
Assigning labels in unknown anonymous networks

[Extended Abstract]

* t :1: §
Pierre Fraigniaud Andrzej Pelc David Peleg St~phane P~rennes

ABSTRACT
We consider the task of dis t r ibutedly assigning distinct la-
bels to nodes of an unknown anonymous network. A priori,
nodes do not have any identities (anonymous network) and
do not know the topology or the size of the network (un-
known network). They execute identical algorithms, apart
from a distinguished node, called the source, which start-
s the labeling process. Our goal is to assign short labels,
as fast as possible. The quality of a labeling algorithm is
measured by the range from which the algorithm picks the
labels, or alternatively, the length of the assigned labels.
Natural efficiency measures are the time, i.e., the number
of rounds required for the label assignment, and the mes-
sage and bit complexities of the label assignment protocol,
i.e., the total number of messages (resp., bits) circulating
in the network. We present label assignment algorithms
whose time and message complexity are asymptotically op-
t imal and which assign short labels. On the other hand, we
establish inherent trade-offs between quality and efficiency
for labeling algorithms.

1. INTRODUCTION
1.1 The problem
Designing network algorithms without complete information
about the network is an impor tant problem whose many

*Laboratoire de Recherche en Informatique - CNRS, Uni-
versit4 Paris-Sud, 91405 Orsay, France. (p i e r r e e l r : i . . f r)

l 'D4partement d 'Informatique, Universit4 du Qu4bec b. Hull,
Hull, Quebec J8X 3X7, Canada. (pe lceuqah .uquebec .ca)
Supported in part by NSERC grant OGP 0008136. Research
done during this author 's visit at INRIA Sophia Antipolis.

:IDepartment of Computer Science and Applied Mathe-
matics, The Weizmann Insti tute, Rehovot 76100, Israel.
(pelegewisdom.weizmann.ac.il) Supported in part by a
grant from the Israel Ministry of Science and Art.

§SLOOP I3S-CNRS/INRIA, Universit4 de Nice-
Sophia Antipolis, 2004 Route des Lucioles, BP
93, F-06902 Sophia Antipolis Cedex, France.
(Stephane. Perennes@sophia. inria, fr)

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed fbr profit or commercial advantage and that
copies bear this noticc and the thll citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
PODC 2000 Portland Oregon
Copyright ACM 2000 1-58113-183-6/00/07...$5.00

variations have been extensively studied. Of part icular in-
terest are computat ions in anonymous networks (cf. [2, 3,
4, 15, 9, 12, 13, 7, 16]), in which processors do not have dis-
t inct identities and execute identical algorithms. The im-
possibility of distinguishing processors yields symmetry in
computat ions and restricts the computat ional power of the
network.

The situation is even more drastic if the topology of the net-
work and even its size are unknown, and the only knowledge
available to a node is its own degree. Such is, e.g., the sit-
uation when a robot has to explore an unknown graph, in
order to draw a map of it (cf. [1, 8, 14]), or when a node
has to broadcast information to all nodes of an unknown
network [6, 11].

Known characterizations of the at ta inable and unat ta inable
tasks in unknown anonymous networks reveal that assuming
no means of symmet ry breaking, little can be done. In par-
ticular, it is impossible to select a unique leader, or to assign
unique labels (or ID's) to the network nodes. On the other
hand, it is equally well known (see, for example, [15] and the
references therein) that even in an unknown anonymous net-
work, the existence of a unique leader in the network makes
it computat ional ly equivalent to a full-knowledge environ-
ment, in which unique node labels exist, and every node in
the network knows the entire topology. From a complexity-
oriented point of view, however, there is a ra ther significant
difference between the two environments, in the sense that
the cost of transforming from the former environment to the
lat ter may be expensive.

In this paper we consider the cost of the first step along
this transformation, namely, the task of assigning distinct
labels to nodes of an unknown anonymous network. Thus
the initial s ta te is that of complete ignorance; nodes do not
know the topology or even the size of the network, and they
do not have any labels. The only knowledge available to a
node is its own degree. Asymmetry is provided by postu-
lating the existence of a unique node s, called the source,
which effectively acts as the leader and initiates the labeling
process. All other nodes execute identical algorithms.

We assume tha t communication between nodes is executed
in rounds controlled by a global clock. A message sent by a
node to its neighbor in a given round becomes available at
the neighbor in the next round. The goal of a labeling pro-
tocol is to assign distinct labels to all nodes of the network.

101

1.2 Models and complexity measures
The natural measure for the quality of the solution is the
range from which the algori thm picks the labels, or alterna-
tively, the length of the assigned labels. The significance of
this parameter is that in any subsequent use of the labels
within any dis t r ibuted algorithm, the label length will di-
rectly affect the size of the messages sent by the algorithm.
Hence it is desirable to assign labels which are as short as
possible.

On the other hand, the natural e~ciency measures axe the
time, i.e., the number of rounds required for the label as-
signment, and the message and bit complexities of the label
assignment protocol, i.e., the total number of messages (re-
sp., bits) circulating in the network. As one might expect,
our results imply tha t there are inherent tradeoffs between
the quality and efficiency parameters for the label assign-
ment problem.

It turns out tha t the precise communication model used sig-
nificantly impacts the results. We consider three natural
models. In the all-port model, every node can send a mes-
sage to each of its neighbors, as well as receive a message
from each neighbor, in each round. At the other extreme,
the one-port model allows each node, in each round, to send
only one message to a single neighbor, or to receive a single
message from a neighbor, but not both. Finally, in the in-
termediate (or mixed model, every node is allowed to send
only a single message (to one neighbor) per round, but it
may receive messages from many neighbors simultaneously.

Since nodes are ignorant of network topology, they cannot
distinguish between yet unused adjacent links. Consequent-
ly, the local decision made by a node, regarding which of
its outgoing links it should use to send a message in a par-
ticular round, can be thought of as fixed by an adversary,
as in [1, 8, 11, 14]. We adopt the worst-case approach, i.e.,
we axe interested in the performance of the protocol result-
ing from the most detr imental behavior of the adversary. In
particular, we are interested in the t ime requirement of the
algorithm on the worst-case network of a given size, as well
as in the optimality of the algori thm on every network. We
say that an algori thm A has asymptotically optimal time if
its t ime complexity is bounded by a constant t imes the op-
t imal time, for every network G and source s.

To il lustrate the difficulties of the problem, let us first present
two naive algorithms for it on a tree. The first algorithm is
based on a single message (the "token"), that traverses the
graph in depth-first fashion, s tar t ing at the source s and vis-
iting one vertex at a time, assigning a distinct label to each
visited node. (See Fig. 1.) While this algorithm assigns the
smallest possible labels (from the range [1, n]), its t ime re-
quirements axe 2n on any n-node tree, which is about twice
the lower bound for the worst case, and more importantly,
very far from optimal on many trees (e.g., complete binary
trees).

A second naive algorithm, named 0 - 1 - S p l ± t , is best illus-
t ra ted on a binary tree. The source [abels itself by the empty
sequence 6, and every non-leaf node labeled L assigns the
labels L0 and L1 to its left and right children, respectively.
This algorithm clearly achieves opt imal t ime in the all-port

Figure 1: Labeling using a DFS based algorithm.

model on any tree, and in particular, its worst-case t ime is
n - 1, but on the other hand it generates very long (poten-
tially f~(n)-bit) labels (see Fig. 2).

1.3 Results
While we have developed a number of algori thms for the
labeling problem, our main positive results revolve around
variants of one main algorithm, named Wake ~ Label , which
seems to fare ra ther well (in fact, near-opt imally) w.r.t, all
of our quality and efficiency measures.

For presenting our results in more detail, it is convenient to
s tar t with the intermediate mixed model, and then describe
the way the results change when we deviate to either of the
two extreme models.

We first consider the si tuat ion when the network is an un-
known tree. The tree is a priori non-rooted, but for our
purposes it can be viewed as rooted at the source s, as the
source originates the labeling process. The main variant of
Alg. Wake & Label operates in this setting. For n-node
trees, it assigns labels of size O(log n) and its worst-case
t ime complexity is n + 1 (while the worst-case lower bound
on time is obviously n - 1, e.g., for the path) . Its message
and bit complexities axe also asymptot ical ly optimal: O(n)
and O(n log n), respectively.

Ano the r significant advantage of this algori thm reveals itself
when one considers the question of t ime optimality. Let us
first introduce an impor tant parameter affecting the t ime
required for label assignment. For any network G, define
bb(G, s) to be the worst-case t ime of broadcast ing a message
from a source s to all nodes of G. (The notat ion bb stands for

@

F i g u r e 2: Labeling using the O-I-Split algorithm.

102

"blind broadcast," as nodes do not know to whom they send
messages.) Alternatively, for a tree T rooted at s, bb(T,s)
is the maximum sum of node out-degrees, taken over all
branches of T. A central observation for the purposes of the
current paper is that for any graph G and source s, the time
required for label assignment is lower bounded by bb(G, s),
namely, r(G, s) > bb(G, s).

Returning to our Alg. Wake k Label, we note that it runs in
asymptotically optimal time, namely, it uses 3-bb(T, s) time,
which is at most 3 times larger than worst-case optimal for
any given tree.

Two other protocols presented for the problem are also fast
in the worst case, but have contrasting qualities and draw-
backs. In particular, our second algorithm (Label-Passing)
assigns the shortest possible labels to all nodes, i.e., labels
1 , . . . ,n, but on the other hand, it has large message and
bit complexities: O(n 2) and O(n ~ log n), respectively, and
its time is always n (regardless of the tree), hence it is far
from being time-optimal. Our third algorithm (Fastes t)
achieves the optimal time v(T, s) for any given tree T and
source s, and uses O(n) messages, but its only guarantee on
label size is O(v~) .

To complete the picture, we show two lower bounds for label-
ing trees. One says that any algorithm working in optimal
time v(T, s) for any given tree T and source s, requires labels
of size f~(vfn), hence Alg. Fas t e s t is the best possible in
this sense. The second is a lower bound on the size of labels
produced by protocols whose message complexity is strictly
optimal, i.e., those using exactly n - 1 messages. We prove
that such protocols must produce labels of length f~(n), on
some n-node trees.

For general unknown n-node networks, a variant of Algorith-
m Wake k Label named Wake k LabelGB assigns labels from
the range [1, n] in time 3n. We also present a slightly faster
protocol (with worst-case time 2n) but this protocol assigns
labels of size up to ~2(n) in some cases. This is complement-
ed by observing that there are networks for which labeling in
[1, n] cannot be done faster than in time 2 n - o (n) . We then
present a variant of Alg. Wake & Label~ assigning shortest
possible labels, and working in asymptotically optimal time
for any given network.

Finally, we discuss the changes in our results when we con-
sider the problem in the all-port or the one-port models.

In the all-port model we give another variant of Algorithm
Wake ~ Label (named Alg. A l l - p o r t 3-Phase) which as-
signs optimal labels, and works in asymptotically optimal
time 3. ecc(G, s), where ecc(G, s) denotes the eccentricity of
the source s in the network G, namely, the maximum dis-
tance between s and any other node of the network. This
algorithm is proved to be strictly optimal for trees: We show
that any algorithm assigning labels from the range [1, n] to
all n-node trees must use time at least 3 • ecc(T, s) - 2 for
some tree T and some source s. On the other hand, any
algorithm working in optimal time (namely, time equal to
the eccentricity of the tree w.r.t, the source) must assign
labels of size ~(n). We also show another (DFS-based) al-
gorithm which also assigns labels from the range [1, n]. This

algorithm works in time 2n on any n-node network, hence
it is slightly better in the worst case (the worst-case lower
bound on time is n - 1), but is not asymptotically optimal.

In the one-port model the DFS-based algorithm works in
asymptotically optimal time 2m for any m-edge network,
as it can be proven that for general networks, m is a lower
bound on time. On the other hand, if we restrict attention
to trees, another algorithm works in asymptotically optimal
time, namely, it uses time at most 3 times larger than worst-
case optimal, for any given tree. (It should be noted that if
the network is known to be a tree, m = n - 1 is not a lower
bound on time any more: as in the mixed model, the lower
bound becomes bb(T, s).)

Our results are summarized in the table of Fig. 3.

In what follows, Sections 2 and 3 deal with trees and gen-
eral networks in the intermediate mixed model. Section 4
addresses the all-port and one-port models. Table 3 sum-
marizes our results.

2. LABELING TREES
In this section we study the label assignment problem for
trees, in the mixed model. We consider an n-node tree T.
Our algorithms view the tree as rooted at the source s, and
use the terms parent, child, ancestor, descendant and lea/
with respect to this rooted tree. The tree T and the integer
n are unknown to the nodes.

A natural first question to be considered regarding the tree
labeling problem is whether quality and efficiency can both
be optimized in the worst-case, i.e., whether it is possible
to label any n-node tree in n - 1 or fewer rounds using the
minimal possible labels, [1, n]. Curiously, it turns out that
the answer to this question is positive. In the full paper (see
[10]) we present a simple algorithm named Label-Passing,
analyze its performance and establish the following theorem.

THEOREM 2.1. Given an n-node tree and a source s, Al-
gorithm Label -Pass ing assigns distinct labels from the range
[1, n] to all the nodes. The label assignment completes in
n - 1 rounds. The time, message and bit complexities of the
algorithm are n, O(n 2) and O(n 2 log n), respectively.

2.1 Algorithm Wake & Label
Our main algorithm, Algorithm Wake k Label, is slightly
inferior to Algorithm Label-Passing with respect to worst-
case time complexity and label size. Specifically, it assigns
labels of asymptotically optimal length O(log n), and works
in worst-case time at most n + I. On the positive side, its
message and bit complexities are far better, namely, O(n)
and O(nlog n), respectively. But most importantly, Alg.
Wake & Label works in asymptotically optimal time. This
overcomes the main disadvantage of Alg. Label-Passing,
which is that its execution time is always at least n - 1,
regardless of the tree structure.

2.1.1 Three simplified variants
The idea of Alg. Wake ~ Label significantly differs from
that of Alg. Label -Pass ing.

103

Model Networks Algorithm Time- Time- Label size Messages
worst per graph

Mixed Trees

Graphs

Trees

Graphs

Label-Passing
Wake & Label

Fastest

Lower bounds
Tradeoff
Tradeoff

O-I-Split U

Wake ~ Label~
Wake & LabelA G
Lower bounds
Mixed Alg's

All-port 3-Phase

Lower bounds
Tradeoff
Tradeoff

Mixed Alg's
DFS +

A l l - p o r t 3-Phase
Lower bounds

n

n + l

n - 1

2 n

3n

2n -- o(n)
same

3n
n - 1

s a l n e

2n
3n

n - 1

n

3. bb(T, s)
bb(T, s)
bb(T, s)

bb(T, s)

4. bb(G,s) + 1
bb(G, s)

same
3. ecc(T, s) - 2

ecc(T, s)
ecc(T, s)

3" ecc(T, s) - 2
s a m e

2n
3. ecc(G , s) + 1

ecc(C , ~)
One-Port Trees DFS 2n - 3 2n -- 3

Time-Slots 3n 3 • bb(T, s)
Lower bounds n - 1 bb(T, s)

Graphs DFS 2m 2m
Lower bounds m m

[log nl
O(log n)

['log n]
~(n)

=~ ~(v'~)
'tT,

[log n]
[log n]
[log n]

s a 3 2 l e

['log nl
['log n l

= ~q(n)
[logn]
s a m e

['log nl
[log nl
[log n l
[log n l
[logn]
[log nl
[log n l
[log n]

F i g u r e 3: Summary of results: Algorithms, lower bounds and tradeoffs.

0(~ ~)
0(~)
O(g)
n - - I
n - - I

O(nm)
O(~)
O(~)

m

s a l l 2 e

o(~)
n - -1

s a m e

o(m)
o(m)

m

2n - 3
o(~)
n - -1
o(m)

m

As the algorithm and its analysis are rather complex, it is
convenient to first present a succession of three simplified
variants of the algorithm, of increasing complexity. These
variants are slightly weaker, but somewhat more intuitive.

All variants of Alg. Wake & Label operate in three phases
and use three types of messages: wakeup, count and alloca-
tion. Moreover, in the first three variants we describe, the
first two phases are similar.

In the first (wakeup) phase, the source wakes up all the nodes
by broadcasting a wakeup message. The second (counting)
phase is started by the leaves of the tree T, and provides
every node v with a count of the number of nodes in its
subtree T.. This is done in a bottom-up convergecast fash-
ion, using count messages of size at most log n which travel
bottom-up in T.

The differences between the first three variants of Algorithm
Wake ~ Label are manifested in the third (allocation) phase,
whose task is to distribute the labels via allocation mes-
sages. In our first variant, named Alg. Wake & LabelA, this
phase is straightforward. It is started by the source imme-
diately upon receiving count messages from all its children.
The source assigns itself label 1, and sends to each child
a disjoint integer interval corresponding to the size of the
subtree rooted at this child. Likewise, any node that got
interval [a, b] assigns itself label a and sends to each child
a disjoint integer interval corresponding to the size of the
subtree rooted at this child. Hence this algorithm assigns
labels from the optimal range [1, n], and has asymptotically
optimal time, messag.e and bit complexities, but its worst-

case time complexity is three times greater than the optimal,
namely, 3(n - 1). This worst case is realized on the n-node
path with the source residing at one of the endpoints. Hence
our efforts focus on reducing the worst-case time complexi-
ty to n + 1 while preserving the above qualities as much as
possible.

The second variant, named Wake ~ LabelB, is based on ob-
serving that the source does not necessarily need to wait
until receiving a count from all of its children. Rather, it
can start the label distribution once it knows the counts of
all its children but one. In this case, it assigns consecutive
blocks of labels to the children for which it knows the count,
and then passes the remaining infinite (semi-open) block of
labels to the remaining child. This child, in turn, behaves
the same. It can be shown that this idea is sufficient for
reducing the worst-case time complexity of the algorithm to
3n/2. The worst example is, e.g., the n-node path where
the source resides at the middle node.

Algor i thm Wake ~ Labelc
The third variant, Wake & Labelc, assigns labels of length
O(log n log d), where d is the maximum degree of the tree,
and has time complexity n+d and bit complexity O(n log n log d).
The labels of all nodes are of the form (p;y), where p is a
sequence of integers smaller than d, called the prefix, and y
is a natural number smaller than n, called the value.

The first two phases of the algorithm remain as before. How-
ever, each node waits for the count messages only for a pre-
scribed amount of time, which still guarantees that the dead-
line n + d for the whole process is met in the worst case. If

104

by the end of the waiting period only one child has not re-
ported, labeling subtrees of all o ther children can be done
efficiently, using consecutive integers as values and keeping
the prefix unchanged. If, on the other hand, at least two
children did not report (such a s i tuat ion is called special),
labels of these children and all their descendants get a pre-
fix which is an extension of tha t of the current node. It
turns out tha t the length of label given to any node v is
O(log n + a), where a is the number of special si tuations
occurring on the pa th from s to v. The crucial issue is to
show that waiting periods are sufficiently long to guarantee
that o" is not too large.

Allocation messages travel top-down and their size is
O(log n log d). In order to describe them, we introduce the
crucial notions of initial and final capital at node v. These
are natural numbers denoted by c'(v) and c"(v) , respective-
ly. Initially c'(s) = 1. For v ~ s, c'(v) will be set to c"(u),
where u is v's parent (c"(v) is set by the protocol as the
execution develops). Intuitively, capital is defined in such a
way that node v can wait ct(v) rounds between sending the
last wakeup message and the first allocation message, with-
out violating the overall deadline for a lgori thm complet ion
in the subtree rooted at v.

After sending all wakeup messages, node v starts a waiting
period which continues (at least) until it receives an allo-
cation message from its parent u. The allocation message
contains c"(u), and v sets c'(v) 4-- c"(u). If v received the
allocation message while sending wakeup messages, then v
will wait c' (v) rounds after it will have finished sending wake-
up messages. If, on the other hand, v received the alloca-
tion message after it has already finished to send its wakeup
messages (say, to rounds later), then v acts as follows. If
c '(v) > to, then v continues its wait ing period for c'(v) - to
additional rounds. Otherwise, the wait ing period is over.
The source behaves as if receiving "from its parent" an al-
location message with capital 1 at t ime 0, tha t is the source
will wait 1 rounds after having sent all its wakeup messages.

At the end of this waiting period, there are two possibilities:
1. v got count messages from all of its children except

possibly one,
2. v did not get count messages from at least two children.

The first s i tuation is called normal, the second is called spe-
cial. We first describe the actions for each si tuation when
v = s is the source. Note tha t s has waited c'(s) = 1 t ime u-
nit after having sent the last wakeup message. It now assigns
itself the label (e; 0), where e denotes the empty sequence.

In the normal si tuation, c"(s) 4- 1 (= c'(s)) and s sends
allocation messages to its children, in consecutive t ime u-
nits, in the same order in which it sent wakeup messages.
Children from which s got a count message get a closed al-
location message, and the (at most one) child from which
no count message arrived gets an open allocation message.
Suppose, wi thout loss of generality, tha t vi, i = 1 , . . . ,r, are
those children of s from which count messages arrived say-
ing that the subtree rooted at vi has size xi, and no count
message arrived from child vr+l . Then the closed messages
sent to vi, i = 1 , . . . ,r, consist of the prefix e (the empty
sequence) and of intervals Ii, i = 1 , . . . , r, of natural num-

bers, such tha t the left end of Iz is 1, the left end of Ii+1
is the successor of the right end of Ii, and [Ii[= xi. The
open message sent to v~+l consists of the final capital c"(s),
the prefix ~ and of the half-line [t, oo), where t is the succes-
sor of the right end of I . . Integers from these intervals will
be used to construct labels of nodes in respect ive subtrees.
(Intervals are coded by pairs of their ends and the half-line
[t, oo) is coded by t.)

In the special si tuation, c" (s) 4- 2 (= c ' (s) + [c' (s)/2]), and
the source sends special allocation messages to its children,
in the same order in which it sent wakeup messages. A
special message sent to child vi consists of a marker special,
of the final capital c"(s) and of the prefix which is the one-
te rm sequence (i).

Let v ¢ s and let u be v 's parent. At the end of the wait ing
period, there are three possible cases.

(1) The received allocation message was closed, consisting
of the prefix p and the interval [a, b]. In this case, node v
assigns itself the label (p; a) and sends to its children vi,
i = 1 , . . . , r , a closed allocation message consisting of the
prefix p and of intervals Ii , i = 1 , . . . , r of na tura l numbers,
such that the left end of I1 is a + 1, the left end of Ii+1 is
the successor of the right end of Ii, and [I i [= xl, where xi
is the size of the subtree rooted at vi (repor ted to v by a
count message).

(2) The received allocation message was open, consisting of
the final capital c"(u), prefix p, and half-line [t, oo). In this
case, node v assigns itself the label (p;t). I t sets c ' (v)
c"(u) . At the end of the waiting period there are two pos-
sibilities, as described above for the source s: normal and
special. In the normal situation, c"(v) 4-- c'(v), and node
v acts as did the source, except tha t the prefix sent is p
ra ther than ~ (the empty sequence), and the left end of in-
terval I1 is t + 1 ra ther than 1. In the special situation,
c"(v) ~ c'(v) + [c'(v)/21, and v sends special allocation
messages to its children, in the same order in which it sent
wakeup messages. (As will be clarified later, this formula is
mot ivated by the fact tha t in the special s i tuation, a child
w of v has at least c'(v) nodes in its subtree T~,.) A spe-
cial message sent to child vi consists of a marker special,
of the final capital c" (v) and of the prefix p' which is the
concatenat ion of the sequence p and the one- term sequence
(i).

(3) The obta ined allocation message was special, consisting
of a marker special, final capital c"(u), and prefix p. In this
case node v assigns itself the label (p; 0) and acts as in the
previous case, wi th t = 0.

This completes the description of Alg. Wake g~ L a b e l c ,
except for handl ing "late" count messages. A node v may
get count messages from its children after it s ta r ted sending
them allocation messages. In this case incoming count mes-
sages are ignored and v does not send any count message to
its parent.

The proof of correctness and the performance analysis
of Alg. Wake ~ L a b e l c can be sketched along the following
lines. We first observe that Alg. Wake & L a b e l c assigns

105

distinct labels to all nodes. For any node v, define d(v) as
the max imum degree of all nodes on the path between v
and the source (including both ends). Then it can be shown
that for any node v and any of its children w, the delay
between the t ime when v sends a wakeup message to w and
the t ime when it sends an allocation message to w, is at
most c'(v) + d(v).

For any node v, a node w is called foreign to v, if it is neither
v, nor an ancestor of v, nor a child of an ancestor of v, nor a
descendant of v. Our next observation is tha t for any node
v, there exist at least ct(v) - 1 nodes foreign to v. It follows
tha t the execution t ime of Alg. Wake ~ L a b e l c , working in
an n-node tree of m a x i m u m degree d, is at most n + d.

In order to prove tha t all assigned labels are of size O(log n log d),
it suffices to show that , for any branch of the tree, the num-
ber of nodes in this branch which are in a special s i tuation
during the execut ion of the algori thm, is O(log n). Take any
branch of the tree and let v z , . . . ,vk, be nodes in a special
s i tuat ion in it, l isted top-down. Thus c ' (v i+l) > @c'(vl) and

= (3 ~ k - i c ' (v l) i . Hence C'(Vk) > 7, . Hence the number of

(7) . It is also at most nodes foreign to vk is at least 3 k-1
n -- I. Thus k is O(log n).

Note tha t Alg. Wake & L a b e l c is no longer asymptot ical ly
optimal. However, the following trivial modification of A1-
g. Wake & L a b e l c keeps all its worst-case qualities, while
enjoying also asymptot ic optimality. Alg. Wake k Label+c
behaves like Wake & L a b e l c , except in the si tuation when a
node got count messages from all of its children. Then, even
if the wait ing period is not yet over, the node starts sending
allocation messages, as in Wake & LabelA. All previous fea-
tures axe preserved. On the other hand, the same argument
as for Alg. Wake ~ LabelA shows tha t Alg. Wake ~ L a b e l c +
works in t ime at most 3bb(T, s), for any tree T and source
S.

We get the following:

LEMMA 2.1. Algorithm Wake k L a b e l c + working in an n-
node tree of maximum degree d, assigns distinct labels of
size O(lognlogd) to all nodes of the tree. Its worst-case
execution time in such a tree is m i n { n + d , 3bb(T, s)}, and its
message and bit complexities are O(n) and O(n log n log d),
respectively.

2.1.2 A l g o r i t h m Wake & Label
The improvements in t roduced to Alg. Wake ~ Label aim at
decreasing t ime from n + d to n + 1 and label sizes from
O(log n log d) to O(log n). The first is achieved by carrying
out the processes of waking up and of labeling part ly con-
currently. The second is achieved by introducing another
waiting period for each node, during which the number of
children tha t have not repor ted is reduced to at most 3. This
permits to use only integers 0, 1, 2, instead of 0, 1 , . . . ,d
when forming prefixes of labels. In the full paper [10] we
present the full a lgor i thm and establish the following theo-
rem.

THEOREM 2.2. Given an n-node tree T and a source s,
Algorithm Wake & Label assigns distinct labels of size O(log n)

to all the nodes. Its time complexity is at most min{n +
1, 3bb(T, s) }, hence it is asymptotically optimal. Its message
and bit complexities are O(n) and O(n log n), respectively.

2.2 A lower bound for message-optimal algo-
rithms

While Alg. Wake ~ Labe l uses O(n) messages, up to 4 mes-
sages can travel along every link, and hence the to ta l number
of messages can be as much as 4 t imes larger than the lower
bound of n - 1. In the full paper we prove the following
result, which shows tha t any labeling protocol tha t meets
this lower bound on the number of messages must in fact
produce very large labels.

THEOREM 2.3. Any labeling protocol using at most n - 1
messages must assign labels o f f l (n) bits to label some n-node
tree. This property is true even i f one restricts the protocol
to run on binary trees.

2.3 Optimal time algorithms for trees
In what follows we present an algori thm named F a s t e s z
working in opt imal t ime bb(T, s) on any n-node tree T and
source s. It uses O(n) messages but assigns labels of size
O(vf~). In Section 2.4 we prove tha t this is the smallest
possible size of labels which can be assigned by opt imal t ime
algorithms.

Denote the degree of a vertex x by d(x) and the subtree
rooted at x by T=. Given a node x, let t (x) denote the
round when x gets a message from its parent (set t ing t(s) =
0), and define the capital c(x) as the m a x i m u m number of
rounds tha t the node x is allowed to wait between t ime t (x)
and s tar t ing broadcast ing to its children, and still ensure
complet ing broadcast ing in Tx by round bb(T, s). (Hence
for the source, c(s) = 0.) We have

c(x) = bb(T, s) - bb(T~, x) - t(x). (1)

Any execution of a broadcast can be thought of as if an
adversary chooses the order in which a node x calls its chil-
dren. Given any such order, we rank the children of each
node accordingly, as follows: if v is the i th child called by
x, then the rank of v is set to ¢(v) = d(x) - i. In part icular ,
the child ranked 0 is called at the latest possible time. We
refer to this child as the latest child.

For a non-root node x, let p(x) denote the pa th from the
source s to x in T, not including s itself. (For s, let p(s) = 0.)
We now define the total rank of a node x, denoted ,I,(x), as
the sum of the ranks over p(x), i.e., ¢ (x) = ~ . e p (~) ¢(v).
(Thus for s, ,I)(s) =- 0.)

LEMMA 2.2. For any node v, c(v) > '-I,(v).

PROOF. The claim holds trivially for the source s, so it
suffices to prove it for a non-root v. Consider a non-leaf
node x. Since the adversary may fix the order in which x
calls its children arbitrarily, necessarily

bb(T~, x) > bb(Tz, z) + d(x) (2)

106

for any child z of x. If z is the i th child informed by x, then
t(z) = t(x) + i, and thus by (1) and (2),

c(z) = bb(T,s) -- bb(Tz,z) - t(z)
> b b (T , s) - b b (T ~ , x) + d (x) - t (x) - i = c (x) + ¢ (z) .

Hence for a non-root v, by repeatedly applying the last in-
equality from v upwards on the pa th p(v), it follows that
c(v) > c(s) + ~ e p (,) ¢(z) = c(s) + ~I'(v). Since c(s) = O,
the l emma follows. []

2.3.1 A simpli f ied protocol P
We first describe a simple variant of Algor i thm F a s t e s t ,
named protocol P , which captures the essential idea and
works in opt imal t ime but still assigns potent ial ly long la-
bels. We then show how to refine it and get labels of size

The labels assigned by protocol P are strings in the language
described by the following grammar:

S ~ e / c~(rank) S / /9 (latest) S

a,/9 ~ coding of a posit ive integer in base 2

where e is the empty word and (rank) and (latest) are two
special symbols. The meaning of the labels is the following:

- The label c~ (rank) S is assigned to the rank-c~ child of
the node labeled S.

- The label 19 (latest) S is assigned to the node reached by
s tar t ing from the node labeled S and continuing
downwards to the latest (rank-0) child, for/9 times.

2 ~ 1 L

2RIL3R IRIL3R 2L3R

F i g u r e 4: Tree labeling using protocol P . The symbols "R"
and "L" stand for " (r a n k) " and " (l a t e s t) " respectively.

Protocol P operates as follows. When a node x receives
message S from its parent, it does the following:

- It assigns S to be its own label.

- I f S = o~ (rank) S' then it sends messages (d(x)- i) (rank) S
to the i th child it calls, for i < d(x), and sends message
1 (latest) S to the last child it calls.

- If S = / 3 (latest) S' then it sends messages (d(x)- i) (rank) S
to the i th child it calls, for i < d(x), and sends message
(,8 + 1) (latest) S' to the last child it calls.

To s tar t the process, the source acts as if it has received a

message S = ¢, the empty word.

While protocol P requires t ime bb(T, s) in the worst case
and assigns dist inct labels to all nodes, the length of the
label assigned to node x can be as large as f~(~(x) log n).

2.3.2 A lgor i thm Fastest
We now refine protocol P to avoid the use of long labels.
The modified algori thm, Alg. F a s t e s t , is based on the ob-
servation tha t whenever the label assigned to x by P is long,
it implies tha t ~ (x) and hence c(x) is large (see Lemma 2.2).
Thus x is allowed to wait a long t ime before continuing the
label assignment process. This delay can be used to explore
some of the subtrees, as done in Alg. Wake ~ Label , and
thus reduce the size of used labels.

In Alg. F a s t e s t each node sends to its children three types
of messages:

- Allocation messages of the form M --- ([S : i],6), con-
sisting of a location part [S : i], where S is a string
and i is an integer, and a deadline par t ~ which is an
integer.

Wakeup messages.

- Closure messages of the form ([S : i], [a, b]) where [S : i]
is as before, and a, b are two integers.

A node v o ther than the source also sends a count message
to its parent informing it of the size of the subtree T~, as in
Alg. Wake & Label .

The algori thm performs the following two phases.

P h a s e A

Upon receiving a wakeup message x starts sending wakeup
messages to its children, in the next round. The ranking
function described in Protocol P is de termined according to
this sequence of calls.

Any leaf which got a wakeup message sends back a count
message to its parent , and in termediate nodes send count
messages bo t tom-up , as in Alg. Wake ~ Label .

P h a s e B

The source behaves like a node receiving the al location mes-
sage ([0 : 0], 0) at t ime 0.

Upon receiving an allocation messag e ([S : i], di), x keeps on
performing phase A for 5 rounds. If phase A has not s ta r ted
before, z s tar ts it and performs it for cf rounds. At the end
of this period, all children tha t have sent count messages to
x are called closed and all others are called open. Then x
chooses ([S : i]) as its own label and immedia te ly proceeds
as follows:

C a s e 1. At most one child is open.
In this case x has already called all its children. Now x first
sends the message ([S : i + 1], d(x) - 1) to the open child

107

(if any) and then sends closure messages of the form ([S :
i], [a, b]) to all closed children. The interval [a, b] assigned
to each closed child is computed on the basis of the count
message received from tha t child, which repor ted the size of
its subtree, as in Alg. Wake & Label .

C a s e 2. More than one child is open.
There are two subcases.

2.1. The node x has already called all its children:

Then x sends allocation messages to all its children in
the same order as in phase A.

2.2. The node x has not called all its children yet:

Then x sends allocation messages first to its chihiren
which it has not called yet (implicit ly serving as a
"wakeup" message as well), and then to all other chil-
dren, in the same order of sending the wakeup mes-
sages.

In both subcases, the children of x are ranked in the order
of the first messages sent to each of them. If x has k open
children y t , . . . , Yk ranked ¢(y l) > ¢(y2) > . . . > ¢(yk), then
child yj is called the j th open child.

Messages sent by x during phase B are computed in the fol-
lowing way. For open children, x makes use of S to compute
a str ing Sj to be sent to the j t h open child in the same way
as in protocol P . However, protocol F a s t e s t requires more
information. T h a t is, if x calls an open child j on round r j
of phase B, then instead of sending simply the message 5) as
in protocol P , x sends Mj = ([Sj : 0], ~f) with ¢f = d(x) -- rj.

Closed children of x get the appropr ia te closure messages,
computed as in Case 1.

If a node x receives a closure message ([S : i], [a, b]), then it
assigns (IS : i], [a]) as its own label. Moreover, all children of
x are already closed, and thus x sends them the appropr ia te
closure messages.

This completes the description of Alg. F a s t e s t .

2.3.3 Analys is o f A lgor i thm F a s t e s t

In order to compute the size of labels assigned by the algo-
r i thm, we need the following lemmas.

LEMMA 2.3. Any node x involved in phase B, has per-
formed phase A for at least ~(x) rounds.

PROOF. Assume tha t a node z starts phase A (resp. B)
in round t~ (resp. tb). Then the child v of x with rank ¢(v)
starts phase A in round t~ = t~ + d(x) - ¢(v). Moreover,
it s tarts phase B in round t~ = tb + d(x). It follows tha t
t~ - t~ = tb - t~ + ¢(v). The conclusion now follows by the
definition of ,I~(x). []

LEMMA 2.4. Let a and n be positive reals, let k be a posi-
tive integer, and let x = (x l , . . . ,x~) be a vector of integers

greater than 1. Suppose that ~l<_i<k ixi < n. Then

k

y~(log~i+a) _< 2 ¢ ~ - 1 + a (, / ~ + 1) .

THEOREM 2.4. Given an n-node tree T and a source s,
Algorithm F a s t e s t assigns distinct labels of size O(v/n) to
all the nodes. Its time complexity is the optimal bb(T, s). Its
message and bit complexities are O(n) and O(nv/n), respec-
tively.

PROOF. It is easy to see that Alg. F a s t e s t assigns dis-
t inct labels and works in t ime bb(T, s). In wha t follows we
bound the size of the labels assigned to the nodes.

Let L(x) denote the label of x, and let IL(z)[denote its
length. First , we s tudy the m a x i m u m length IS(x)[of a
prefix appearing in a label ofx . As prefixes are only modified
by nodes receiving an allocation message, we consider only
such nodes. Suppose tha t x receives an al locat ion message
[S(x) : i], and let ql(x) (resp. qr(x)) be the number of
(latest) (resp. (rank)) symbols appearing in S(x). Since
there is at least one (rank) symbol between two successive
(latest) symbols, we have qt(x) < qr(x) + 1.

Note tha t S(x) is made of two types of character groups :
(i) oL (rank) which means "I a m the a t h open child," and
(ii)/3 (latest) which means "I am obta ined by following the
latest branch fo r /3 t imes." Let St(x) be the subsequence
of S(x) containing groups of type (i) and Sz (x) be the one
with groups of type (ii); we have IS(x)l = ISr(x)l + ISl(x)l,
and we will now bound each of the two te rms separately.

Bounding ISr(z)l
Suppose tha t St(x) = al (rank) as (rank) . . . elk (rank) and
consider the symbols (rank) appearing in S at positions
{1, 2 , . . . k}. These symbols are in a one-to-one correspon-
dence with some vertices vt ,v2 , . . , vk of the pa th from r to
X ,

Since i - 1 (rank) symbols occur before the symbol associ-
a ted to any ver tex vi, we have ab(vi) > i. L e m m a 2.3 implies
that for any vi, at least i rounds elapse between phases A
and B. Hence, if vi is an open child, it has at least i /2
descendants. Moreover, for every open child w of vi, since
• (w) > ~(vi), it follows tha t w has at least i / 2 descendants
as well.

The symbol oq means tha t at the end of phase A, vi had at
least o~i - 1 open children different from vi+l (otherwise the
integer o~i cannot appear) . In the special case where oLi = 1,
vi had at least one open child different from vi+l (otherwise
no character would be added to the prefix S(x) but instead
the value of the integer j appearing in the location IS : j]
would be increased). In any case, vl has at least vii~2 open
children, different from vi+l. By the previous argument ,
each of these children has at least i / 2 descendants, so the
tree contains at least ictl/4 nodes which do not belong to
the subtree T~+ 1 . Globally, we find k pairwise disjoint sets

108

of cardina]ities at least io i /4 . It follows tha t

iai _< 4n.
1<i_<~

Since IS~(x)l < ~l<_i<k(logc~i + 0(1)) , l emma 2.4 implies

Is~(~)l = O(vqJ .

Bounding IS~ (x)l
In order to bound the length of St (x) = fll (latest) . . . flk (latest) ,
note tha t the symbol/3i means tha t there exist fli successive
latest children each one having a total rank at least i - 1.
Similarly to the previous analysis, we get ~l_<i_<k ifli < 2n.
Since ISt (x)l < ~l<i_<k (log/31 + 0 (1)) , using l emma 2.4 once

again we get IS~(x)l = O(~/h~).

B o u n d i n g IL(x)l
In view of the above, IS(z)l = o (~) . Since IL(x)[<
max IS(x)l+O(log n) for any ver tex x, it follows tha t IL(x)l =
O(x/nff), proving tha t all labels axe of size O(v/n) .

The same arguments show tha t all messages are of size
O(vZff). Since at most 3 messages travel on any link, this
shows tha t AlE. F a s t e s t has message and bit complexit ies
O(n) and O(nv/n) , respectively. []

2.4 A tradeoff for optimal time algorithms on
trees

The following lower bound shows tha t labeis assigned by
AlE. F a s t e s t are of smallest possible order of magnitude,
for all a lgori thms working in opt imal t ime bb(T, s), on any
tree T and source s.

THEOREM 2.5. Any labeling protocol working in time at
most bb(T, s) on any tree T and source s, must assign labels
of size ~2(x/~) on some n-node tree. This property holds even
i f the protocol is restricted to the class of binary trees.

PROOF. Fix a labeling protocol P . We study the behavior
of P on the class of binary trees rooted at s. Note that the
local s tate of a node v during the execution of P depends
only on the degree of v, on whether v = s, and on messages
previously received by v.

Assume tha t d = x / (n - 1)/2 is integer, and let B be the
complete binary tree of depth d, rooted at s. Let C be
the tree obtained from B by replacing every link of B by a
simple pa th of length d. Since C has 2 a leaves, protocol P
must assign a label of size fl(d) = ~(~/hff) to at least one of
them. Let x be such a leaf of C.

Let Z be the branch of C joining s and x. Let zo, z l , . . . , Zd-1

be nodes of Z with more than one child, listed top-down,
with zo = s. Let Zd = x. Let Y = { Y l , . . . , Yd}, where yi is
the other descendant of zi-1 at distance d from it, different
from zi. Let T be the subtree of C spanned by the nodes of
Z U Y and the nodes connecting them. T has n = 2d 2 + 1
nodes.

Let ~T (resp., ~C) denote the execution of protocol P on
the tree T (resp., C). The deviation time of a node v of

T, denoted by t(v), is the t ime in which the execution ~r
deviates in v from ~c, i.e., the first round in which v enters
a different local s ta te in the two executions.

Note that the only nodes tha t s tar t the two executions in
different local states, once they are woken up, are the nodes
of Y ' = Y \ {Yd}, since each yi E Y' has different degrees
in T and C. Since the execution is ini t ia ted by the source
s, node yi is woken up in round id at the earliest, hence
i(y,) >_ id.

Every other node v s tar ts the two executions with an identi-
cal local state, and therefore it can distinguish between them
only after receiving a different message from some neighbor.
As only the nodes of Y ' can originate the transmission of
different messages in the executions ~T and ~c, there must
exist a pa th (uo , . . . ,uq) in T such tha t uo E Y' , uq = v,
and ui sends a different message to ui+l in round ri of exe-
cutions ~T and ~c, where ro < . . - < rq-1. Hence denoting
the distance between the nodes v and w in T by dist(v, w),
we have tha t for any node v ~ Y' ,

t(v) > rain { v)} > min {id+dist(y~,v)} - l_<i<d-1 -~(y')+dist(yi ' -- l_<i<d--1

In particular, as dis t (y i ,x) = d(d - i + 2), we have that

[(x) > min { i d + (d 2 - i d + 2 d) } > d 2 + 2 d . (3)
- l < i < a - 1

L e t t~ denote the t ime x is assigned a label in the execution
~c. Note tha t bb(T, s) = bb(C, s) = d 2 + d, and hence t~ <
d 2 + d. By Inequal i ty (3), t~ < t(x), hence in round t~ the
states of x in the executions ~T and ~c are still identical,
and therefore x must get the same ~(x /~) -b i t label in ~T as
in ,~c. []

3. L A B E L I N G A R B I T R A R Y N E T W O R K S
In this section we s tudy the label assignment problem for
arbi t rary networks in the mixed model.

Call a link saturated if a message has already crossed it.
It is easy to see tha t bb(G,s) equals the worst-case t ime
required for sa tura t ing all links. Indeed, since the network
is unknown, it is necessary to sa tura te all links to be sure
that all nodes got the message, as an ext ra node of degree 2
could be "hidden" in the middle of an unsa tura ted link.

As shown in [11], for any integer n there exists an n-node
network G~ with source s,~ such tha t bb(G,~, sn) = 2 n - o (n) .
Hence 2n is the asymptot ic lower bound on the worst-case
execution t ime of any labeling protocol. In the full paper we
describe a variant of Alg. 0 - 1 - S p l i t , named 0 - 1 - S p l i t G,
with the following properties.

THEOREM 3.1. Given an n-node network and a source s,
Algorithm 0 - 1 - S p l i t c assigns distinct labels of length O(n)
to all the nodes. Its time complexity is at most 2n.

Our next algorithms, named Alg. Wake g~ L a b e l ~ for X =
A, B, are simple variants of the corresponding Algori thms
Wake ~ L a b e l x . They assign labels from the range [1,n],
but axe somewhat slower than AlE. 0 - 1 - S p l i t c . The first

109

stage of Alg. Wake ¢% Labels involves constructing a span-
ning tree T (rooted at s) for the network G, essentially by
broadcasting a "wakeup" message throughout the network.
In the full paper we show that the tree construction pro-
cedure terminates before time 2n - 2. Moreover, it can be
shown that by round 2n - 1, each leaf v of the tree T knows
that it is a leaf. From here on, the algorithm proceeds as
the second and third phases (count and allocation) of Alg.
Wake & Labelx. In the full paper we prove:

THEOREM 3.2. Given an n-node, m-edge network and a
source s, Algorithm Wake ~ LabelGx (for X --- A, B) assigns
distinct labels from the range [1,n], and its message and
bit complexities are O(m) and O(m + n logn) , respectively.
The time complexity of Algorithm Wake & Label~ is 3n, and
that of Algorithm Wake ~ Label~ is 4bb(G, s) + 1 (hence it
is asymptotically optimal).

4. T H E E X T R E M E M O D E L S
This section studies two variants of the mixed model dis-
cussed in the previous sections, namely, the all-port model
and the one-port model. These variants are refered to as
extreme because they either completely relax all the com-
munication constraints, or maximize these constraints. :

4.1 The all-port model
In this section we discuss label assignment in the all-port
model. Clearly, all the algorithms presented for the mixed
model work in the all-port model as well. Hence we focus
on improved algorithms, which do not work in the mixed
model, and on lower bounds (which will naturally apply to
the mixed model as well).

Specifically, in the full paper we describe two labeling algo-
rithms for arbitrary networks, with the following properties.

THEOREM 4.1. Given an n-node, m-edge network G and
a source s in the all-port model, Algorithms DFS + and
A l l - p o r t 3-Phase assign distinct labels from the range [1, n]
to all the nodes.

1. Algorithm DFS + has time and message complexities 2n
and O(m), respectively,

2. Algorithm All-port 3-Phase has time complexity 3 .
ecc(G, s) + 1, hence it is asymptotically optimal.

Its message and bit complexities are O(m) and O(m +
n log n), respectively.

3. On trees, Algorithm All-port 3-Phase has time com-
plexity 3. ecc(G, s) - 2, which is optimal.

4.1.1 L o w e r bounds f o r op t imal label ing on trees
The optimality of Alg. A l l - p o r t 3-Phase on trees is based
on the following lower bound.

THEOREM 4.2. Any labeling protocol in the all-port model
that assigns labels from the range [1, n] requires at least 3 •
ecc(T, s) - 2 rounds on some tree T and source s.

PROOF. A (k, kl,k2)-broom" B is the graph of size n =
2k + kt + k2 + 1 consisting of a path of 2k + 1 nodes with
extremities VL, va, and kl (resp. k2) additional nodes con-
nected to VL (resp. vR). Assume the source s is the central
node of the path. Then ecc(B, s) ---- k + 1.

Assume for the purpose of contradiction that there exists a
protocol that assigns labels from the range [1, n] on every
tree, and completes labeling the (k, k, k)-broom B, where
l e = 2 k + 2 , i n t < 3 . e c c (B , s) - 2 _ - - 3 k + l rounds.

Let B(k, k) denote the family of all (k, k, k')-brooms for any
k' > 0. Consider the last round of the protocol's execution
on B. At that time, any leaf x of VL has not received yet
any information from the node va, since vn is at distance k
from s, hence the earliest round in which it wakes up is k,
and the distance from va to x is 2k + 1. Hence at time t,
the local information maintained at the node x is the same
for all brooms in/~(k, k). It follows that the label l assigned
to x by the protocol is at most 2k + I + k = 4k + 3, since
otherwise, £ would be larger than the number of nodes of
the (k, k, 0)-broom, causing the protocol to fail on it.

A symmetric argument can be applied to every leaf y of vR,
yielding that at time t, node y cannot have receive a label
larger than 4k + 3.

But B has 4k + 4 leaves, and by the above argument, each
of them must be assigned a distinct label from the range
[1, 4k + 3]; contradiction. Hence a protocol assigning labels
in the range [1, n] requires at least 3 - ecc(B, s) - 2 rounds

^

on the (k,k, k)-broom B. []

If the message complexity is exactly m (the number of edges),
then we already know (by Theorem 2.3) that labels of size
f~(n) are required in some trees. In the all-port model, one
can relax the message complexity hypothesis, and show that
assuming the time to be ecc(T, s) is enough to force some
labels to be of size f~(n).

THEOREM 4.3. Any labeling protocol in the all-port model
that works in ecc(T, s) rounds must assign labels of size f~(n)
on some tree T and source s.

PROOF. The proof goes along similar lines to that of Thm.
2.3. Consider the class T of binary trees T with a source
s of eccentricity d in which every non-leaf node v has ex-
actly two children. Given a tree T E 7-, an extremal leaf
of T is any leaf v at distance d from the source s. Asso-
ciate with every extremal leaf v of T a d-bit word w(v, T) =
wl (v, T)w2(v, T) . . . Wd(V, T), wi(v, T) 6 {left,right}, such
that the path from s to v in T is obtained by starting
from s and going successively left or right according to the
w,(v, T)'s.

Consider a protocol P running in d rounds on any tree T 6
T. For any node v of T, let L(v, T) be the label assigned
to v by P. Such a protocol satisfies the property that for

*or really a "dual-purpose" broom, for concurrently sweep-
ing the floor and the ceiling

110

every extremal leaf v, the label L(v, T) is assigned to v at
time d, and moreover, that label is a function L(v ,T) =
f (M , w(v, T)) where M is the message sent by s to its child
on the path to v in round 1. This is because each node along
the path from s to v had to send a message down towards
v in the very first round after it was woken up by s, and
therefore it could not rely on any other information.

Let B be the complete binary tree of eccentricity d rooted
at s. Since B has 2 ~ leaves, protocol P must assign a label
of size ~(d) to at least one of them. Let x be such a leaf of
B, and let w = w(x, B).

Let Z = {Zo,Zl , . . . ,Zd} be the branch of B where zo = s
and Z d = X. Let Y = {yz , . . . ,Yd} , where yi is the other
child of zi-1 in B, distinct from zi. Let To be the sub-
tree of B spanned by the nodes of Z tJ Y, with the same
"left/right" orientation for the edges, namely, such that
w(x, To) = w(x, B).

Also, B and To look locally the same to s, hence in round 1
of the executions of protocol P on T and B,- s sends to zl
the same message M.

It follows that labels assigned to x in both cases are equal,
i.e.,

L(x, To) = f (M , w (x , To)) = f (M , w (x , S)) = n (x ,B) .

As To has n = 2d + 1 nodes, we conclude that the leaf x of
To gets a label of size f~(d) = f~(n). []

4.2 The one-port model
It turns out that an appropriate adaptat ion of Algorithm
Wake g~ LabelA can be made to work for trees in the one-
port model as well, in asymptotically optimal time.

THEOREM 4.4. Given an n-node tree T and a source s in
the one-port model, Algorithm Time-Slots assigns distinct
labels from the range [1, n] to all the nodes. Its time complex-
ity is at most 3bb(T,s), hence it is asymptotically optimal.
Its message and bit complexities are O(n) and O(nlogn) ,
respectively.

For arbitrary networks, the straightforward DFS algorith-
m working in 2m rounds has asymptotically optimal time
and message complexity, as implied by the following natural
lower bound for the one-port model. (The proof is deferred
to the full paper [10].)

THEOREM 4.5. Any labeling algorithm working for arbi-
trary networks in the one-port model must take at least m
rounds on every m-edge network.

5. R E F E R E N C E S
[1] s. Albers and M. R. Henzinger, Exploring unknown

environments, Proc. 29th Syrup. on Theory of
Computing, 1997, 416-425.

[2] D. Angluin, Local and Global Properties in networks
of processors, Proc. 12th Syrup. on Theory of
Computing, 1980, 82-93.

[3] H. Attiya, M. Snir and M. Warmuth, Computing on
an Anonymous Ring, Journal of the ACM 35, (1988),
845-875.

[4] H. At t iya and M. Snir, Better Computing on the
Anonymous Ring, Journal of Algorithms 12, (1991),
204-238.

[5] B. Awerbuch, A new distributed depth-first-search
algorithm, Information Processing Letters 20, (1985),
147-150.

[6] B. Awerbuch, O. Goldreich, D. Peleg and R. Vainish,
A Tradeoff Between Information and Communication
in Broadcast Protocols, Journal of the ACM 37,
(1990), 238-256.

[7] P. Boldi and S. Vigna, Computing anonymously with
arbitrary knowledge, Proc. 18th ACM Syrup. on
Principles of Distributed Computing, 1999.

[8] X. Deng and C. H. Papadimitriou, Exploring an
unknown graph, Proe. 31st Syrup. on Foundations of
Computer Science, 1990, 356-361.

[9] K. Diks, E. Kranakis A. Malinowski and A. Pelc,
Anonymous wireless rings, Theoretical Computer
Science 145 (1995), 95-109.

[10] Pierre Fraigniaud, Andrzej Pelc, David Peleg and
St~phane P~rennes, Assigning labels in unknown
anonymous networks, Technical Report MCS00-01,
the Weizmann Insti tute of Science, 2000.

[11] L. Gargano, A. Pelc, S. P~rennes and U. Vaccaro,
Efficient communication in unknown networks,
Technical Report RR-3609, January 1999, INRIA,
France.

[12] E. Kranakis, Symmetry and Computabil i ty in
Anonymous Networks: A Brief Survey, Proc. 3rd Int.
Conf. on Structural Information and Communication
Complexity, 1997, 1-16.

[13] E. Kranakis, D. Krizanc and J. van der Berg,
Computing Boolean Functions on Anonymous
Networks, Information and Computation 114, (1994),
214-236.

[14] P. Panaite and A. Pelc, Exploring unknown
undirected graphs, Proc. 9th A CM-SIAM Symposium
on Discrete Algorithms, 1998, 316-322.

[15] N. Sakamoto, Comparison of Initial Conditions for
Distributed Algorithms on Anonymous Networks,
Proc. 18th ACM Syrup. on Principles of Distributed
Computing, 1999.

[16] M. Yamashita and T. Kameda, Computing on
anonymous networks, Proc. 7th ACM Syrup. on
Principles of Distributed Computing, 1988, 117-130.

111

