ensure you
receive full credit. We have provided you sample input and output files so you may check your work. See
the Resources page on the course website to learn how to redirect input & output streams to files in your
development environment. Make up your own test cases too!

You will need three arrays to represent the circles, one for the x coordinates, one for the y coordinates and
one for the radii. Soon we will see a much better way to represent this data. You should start by writing
and testing a simple function that determines if two circles intersect; i.e., if any part of the region enclosed
in one circle is contained in the other. We do not give you the method for doing this — you should figure it
out for yourself. This function should take 6 parameters: the center x and y and the radius of each circle.
You may (or may not) find the function sqrt useful. You get access to this function by including cmath
at the start of your program, just as we did in Lab 1:

#include <cmath>

When you'’ve finished writing, testing, debugging, and commenting your code, prepare your assignment for
submission. If you’re using cygwin, linux, or freebsd, go to the top level directory for your homeworks and

type:

tar -cvzf hwl_submit.zip hwl

This will pack together and compress your hwl directory and all of the files it contains. On Windows,
use WinZip to create a new archive named hwl_submit.zip and then drag & drop your entire hwl folder
into the archive. Then, go to the course website, click on the link to “Submit Homework” and follow the
instructions.

Please ask a TA if you need help preparing your assignment for submission. Do not submit any other
type of compressed file format or you will not receive full credit.

