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ABSTRACT 
We consider the task of dis t r ibutedly assigning distinct la- 
bels to nodes of an unknown anonymous network. A priori, 
nodes do not have any identities (anonymous network) and 
do not know the topology or the size of the network (un- 
known network). They execute identical algorithms, apart  
from a distinguished node, called the source, which start-  
s the labeling process. Our goal is to assign short labels, 
as fast as possible. The quality of a labeling algorithm is 
measured by the range from which the algorithm picks the 
labels, or alternatively, the length of the assigned labels. 
Natural  efficiency measures are the time, i.e., the number 
of rounds required for the label assignment, and the mes- 
sage and bit complexities of the label assignment protocol, 
i.e., the total  number of messages (resp., bits) circulating 
in the network. We present label assignment algorithms 
whose time and message complexity are asymptotically op- 
t imal and which assign short labels. On the other hand, we 
establish inherent trade-offs between quality and efficiency 
for labeling algorithms. 

1. INTRODUCTION 
1.1 The problem 
Designing network algorithms without  complete information 
about  the network is an impor tant  problem whose many 
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variations have been extensively studied. Of part icular  in- 
terest are computat ions  in anonymous networks (cf. [2, 3, 
4, 15, 9, 12, 13, 7, 16]), in which processors do not have dis- 
t inct identities and execute identical algorithms. The im- 
possibility of distinguishing processors yields symmetry  in 
computat ions and restricts the computat ional  power of the 
network. 

The situation is even more drastic if the topology of the net- 
work and even its size are unknown, and the only knowledge 
available to a node is its own degree. Such is, e.g., the sit- 
uation when a robot  has to explore an unknown graph, in 
order to draw a map of it (cf. [1, 8, 14]), or when a node 
has to broadcast  information to all nodes of an unknown 
network [6, 11]. 

Known characterizations of the at ta inable and unat ta inable  
tasks in unknown anonymous networks reveal that  assuming 
no means of symmet ry  breaking, little can be done. In par- 
ticular, it is impossible to select a unique leader, or to assign 
unique labels (or ID's) to the network nodes. On the other 
hand, it is equally well known (see, for example, [15] and the 
references therein) that  even in an unknown anonymous net- 
work, the existence of a unique leader in the network makes 
it computat ional ly  equivalent to a full-knowledge environ- 
ment, in which unique node labels exist, and every node in 
the network knows the entire topology. From a complexity- 
oriented point of view, however, there is a ra ther  significant 
difference between the two environments, in the sense that  
the cost of transforming from the former environment to the 
lat ter  may be expensive. 

In this paper we consider the cost of the first step along 
this transformation, namely, the task of assigning distinct 
labels to nodes of an unknown anonymous network. Thus 
the initial s ta te  is that  of complete ignorance; nodes do not 
know the topology or even the size of the network, and they 
do not have any labels. The only knowledge available to a 
node is its own degree. Asymmetry  is provided by postu- 
lating the existence of a unique node s, called the source, 
which effectively acts as the leader and initiates the labeling 
process. All other nodes execute identical algorithms. 

We assume tha t  communication between nodes is executed 
in rounds controlled by a global clock. A message sent by a 
node to its neighbor in a given round becomes available at 
the neighbor in the next round. The goal of a labeling pro- 
tocol is to assign distinct  labels to all nodes of the network. 
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1.2 Models and complexity measures 
The natural  measure for the quality of the solution is the 
range from which the algori thm picks the labels, or alterna- 
tively, the length of the assigned labels. The significance of 
this parameter  is that  in any subsequent use of the labels 
within any dis t r ibuted algorithm, the label length will di- 
rectly affect the size of the messages sent by the algorithm. 
Hence it is desirable to assign labels which are as short as 
possible. 

On the other hand, the natural  e~ciency measures axe the 
time, i.e., the number of rounds required for the label as- 
signment, and the message and bit  complexities of the label 
assignment protocol, i.e., the total  number of messages (re- 
sp., bits) circulating in the network. As one might expect,  
our results imply tha t  there are inherent tradeoffs between 
the quality and efficiency parameters  for the label assign- 
ment problem. 

It  turns out tha t  the precise communication model used sig- 
nificantly impacts  the results. We consider three natural  
models. In the all-port model, every node can send a mes- 
sage to each of its neighbors, as well as receive a message 
from each neighbor, in each round. At the other extreme, 
the one-port model allows each node, in each round, to send 
only one message to a single neighbor, or to receive a single 
message from a neighbor, but  not both.  Finally, in the in- 
termediate  (or mixed model, every node is allowed to send 
only a single message (to one neighbor) per round, but  it 
may receive messages from many neighbors simultaneously. 

Since nodes are ignorant of network topology, they cannot 
distinguish between yet unused adjacent  links. Consequent- 
ly, the local decision made by a node, regarding which of 
its outgoing links it should use to send a message in a par- 
ticular round, can be thought of as fixed by an adversary, 
as in [1, 8, 11, 14]. We adopt  the worst-case approach, i.e., 
we axe interested in the performance of the protocol result- 
ing from the most detr imental  behavior of the adversary. In 
particular,  we are interested in the t ime requirement of the 
algorithm on the worst-case network of a given size, as well 
as in the optimality of the algori thm on every network. We 
say that  an algori thm A has asymptotically optimal time if 
its t ime complexity is bounded by a constant t imes the op- 
t imal time, for every network G and source s. 

To il lustrate the difficulties of the problem, let us first present 
two naive algorithms for it on a tree. The first algorithm is 
based on a single message (the "token"), that  traverses the 
graph in depth-first  fashion, s tar t ing at  the source s and vis- 
iting one vertex at a time, assigning a distinct label to each 
visited node. (See Fig. 1.) While this algorithm assigns the 
smallest possible labels (from the range [1, n]), its t ime re- 
quirements axe 2n on any n-node tree, which is about  twice 
the lower bound for the worst case, and more importantly,  
very far from optimal  on many trees (e.g., complete binary 
trees). 

A second naive algorithm, named 0 - 1 - S p l ± t ,  is best illus- 
t ra ted  on a binary tree. The source [abels itself by the empty 
sequence 6, and every non-leaf node labeled L assigns the 
labels L0 and L1 to its left and right children, respectively. 
This algorithm clearly achieves opt imal  t ime in the all-port 

Figure 1: Labeling using a DFS based algorithm. 

model on any tree, and in particular,  its worst-case t ime is 
n - 1, but  on the  other hand it generates very long (poten- 
tially f~(n)-bit) labels (see Fig. 2). 

1.3 Results 
While we have developed a number of algori thms for the 
labeling problem, our main positive results revolve around 
variants of one main algorithm, named Wake ~ Label ,  which 
seems to fare ra ther  well (in fact, near-opt imally)  w.r.t, all 
of our quality and efficiency measures. 

For presenting our results in more detail,  it  is convenient to 
s tar t  with the intermediate  mixed model, and then describe 
the way the results change when we deviate to either of the 
two extreme models. 

We first consider the si tuat ion when the network is an un- 
known tree. The tree is a priori non-rooted, but  for our 
purposes it can be viewed as rooted at  the source s, as the 
source originates the labeling process. The main variant of 
Alg. Wake & Label  operates in this setting. For n-node 
trees, it assigns labels of size O(log n) and its worst-case 
t ime complexity is n + 1 (while the worst-case lower bound 
on time is obviously n - 1, e.g., for the path) .  Its message 
and bit complexities axe also asymptot ical ly  optimal:  O(n) 
and O(n log n), respectively. 

Ano the r  significant advantage of this algori thm reveals itself 
when one considers the question of t ime optimality.  Let us 
first introduce an impor tant  parameter  affecting the t ime 
required for label assignment. For any network G, define 
bb(G, s) to be the worst-case t ime of broadcast ing a message 
from a source s to all nodes of G. (The notat ion bb stands for 

@ 

F i g u r e  2: Labeling using the O-I-Split algorithm. 
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"blind broadcast," as nodes do not know to whom they send 
messages.) Alternatively, for a tree T rooted at s, bb(T,s) 
is the maximum sum of node out-degrees, taken over all 
branches of T. A central observation for the purposes of the 
current paper is that for any graph G and source s, the time 
required for label assignment is lower bounded by bb(G, s), 
namely, r(G, s) > bb(G, s). 

Returning to our Alg. Wake k Label, we note that it runs in 
asymptotically optimal time, namely, it uses 3-bb(T, s) time, 
which is at most 3 times larger than worst-case optimal for 
any given tree. 

Two other protocols presented for the problem are also fast 
in the worst case, but have contrasting qualities and draw- 
backs. In particular, our second algorithm (Label-Passing) 
assigns the shortest possible labels to all nodes, i.e., labels 
1 , . . .  ,n, but on the other hand, it has large message and 
bit complexities: O(n 2) and O(n ~ log n), respectively, and 
its time is always n (regardless of the tree), hence it is far 
from being time-optimal. Our third algorithm (Fastes t )  
achieves the optimal time v(T, s) for any given tree T and 
source s, and uses O(n) messages, but its only guarantee on 
label size is O(v~) .  

To complete the picture, we show two lower bounds for label- 
ing trees. One says that any algorithm working in optimal 
time v(T, s) for any given tree T and source s, requires labels 
of size f~(vfn), hence Alg. Fas t e s t  is the best possible in 
this sense. The second is a lower bound on the size of labels 
produced by protocols whose message complexity is strictly 
optimal, i.e., those using exactly n - 1 messages. We prove 
that such protocols must produce labels of length f~(n), on 
some n-node trees. 

For general unknown n-node networks, a variant of Algorith- 
m Wake k Label named Wake k LabelGB assigns labels from 
the range [1, n] in time 3n. We also present a slightly faster 
protocol (with worst-case time 2n) but this protocol assigns 
labels of size up to ~2(n) in some cases. This is complement- 
ed by observing that there are networks for which labeling in 
[1, n] cannot be done faster than in time 2 n - o ( n ) .  We then 
present a variant of Alg. Wake & Label~ assigning shortest 
possible labels, and working in asymptotically optimal time 
for any given network. 

Finally, we discuss the changes in our results when we con- 
sider the problem in the all-port or the one-port models. 

In the all-port model we give another variant of Algorithm 
Wake ~ Label (named Alg. A l l - p o r t  3-Phase) which as- 
signs optimal labels, and works in asymptotically optimal 
time 3. ecc(G, s), where ecc(G, s) denotes the eccentricity of 
the source s in the network G, namely, the maximum dis- 
tance between s and any other node of the network. This 
algorithm is proved to be strictly optimal for trees: We show 
that any algorithm assigning labels from the range [1, n] to 
all n-node trees must use time at least 3 • ecc(T, s) - 2 for 
some tree T and some source s. On the other hand, any 
algorithm working in optimal time (namely, time equal to 
the eccentricity of the tree w.r.t, the source) must assign 
labels of size ~(n).  We also show another (DFS-based) al- 
gorithm which also assigns labels from the range [1, n]. This 

algorithm works in time 2n on any n-node network, hence 
it is slightly better in the worst case (the worst-case lower 
bound on time is n - 1), but is not asymptotically optimal. 

In the one-port model the DFS-based algorithm works in 
asymptotically optimal time 2m for any m-edge network, 
as it can be proven that for general networks, m is a lower 
bound on time. On the other hand, if we restrict attention 
to trees, another algorithm works in asymptotically optimal 
time, namely, it uses time at most 3 times larger than worst- 
case optimal, for any given tree. (It should be noted that if 
the network is known to be a tree, m = n - 1 is not a lower 
bound on time any more: as in the mixed model, the lower 
bound becomes bb(T, s).) 

Our results are summarized in the table of Fig. 3. 

In what follows, Sections 2 and 3 deal with trees and gen- 
eral networks in the intermediate mixed model. Section 4 
addresses the all-port and one-port models. Table 3 sum- 
marizes our results. 

2. LABELING TREES 
In this section we study the label assignment problem for 
trees, in the mixed model. We consider an n-node tree T. 
Our algorithms view the tree as rooted at the source s, and 
use the terms parent, child, ancestor, descendant and lea/ 
with respect to this rooted tree. The tree T and the integer 
n are unknown to the nodes. 

A natural first question to be considered regarding the tree 
labeling problem is whether quality and efficiency can both 
be optimized in the worst-case, i.e., whether it is possible 
to label any n-node tree in n - 1 or fewer rounds using the 
minimal possible labels, [1, n]. Curiously, it turns out that 
the answer to this question is positive. In the full paper (see 
[10]) we present a simple algorithm named Label-Passing,  
analyze its performance and establish the following theorem. 

THEOREM 2.1. Given an n-node tree and a source s, Al- 
gorithm Label -Pass ing  assigns distinct labels from the range 
[1, n] to all the nodes. The label assignment completes in 
n -  1 rounds. The time, message and bit complexities of the 
algorithm are n, O(n 2) and O(n 2 log n), respectively. 

2.1 Algorithm Wake & Label 
Our main algorithm, Algorithm Wake k Label, is slightly 
inferior to Algorithm Label-Passing with respect to worst- 
case time complexity and label size. Specifically, it assigns 
labels of asymptotically optimal length O(log n), and works 
in worst-case time at most n + I. On the positive side, its 
message and bit complexities are far better, namely, O(n) 
and O(nlog n), respectively. But most importantly, Alg. 
Wake & Label works in asymptotically optimal time. This 
overcomes the main disadvantage of Alg. Label-Passing, 
which is that its execution time is always at least n -  1, 
regardless of the tree structure. 

2.1.1 Three simplified variants 
The idea of Alg. Wake ~ Label significantly differs from 
that of Alg. Label -Pass ing.  
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Model Networks Algorithm Time- Time- Label size Messages 
worst per graph 

Mixed Trees 

Graphs 

Trees 

Graphs 

Label-Passing 
Wake & Label 

Fastest 

Lower bounds 
Tradeoff 
Tradeoff 

O-I-Split U 

Wake ~ Label~ 
Wake & LabelA G 
Lower bounds 
Mixed Alg's 

All-port 3-Phase 

Lower bounds 
Tradeoff 
Tradeoff 

Mixed Alg's 
DFS + 

A l l - p o r t  3-Phase 
Lower bounds 

n 

n + l  

n - 1  

2 n  

3n 

2n -- o(n) 
same 

3n 
n - 1  

s a l n e  

2n 
3n 

n - 1  

n 

3. bb(T, s) 
bb(T, s) 
bb(T, s) 

bb(T, s) 

4. bb(G,s) + 1 
bb(G, s) 

same 
3. ecc( T, s) - 2 

ecc(T, s) 
ecc( T, s) 

3" ecc(T, s) - 2 
s a m e  

2n 
3. ecc( G , s) + 1 

ecc(  C , ~ ) 
One-Port Trees DFS 2n - 3 2n -- 3 

Time-Slots 3n 3 • bb(T, s) 
Lower bounds n - 1 bb(T, s) 

Graphs DFS 2m 2m 
Lower bounds m m 

[log nl 
O(log n) 

['log n] 
~(n) 

=~ ~(v'~) 
'tT, 

[log n] 
[log n] 
[log n] 

s a 3 2 l e  

['log nl 
['log n l 

= ~q(n) 
[logn] 
s a m e  

['log nl  
[log nl  
[log n l 
[log n l 
[logn] 
[log nl  
[log n l 
[log n] 

F i g u r e  3: Summary of results: Algorithms, lower bounds and tradeoffs. 

0(~ ~) 
0(~) 
O(g) 
n - - I  
n - - I  

O(nm) 
O(~) 
O(~) 

m 

s a l l 2 e  

o(~) 
n - -1  

s a m e  

o(m) 
o(m) 

m 

2n - 3 
o(~) 
n - -1  
o(m) 

m 

As the algorithm and its analysis are rather complex, it is 
convenient to first present a succession of three simplified 
variants of the algorithm, of increasing complexity. These 
variants are slightly weaker, but somewhat more intuitive. 

All variants of Alg. Wake & Label operate in three phases 
and use three types of messages: wakeup, count and alloca- 
tion. Moreover, in the first three variants we describe, the 
first two phases are similar. 

In the first (wakeup) phase, the source wakes up all the nodes 
by broadcasting a wakeup message. The second (counting) 
phase is started by the leaves of the tree T, and provides 
every node v with a count of the number of nodes in its 
subtree T.. This is done in a bottom-up convergecast fash- 
ion, using count messages of size at most log n which travel 
bottom-up in T. 

The differences between the first three variants of Algorithm 
Wake ~ Label are manifested in the third (allocation) phase, 
whose task is to distribute the labels via allocation mes- 
sages. In our first variant, named Alg. Wake & LabelA, this 
phase is straightforward. It is started by the source imme- 
diately upon receiving count messages from all its children. 
The source assigns itself label 1, and sends to each child 
a disjoint integer interval corresponding to the size of the 
subtree rooted at this child. Likewise, any node that got 
interval [a, b] assigns itself label a and sends to each child 
a disjoint integer interval corresponding to the size of the 
subtree rooted at this child. Hence this algorithm assigns 
labels from the optimal range [1, n], and has asymptotically 
optimal time, messag.e and bit complexities, but its worst- 

case time complexity is three times greater than the optimal, 
namely, 3(n - 1). This worst case is realized on the n-node 
path with the source residing at one of the endpoints. Hence 
our efforts focus on reducing the worst-case time complexi- 
ty to n + 1 while preserving the above qualities as much as 
possible. 

The second variant, named Wake ~ LabelB, is based on ob- 
serving that the source does not necessarily need to wait 
until receiving a count from all of its children. Rather, it 
can start the label distribution once it knows the counts of 
all its children but one. In this case, it assigns consecutive 
blocks of labels to the children for which it knows the count, 
and then passes the remaining infinite (semi-open) block of 
labels to the remaining child. This child, in turn, behaves 
the same. It can be shown that this idea is sufficient for 
reducing the worst-case time complexity of the algorithm to 
3n/2. The worst example is, e.g., the n-node path where 
the source resides at the middle node. 

Algor i thm Wake ~ Labelc 
The third variant, Wake & Labelc,  assigns labels of length 
O(log n log d), where d is the maximum degree of the tree, 
and has time complexity n+d and bit complexity O(n log n log d). 
The labels of all nodes are of the form (p;y), where p is a 
sequence of integers smaller than d, called the prefix, and y 
is a natural number smaller than n, called the value. 

The first two phases of the algorithm remain as before. How- 
ever, each node waits for the count messages only for a pre- 
scribed amount of time, which still guarantees that the dead- 
line n + d for the whole process is met in the worst case. If 
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by the end of the waiting period only one child has not  re- 
ported,  labeling subtrees  of all o ther  children can be done 
efficiently, using consecutive integers as values and keeping 
the prefix unchanged. If, on the  other  hand, at least two 
children did not  report  (such a s i tuat ion is called special), 
labels of these children and all their  descendants get a pre- 
fix which is an extension of tha t  of the current  node. It 
turns out  tha t  the length of label given to any node v is 
O(log n + a),  where a is the number  of special si tuations 
occurring on the pa th  from s to v. The  crucial issue is to 
show that  waiting periods are sufficiently long to guarantee 
that  o" is not too large. 

Allocation messages travel top-down and their  size is 
O(log n log  d). In order to describe them, we introduce the 
crucial notions of initial and final capital at node v. These 
are natural  numbers  denoted by c'(v) and c"(v) ,  respective- 
ly. Initially c'(s) = 1. For v ~ s, c'(v) will be set to c"(u), 
where u is v's parent  (c"(v) is set by the protocol as the 
execution develops). Intuitively, capital  is defined in such a 
way that  node v can wait ct(v) rounds between sending the 
last wakeup message and the first allocation message, with- 
out  violating the overall deadline for a lgori thm complet ion 
in the subtree rooted at v. 

After  sending all wakeup messages, node v starts  a waiting 
period which continues (at least) until  it receives an allo- 
cation message from its parent  u. The  allocation message 
contains c"(u), and v sets c'(v) 4-- c"(u). If v received the 
allocation message while sending wakeup messages, then v 
will wait c' (v) rounds after it will have finished sending wake- 
up messages. If, on the other  hand,  v received the alloca- 
tion message after it has already finished to send its wakeup 
messages (say, to rounds later), then  v acts as follows. If 
c '(v) > to, then v continues its wait ing period for c'(v) - to 
additional rounds. Otherwise, the wait ing period is over. 
The source behaves as if receiving "from its parent"  an al- 
location message with capital  1 at  t ime 0, tha t  is the source 
will wait 1 rounds after having sent all its wakeup messages. 

At the end of this waiting period, there are two possibilities: 
1. v got count messages from all of its children except  

possibly one, 
2. v did not get count  messages from at least two children. 

The  first s i tuation is called normal, the  second is called spe- 
cial. We first describe the actions for each si tuation when 
v = s is the source. Note tha t  s has waited c'(s) = 1 t ime u- 
nit after having sent the last wakeup message. It now assigns 
itself the label (e; 0), where e denotes the empty  sequence. 

In the normal si tuation,  c"(s) 4- 1 (=  c'(s)) and s sends 
allocation messages to its children, in consecutive t ime u- 
nits, in the same order in which it sent wakeup messages. 
Children from which s got a count  message get a closed al- 
location message, and the (at most  one) child from which 
no count message arrived gets an open allocation message. 
Suppose, wi thout  loss of generality, tha t  vi, i = 1 , . . .  ,r, are 
those children of s from which count  messages arrived say- 
ing that  the subtree rooted at vi has size xi, and no count 
message arrived from child vr+l .  Then  the closed messages 
sent to vi, i = 1 , . . .  ,r, consist of the prefix e (the empty  
sequence) and of intervals Ii, i = 1 , . . .  , r, of natural  num- 

bers, such tha t  the left end of Iz is 1, the  left end of Ii+1 
is the successor of the right end of Ii, and [Ii[ = xi. The  
open message sent to v~+l consists of the final capital  c"(s), 
the prefix ~ and of the half-line [t, oo), where t is the succes- 
sor of the right end of I . .  Integers from these intervals will 
be used to construct  labels of nodes in respect ive subtrees. 
(Intervals are coded by pairs of their  ends and the half-line 
[t, oo) is coded by t.) 

In the special si tuation,  c" (s) 4- 2 (= c ' ( s ) +  [c' (s)/2]),  and 
the source sends special allocation messages to its children, 
in the same order in which it sent wakeup messages. A 
special message sent to child vi consists of a marker  special, 
of the final capital  c"(s) and of the prefix which is the one- 
te rm sequence (i). 

Let v ¢ s and let u be v 's  parent. At the end of the wait ing 
period, there are three possible cases. 

(1) The  received allocation message was closed, consisting 
of the prefix p and the interval [a, b]. In this case, node v 
assigns itself the label (p; a) and sends to its children vi, 
i = 1 , . . .  , r ,  a closed allocation message consisting of the 
prefix p and of intervals Ii ,  i = 1 , . . .  , r of na tura l  numbers,  
such that  the  left end of I1 is a + 1, the left end of Ii+1 is 
the successor of the right end of Ii, and [ I i [ =  xl, where xi 
is the size of the subtree rooted at vi ( repor ted to v by a 
count message). 

(2) The  received allocation message was open, consisting of 
the final capital  c"(u),  prefix p, and half-line [t, oo). In this 
case, node v assigns itself the label (p;t).  I t  sets c ' (v)  
c"(u) .  At the end of the waiting period there  are two pos- 
sibilities, as described above for the source s: normal and 
special. In the  normal  situation, c"(v)  4-- c'(v), and node 
v acts as did the source, except  tha t  the prefix sent is p 
ra ther  than  ~ (the empty  sequence), and the left end of in- 
terval I1 is t + 1 ra ther  than  1. In the special situation, 
c"(v)  ~ c'(v) + [c'(v)/21, and v sends special allocation 
messages to its children, in the same order in which it sent 
wakeup messages. (As will be clarified later, this formula is 
mot ivated  by the fact tha t  in the special s i tuation,  a child 
w of v has at least c'(v) nodes in its subtree  T~,.) A spe- 
cial message sent to child vi consists of a marker  special, 
of the final capital  c" (v )  and of the prefix p' which is the 
concatenat ion of the sequence p and the one- term sequence 
(i). 

(3) The  obta ined allocation message was special, consisting 
of a marker special, final capital c"(u),  and prefix p. In this 
case node v assigns itself the label (p; 0) and acts as in the 
previous case, wi th  t = 0. 

This completes  the description of Alg. Wake g~ L a b e l c ,  
except  for handl ing "late" count messages. A node v may 
get count messages from its children after it s ta r ted  sending 
them allocation messages. In this case incoming count mes- 
sages are ignored and v does not  send any count  message to 
its parent. 

The  proof  of correctness and the performance analysis 
of Alg. Wake ~ L a b e l c  can be sketched along the following 
lines. We first observe that  Alg. Wake & L a b e l c  assigns 
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distinct  labels to all nodes. For any node v, define d(v) as 
the  max imum degree of all nodes on the path  between v 
and the source (including both  ends). Then  it can be shown 
that  for any node v and any of its children w, the delay 
between the t ime when v sends a wakeup message to w and 
the t ime when it sends an allocation message to w, is at 
most c'(v) + d(v). 

For any node v, a node w is called foreign to v, if it is neither 
v, nor an ancestor  of v, nor a child of an ancestor of v, nor a 
descendant  of v. Our  next  observation is tha t  for any node 
v, there exist at least ct(v) - 1 nodes foreign to v. It  follows 
tha t  the execution t ime of Alg. Wake ~ L a b e l c ,  working in 
an n-node tree of m a x i m u m  degree d, is at most n + d. 

In order to prove tha t  all assigned labels are of size O(log n log d), 
it suffices to show that ,  for any branch of the tree, the num- 
ber of nodes in this branch which are in a special s i tuation 
during the  execut ion of the algori thm, is O(log n). Take any 
branch of the tree and let v z , . . .  ,vk, be nodes in a special 
s i tuat ion in it, l isted top-down. Thus c ' (v i+l )  > @c'(vl) and 

= ( 3 ~ k - i  c ' (v l )  i .  Hence C'(Vk) > 7, . Hence the number  of 

(7) . It  is also at most  nodes foreign to vk is at least 3 k-1 
n -- I. Thus k is O(log n). 

Note tha t  Alg. Wake & L a b e l c  is no longer asymptot ical ly  
optimal.  However, the following trivial  modification of A1- 
g. Wake & L a b e l c  keeps all its worst-case qualities, while 
enjoying also asymptot ic  optimality.  Alg. Wake k Label+c 
behaves like Wake & L a b e l c ,  except  in the si tuation when a 
node got count  messages from all of its children. Then,  even 
if the wait ing period is not  yet over, the node starts  sending 
allocation messages, as in Wake & LabelA. All previous fea- 
tures axe preserved. On  the  other  hand,  the same argument  
as for Alg. Wake ~ LabelA shows tha t  Alg. Wake ~ L a b e l c  + 
works in t ime at most  3bb(T, s), for any tree T and source 
S. 

We get the  following: 

LEMMA 2.1. Algorithm Wake k L a b e l c  + working in an n- 
node tree of maximum degree d, assigns distinct labels of 
size O(lognlogd)  to all nodes of the tree. Its worst-case 
execution time in such a tree is m i n { n + d ,  3bb(T, s)}, and its 
message and bit complexities are O(n) and O(n log n log  d), 
respectively. 

2.1.2 A l g o r i t h m  Wake & Label  
The  improvements  in t roduced to Alg. Wake ~ Label  aim at 
decreasing t ime from n + d to n + 1 and label sizes from 
O(log n log d) to O(log n). The  first is achieved by carrying 
out the processes of waking up and of labeling part ly con- 
currently. The  second is achieved by introducing another  
waiting period for each node, during which the number  of 
children tha t  have not  repor ted  is reduced to at most 3. This 
permits  to use only integers 0, 1, 2, instead of 0, 1 , . . .  ,d  
when forming prefixes of labels. In the full paper [10] we 
present the full a lgor i thm and establish the following theo- 
rem. 

THEOREM 2.2. Given an n-node tree T and a source s, 
Algorithm Wake & Label  assigns distinct labels of size O(log n) 

to all the nodes. Its time complexity is at most min{n + 
1, 3bb(T, s) }, hence it is asymptotically optimal. Its message 
and bit complexities are O(n) and O(n log  n), respectively. 

2.2 A lower bound for message-optimal algo- 
rithms 

While Alg. Wake ~ Labe l  uses O(n) messages, up to 4 mes- 
sages can travel along every link, and hence the to ta l  number  
of messages can be as much as 4 t imes larger than  the lower 
bound of n - 1. In the  full paper  we prove the following 
result, which shows tha t  any labeling protocol  tha t  meets  
this lower bound  on the  number  of messages must  in fact 
produce very large labels. 

THEOREM 2.3. Any labeling protocol using at most n - 1 
messages must assign labels o f f l (n)  bits to label some n-node 
tree. This property is true even i f  one restricts the protocol 
to run on binary trees. 

2.3 Optimal time algorithms for trees 
In what  follows we present an algori thm named  F a s t e s z  
working in opt imal  t ime bb(T, s) on any n-node tree T and 
source s. It  uses O(n) messages but  assigns labels of size 
O(vf~  ). In Section 2.4 we prove tha t  this is the smallest 
possible size of labels which can be assigned by opt imal  t ime 
algorithms. 

Denote  the degree of a vertex x by d(x) and the  subtree 
rooted at x by T=. Given a node x, let t (x)  denote the 
round when x gets a message from its parent  (set t ing t(s) = 
0), and define the  capital c(x) as the  m a x i m u m  number  of 
rounds tha t  the  node x is allowed to wait between t ime t (x)  
and s tar t ing broadcast ing to its children, and still ensure 
complet ing broadcast ing in Tx by round bb(T, s). (Hence 
for the source, c(s) = 0.) We have 

c(x) = bb(T, s) - bb(T~, x) - t(x).  (1) 

Any execution of a broadcast  can be thought  of as if an 
adversary chooses the  order in which a node x calls its chil- 
dren. Given any such order, we rank the children of each 
node  accordingly, as follows: if v is the i th  child called by 
x, then the rank of v is set to ¢(v)  = d(x) - i. In part icular ,  
the child ranked 0 is called at the latest  possible time. We 
refer to this child as the latest child. 

For a non-root  node x, let p(x) denote the pa th  from the 
source s to x in T,  not  including s itself. (For s, let p(s) = 0.) 
We now define the  total rank of a node x, denoted ,I,(x), as 
the sum of the  ranks over p(x),  i.e., ¢ ( x )  = ~ . e p ( ~ )  ¢(v).  
(Thus for s, ,I)(s) =- 0.) 

LEMMA 2.2. For any node v, c(v) > '-I,(v). 

PROOF. The  claim holds trivially for the source s, so it 
suffices to prove it for a non-root  v. Consider a non-leaf 
node x. Since the  adversary may fix the order in which x 
calls its children arbitrarily, necessarily 

bb(T~, x) > bb(Tz, z) + d(x) (2) 
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for any child z of x. If z is the i th  child informed by x, then 
t(z) = t(x) + i, and thus by (1) and (2), 

c(z) = bb(T,s) -- bb(Tz,z) - t(z) 
> b b ( T , s ) - b b ( T ~ , x ) + d ( x ) - t ( x ) - i  = c ( x ) + ¢ ( z ) .  

Hence for a non-root  v, by repeatedly  applying the last in- 
equality from v upwards on the pa th  p(v), it follows that  
c(v) > c(s) + ~ e p ( , )  ¢(z)  = c(s) + ~I'(v). Since c(s) = O, 
the l emma follows. []  

2.3.1 A simpli f ied protocol  P 
We first describe a simple variant  of Algor i thm F a s t e s t ,  
named protocol P ,  which captures  the essential idea and 
works in opt imal  t ime but  still assigns potent ial ly long la- 
bels. We then show how to refine it and get labels of size 

The labels assigned by protocol  P are strings in the language 
described by the following grammar:  

S ~ e  / c~(rank) S / /9 (latest) S 

a,/9 ~ coding of a posit ive integer in base 2 

where e is the empty  word and (rank) and (latest) are two 
special symbols. The  meaning of the labels is the following: 

- The  label c~ (rank) S is assigned to the rank-c~ child of 
the node labeled S. 

- The  label 19 (latest) S is assigned to the node reached by 
s tar t ing from the node labeled S and continuing 
downwards to the latest (rank-0) child, for/9 times. 

2 ~ 1 L  

2RIL3R IRIL3R 2L3R 

F i g u r e  4: Tree labeling using protocol P .  The symbols "R" 
and "L" stand for " ( r a n k ) "  and " ( l a t e s t ) "  respectively. 

Protocol  P operates  as follows. When  a node x receives 
message S from its parent,  it does the  following: 

- It  assigns S to be its own label. 

- I f S  = o~ (rank) S' then it sends messages (d(x)- i )  (rank) S 
to the i th  child it calls, for i < d(x), and sends message 
1 (latest) S to the last child it calls. 

- If S = / 3  (latest) S' then it sends messages (d(x)- i )  (rank) S 
to the i th  child it calls, for i < d(x), and sends message 
(,8 + 1) (latest) S' to the last child it calls. 

To s tar t  the process, the source acts as if it has received a 

message S = ¢, the empty  word. 

While protocol  P requires t ime bb(T, s) in the  worst case 
and assigns dist inct  labels to all nodes, the length of the 
label assigned to node x can be as large as f~(~(x) log n). 

2.3.2 A lgor i thm Fastest 
We now refine protocol  P to avoid the use of long labels. 
The modified algori thm, Alg. F a s t e s t ,  is based on the ob- 
servation tha t  whenever  the label assigned to x by P is long, 
it implies tha t  ~ (x)  and hence c(x) is large (see Lemma  2.2). 
Thus x is allowed to wait  a long t ime before continuing the 
label assignment process. This  delay can be used to explore 
some of the subtrees, as done in Alg. Wake ~ Label ,  and 
thus reduce the  size of used labels. 

In Alg. F a s t e s t  each node sends to its children three types 
of messages: 

- Allocation messages of the form M --- ([S : i],6), con- 
sisting of a location part  [S : i], where S is a string 
and i is an integer, and a deadline par t  ~ which is an 
integer. 

Wakeup messages. 

- Closure messages of the form ([S : i], [a, b]) where [S : i] 
is as before, and a, b are two integers. 

A node v o ther  than  the  source also sends a count message 
to its parent  informing it of the size of the subtree  T~, as in 
Alg. Wake & Label .  

The algori thm performs the following two phases. 

P h a s e  A 

Upon receiving a wakeup message x starts  sending wakeup 
messages to its children, in the next  round. The  ranking 
function described in Protocol  P is de termined according to 
this sequence of calls. 

Any leaf which got a wakeup message sends back a count 
message to its parent ,  and in termediate  nodes send count 
messages bo t tom-up ,  as in Alg. Wake ~ Label .  

P h a s e  B 

The source behaves like a node receiving the al location mes- 
sage ([0 : 0], 0) at t ime 0. 

Upon receiving an allocation messag e ([S : i], di), x keeps on 
performing phase A for 5 rounds. If phase A has not  s ta r ted  
before, z s tar ts  it and performs it for cf rounds. At  the end 
of this period, all children tha t  have sent count  messages to 
x are called closed and all others are called open. Then  x 
chooses ([S : i]) as its own label and immedia te ly  proceeds 
as follows: 

C a s e  1. At most  one child is open. 
In this case x has already called all its children. Now x first 
sends the message ([S : i + 1], d(x) - 1) to the  open child 
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(if any) and then sends closure messages of the form ([S : 
i], [a, b]) to all closed children. The  interval [a, b] assigned 
to each closed child is computed  on the basis of the count  
message received from tha t  child, which repor ted  the size of 
its subtree,  as in Alg. Wake & Label .  

C a s e  2. More than  one child is open. 
There  are two subcases. 

2.1. The  node x has already called all its children: 

Then  x sends allocation messages to all its children in 
the same order as in phase A. 

2.2. The  node x has not  called all its children yet: 

Then  x sends allocation messages first to its chihiren 
which it has not  called yet (implicit ly serving as a 
"wakeup" message as well), and then to all other  chil- 
dren, in the  same order of sending the wakeup mes- 
sages. 

In both subcases, the children of x are ranked in the order 
of the first messages sent to each of them. If x has k open 
children y t , . . . ,  Yk ranked ¢(y l )  > ¢(y2) > . . .  > ¢(yk), then 
child yj is called the j th  open child. 

Messages sent by x during phase B are computed  in the  fol- 
lowing way. For open children, x makes use of S to compute  
a str ing Sj to be sent to the j t h  open child in the same way 
as in protocol  P .  However, protocol F a s t e s t  requires more 
information. T h a t  is, if x calls an open child j on round r j  
of phase B, then instead of sending simply the message 5) as 
in protocol  P ,  x sends Mj = ([Sj : 0], ~f) with ¢f = d(x) -- rj. 

Closed children of x get the appropr ia te  closure messages, 
computed  as in Case 1. 

If a node x receives a closure message ([S : i], [a, b]), then it 
assigns (IS : i], [a]) as its own label. Moreover, all children of 
x are already closed, and thus x sends them the appropr ia te  
closure messages. 

This completes  the description of Alg. F a s t e s t .  

2.3.3 Analys is  o f  A lgor i thm F a s t e s t  

In order to compute  the size of labels assigned by the algo- 
r i thm, we need the following lemmas. 

LEMMA 2.3. Any node x involved in phase B, has per- 
formed phase A for at least ~(x)  rounds. 

PROOF. Assume tha t  a node z starts  phase A (resp. B) 
in round t~ (resp. tb). Then  the child v of x with rank ¢(v) 
starts  phase A in round t~ = t~ + d(x) - ¢(v).  Moreover, 
it s tarts  phase B in round t~ = tb + d(x). It  follows tha t  
t~ - t~ = tb - t~ + ¢(v).  The  conclusion now follows by the 
definition of ,I~(x). []  

LEMMA 2.4. Let a and n be positive reals, let k be a posi- 
tive integer, and let x = (x l , . . .  ,x~) be a vector of integers 

greater than 1. Suppose that ~l<_i<k ixi < n. Then 

k 

y~(log~i+a) _< 2 ¢ ~ - 1 + a ( , / ~ + 1 ) .  

THEOREM 2.4. Given an n-node tree T and a source s, 
Algorithm F a s t e s t  assigns distinct labels of size O(v/n) to 
all the nodes. Its time complexity is the optimal bb(T, s). Its 
message and bit complexities are O(n) and O(nv/n),  respec- 
tively. 

PROOF. It  is easy to see that  Alg. F a s t e s t  assigns dis- 
t inct  labels and works in t ime bb(T, s). In wha t  follows we 
bound the size of the  labels assigned to the  nodes. 

Let L(x) denote  the  label of x, and let IL(z)[ denote  its 
length. First ,  we s tudy  the m a x i m u m  length IS(x)[ of a 
prefix appearing in a label ofx .  As prefixes are only modified 
by nodes receiving an allocation message, we consider only 
such nodes. Suppose tha t  x receives an al locat ion message 
[S(x) : i], and let ql(x) (resp. qr(x))  be the  number  of 
(latest) (resp. (rank))  symbols appearing in S(x).  Since 
there is at least one (rank) symbol between two successive 
(latest) symbols, we have qt(x) < qr(x) + 1. 

Note tha t  S(x)  is made  of two types of character  groups : 
(i) oL (rank) which means  "I a m  the  a t h  open child," and 
(ii)/3 (latest) which means  "I am obta ined  by following the  
latest  branch fo r /3  t imes." Let St(x)  be the  subsequence 
of S(x) containing groups of type (i) and Sz (x) be  the  one 
with groups of type  (ii); we have IS(x)l = ISr(x)l + ISl(x)l, 
and we will now bound  each of the two te rms  separately. 

Bounding  ISr(z)l  
Suppose tha t  St(x)  = al (rank) as (rank) . . .  elk (rank) and 
consider the symbols  (rank) appearing in S at positions 
{1, 2 , . . .  k}. These symbols  are in a one-to-one correspon- 
dence with some vertices vt ,v2 , . . ,  vk of the  pa th  from r to 
X ,  

Since i - 1 (rank) symbols occur before the  symbol  associ- 
a ted to any ver tex  vi, we have ab(vi) > i. L e m m a  2.3 implies 
that  for any vi, at  least i rounds elapse between phases A 
and B. Hence, if vi is an open child, it has at least i /2  
descendants. Moreover,  for every open child w of vi, since 
• (w) > ~(vi), it follows tha t  w has at least i / 2  descendants  
as well. 

The  symbol oq means  tha t  at the end of phase A, vi had at 
least o~i - 1 open children different from vi+l (otherwise  the 
integer o~i cannot  appear) .  In the special case where oLi = 1, 
vi had at least one open child different from vi+l (otherwise 
no character  would be added to the  prefix S(x)  but  instead 
the value of the  integer j appearing in the location IS : j] 
would be increased). In any case, vl has at least vii~2 open 
children, different from vi+l. By the previous argument ,  
each of these children has at least i / 2  descendants,  so the 
tree contains at least ictl/4 nodes which do not  belong to 
the subtree T~+ 1 . Globally, we find k pairwise disjoint sets 
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of cardina]ities at least io i /4 .  It  follows tha t  

iai _< 4n. 
1<i_<~ 

Since IS~(x)l < ~l<_i<k(logc~i + 0(1) ) ,  l emma 2.4 implies 

Is~(~)l = O(vqJ .  

Bounding IS~ (x)l 
In order to bound the length of St (x) = fll (latest) . . .  flk ( latest) ,  
note tha t  the symbol/3i  means tha t  there exist fli successive 
latest children each one having a total  rank at least i - 1. 
Similarly to the previous analysis, we get ~l_<i_<k ifli < 2n. 
Since ISt (x)l < ~l<i_<k (log/31 + 0 ( 1 ) ) ,  using l emma 2.4 once 

again we get IS~(x)l = O(~/h~). 

B o u n d i n g  IL(x)l 
In view of the above, IS(z)l  = o ( ~ ) .  Since IL(x)[ < 
max IS(x)l+O(log n) for any ver tex x, it follows tha t  IL(x)l = 
O(x/nff), proving tha t  all labels axe of size O(v/n) .  

The  same arguments  show tha t  all messages are of size 
O(vZff). Since at most  3 messages travel on any link, this 
shows tha t  AlE. F a s t e s t  has message and bit complexit ies 
O(n) and O(nv/n) ,  respectively. []  

2.4 A tradeoff  for optimal  time algorithms on 
trees 

The following lower bound shows tha t  labeis assigned by 
AlE. F a s t e s t  are of smallest possible order of magnitude,  
for all a lgori thms working in opt imal  t ime bb(T, s), on any 
tree T and source s. 

THEOREM 2.5. Any labeling protocol working in time at 
most bb(T, s) on any tree T and source s, must assign labels 
of size ~2(x/~ ) on some n-node tree. This property holds even 
i f  the protocol is restricted to the class of binary trees. 

PROOF. Fix  a labeling protocol P .  We study the behavior 
of P on the class of binary trees rooted at s. Note that  the 
local s tate of a node v during the execution of P depends 
only on the degree of v, on whether  v = s, and on messages 
previously received by v. 

Assume tha t  d = x / (n  - 1)/2 is integer, and let B be the 
complete  binary tree of depth  d, rooted  at s. Let C be 
the tree obtained from B by replacing every link of B by a 
simple pa th  of length d. Since C has 2 a leaves, protocol P 
must  assign a label of size fl(d) = ~(~/hff) to at least one of 
them. Let x be such a leaf of C. 

Let Z be the branch of C joining s and x. Let zo, z l , . . . ,  Zd-1  

be nodes of Z with  more than  one child, listed top-down, 
with zo = s. Let Zd = x. Let Y = { Y l , . . . ,  Yd}, where yi is 
the other  descendant of zi-1 at distance d from it, different 
from zi. Let T be the subtree of C spanned by the nodes of 
Z U Y and the nodes connecting them. T has n = 2d 2 + 1 
nodes. 

Let ~T (resp., ~C) denote the execution of protocol P on 
the tree T (resp., C). The  deviation time of a node v of 

T, denoted by t(v),  is the t ime in which the execution ~r  
deviates in v from ~c,  i.e., the  first round in which v enters 
a different local s ta te  in the  two executions. 

Note that  the only nodes tha t  s tar t  the two executions in 
different local states,  once they are woken up, are the nodes 
of Y '  = Y \ {Yd}, since each yi E Y'  has different degrees 
in T and C. Since the execution is ini t ia ted by the source 
s, node yi is woken up in round id at the earliest, hence 
i(y,) >_ id. 

Every other  node v s tar ts  the two executions with an identi- 
cal local state,  and therefore it can distinguish between them 
only after receiving a different message from some neighbor. 
As only the nodes of Y '  can originate the transmission of 
different messages in the executions ~T and ~c,  there must 
exist a pa th  (uo , . . .  ,uq) in T such tha t  uo E Y' ,  uq = v, 
and ui sends a different message to ui+l in round ri of exe- 
cutions ~T and ~c,  where ro < . . -  < rq-1.  Hence denoting 
the distance between the nodes v and w in T by dist(v,  w), 
we have tha t  for any node v ~ Y' ,  

t(v) > rain { v)} > min {id+dist(y~,v)} - l_<i<d-1 -~(y')+dist(yi '  -- l_<i<d--1 

In particular,  as dis t (y i ,x )  = d(d - i + 2), we have that  

[(x) > min  { i d + ( d 2 - i d + 2 d ) }  > d 2 + 2 d .  (3) 
- l < i < a - 1  

L e t  t~  denote the t ime x is assigned a label in the execution 
~c. Note tha t  bb(T, s) = bb(C, s) = d 2 + d, and hence t~ < 
d 2 + d. By Inequal i ty  (3), t~  < t(x),  hence in round t~ the 
states of x in the executions ~T and ~c are still identical, 
and therefore x must  get the same ~(x /~) -b i t  label in ~T as 
in ,~c. [ ]  

3. L A B E L I N G  A R B I T R A R Y  N E T W O R K S  
In this section we s tudy  the label assignment problem for 
arbi t rary networks in the mixed model.  

Call a link saturated if a message has already crossed it. 
It is easy to see tha t  bb(G,s) equals the worst-case t ime 
required for sa tura t ing  all links. Indeed, since the network 
is unknown, it is necessary to sa tura te  all links to be sure 
that  all nodes got the message, as an ext ra  node of degree 2 
could be "hidden" in the middle of an unsa tura ted  link. 

As shown in [11], for any integer n there exists an n-node 
network G~ with source s,~ such tha t  bb(G,~, sn) = 2 n - o ( n ) .  
Hence 2n is the asymptot ic  lower bound on the worst-case 
execution t ime of any labeling protocol. In the full paper  we 
describe a variant  of Alg. 0 - 1 - S p l i t ,  named  0 - 1 - S p l i t  G, 
with the following properties.  

THEOREM 3.1. Given an n-node network and a source s, 
Algorithm 0 - 1 - S p l i t  c assigns distinct labels of length O(n) 
to all the nodes. Its time complexity is at most 2n. 

Our next algorithms, named Alg. Wake g~ L a b e l ~  for X = 
A, B,  are simple variants of the corresponding Algori thms 
Wake ~ L a b e l x .  They  assign labels from the range [1,n], 
but  axe somewhat  slower than  AlE. 0 - 1 - S p l i t  c .  The  first 
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stage of Alg. Wake ¢% Labels  involves constructing a span- 
ning tree T (rooted at s) for the network G, essentially by 
broadcasting a "wakeup" message throughout the network. 
In the full paper we show that the tree construction pro- 
cedure terminates before time 2n - 2. Moreover, it can be 
shown that by round 2n - 1, each leaf v of the tree T knows 
that it is a leaf. From here on, the algorithm proceeds as 
the second and third phases (count and allocation) of Alg. 
Wake & Labelx.  In the full paper we prove: 

THEOREM 3.2. Given an n-node, m-edge network and a 
source s, Algorithm Wake ~ LabelGx (for X --- A, B )  assigns 
distinct labels from the range [1,n], and its message and 
bit complexities are O(m) and O(m + n logn) ,  respectively. 
The time complexity of Algorithm Wake & Label~ is 3n, and 
that of  Algorithm Wake ~ Label~ is 4bb(G, s) + 1 (hence it 
is asymptotically optimal). 

4. T H E  E X T R E M E  M O D E L S  
This section studies two variants of the mixed model dis- 
cussed in the previous sections, namely, the all-port model 
and the one-port model. These variants are refered to as 
extreme because they either completely relax all the com- 
munication constraints, or maximize these constraints. : 

4.1 The all-port model 
In this section we discuss label assignment in the all-port 
model. Clearly, all the algorithms presented for the mixed 
model work in the all-port model as well. Hence we focus 
on improved algorithms, which do not work in the mixed 
model, and on lower bounds (which will naturally apply to 
the mixed model as well). 

Specifically, in the full paper we describe two labeling algo- 
rithms for arbitrary networks, with the following properties. 

THEOREM 4.1. Given an n-node, m-edge network G and 
a source s in the all-port model, Algorithms DFS + and 
A l l - p o r t  3-Phase assign distinct labels from the range [1, n] 
to all the nodes. 

1. Algorithm DFS + has time and message complexities 2n 
and O(m),  respectively, 

2. Algorithm All-port 3-Phase has time complexity 3 .  
ecc(G, s) + 1, hence it is asymptotically optimal. 

Its message and bit complexities are O(m) and O(m + 
n log n), respectively. 

3. On trees, Algorithm All-port 3-Phase has time com- 
plexity 3. ecc(G, s) - 2, which is optimal. 

4.1.1 L o w e r  bounds  f o r  op t imal  label ing on trees  
The optimality of Alg. A l l - p o r t  3-Phase on trees is based 
on the following lower bound. 

THEOREM 4.2. Any labeling protocol in the all-port model 
that assigns labels from the range [1, n] requires at least 3 • 
ecc(T, s) - 2 rounds on some tree T and source s. 

PROOF. A (k, kl,k2)-broom" B is the graph of size n = 
2k + kt + k2 + 1 consisting of a path of 2k + 1 nodes with 
extremities VL, va, and kl (resp. k2) additional nodes con- 
nected to VL (resp. vR). Assume the source s is the central 
node of the path. Then ecc(B, s) ---- k + 1. 

Assume for the purpose of contradiction that  there exists a 
protocol that assigns labels from the range [1, n] on every 
tree, and completes labeling the (k, k, k)-broom B, where 
l e = 2 k + 2 ,  i n t < 3 . e c c ( B , s ) - 2 _ - - 3 k + l  rounds. 

Let B(k, k) denote the family of all (k, k, k')-brooms for any 
k' > 0. Consider the last round of the protocol's execution 
on B. At that time, any leaf x of VL has not received yet 
any information from the node va, since vn is at distance k 
from s, hence the earliest round in which it wakes up is k, 
and the distance from va to x is 2k + 1. Hence at time t, 
the local information maintained at the node x is the same 
for all brooms in/~(k, k). It follows that the label l assigned 
to x by the protocol is at most 2k + I + k = 4k + 3, since 
otherwise, £ would be  larger than the number of nodes of 
the (k, k, 0)-broom, causing the protocol to fail on it. 

A symmetric argument can be applied to every leaf y of vR, 
yielding that at time t, node y cannot have receive a label 
larger than 4k + 3. 

But B has 4k + 4 leaves, and by the above argument, each 
of them must be assigned a distinct label from the range 
[1, 4k + 3]; contradiction. Hence a protocol assigning labels 
in the range [1, n] requires at least 3 - ecc(B, s) - 2 rounds 

^ 

on the (k,k, k)-broom B. [] 

If the message complexity is exactly m (the number of edges), 
then we already know (by Theorem 2.3) that  labels of size 
f~(n) are required in some trees. In the all-port model, one 
can relax the message complexity hypothesis, and show that 
assuming the time to be ecc(T, s) is enough to force some 
labels to be of size f~(n). 

THEOREM 4.3. Any labeling protocol in the all-port model 
that works in ecc(T, s) rounds must assign labels of size f~(n) 
on some tree T and source s. 

PROOF. The proof goes along similar lines to that of Thm. 
2.3. Consider the class T of binary trees T with a source 
s of eccentricity d in which every non-leaf node v has ex- 
actly two children. Given a tree T E 7-, an extremal leaf 
of T is any leaf v at distance d from the source s. Asso- 
ciate with every extremal leaf v of T a d-bit word w(v, T)  = 
wl (v, T)w2(v, T ) . . .  Wd(V, T),  wi(v, T)  6 {left,right}, such 
that the path from s to v in T is obtained by starting 
from s and going successively left or right according to the 
w,(v, T)'s. 

Consider a protocol P running in d rounds on any tree T 6 
T. For any node v of T, let L(v, T)  be the label assigned 
to v by P. Such a protocol satisfies the property that for 

*or really a "dual-purpose" broom, for concurrently sweep- 
ing the floor and the ceiling 
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every extremal leaf v, the label L(v, T) is assigned to v at 
time d, and moreover, that  label is a function L(v ,T)  = 
f ( M ,  w(v, T))  where M is the message sent by s to its child 
on the path to v in round 1. This is because each node along 
the path from s to v had to send a message down towards 
v in the very first round after it was woken up by s, and 
therefore it could not rely on any other information. 

Let B be the complete binary tree of eccentricity d rooted 
at s. Since B has 2 ~ leaves, protocol P must assign a label 
of size ~(d) to at least one of them. Let x be such a leaf of 
B, and let w = w(x, B). 

Let Z = {Zo,Zl , . . . ,Zd} be the branch of B where zo = s 
and Z d  = X. Let Y = {yz , . . . ,Yd} ,  where yi is the other 
child of zi-1 in B, distinct from zi. Let To be the sub- 
tree of B spanned by the nodes of Z tJ Y, with the same 
"left/right" orientation for the edges, namely, such that  
w(x, To) = w(x, B). 

Also, B and To look locally the same to s, hence in round 1 
of the executions of protocol P on T and B,- s sends to zl 
the same message M. 

It follows that  labels assigned to x in both cases are equal, 
i.e., 

L(x, To) = f ( M , w ( x ,  To)) = f ( M , w ( x , S ) )  = n (x ,B ) .  

As To has n = 2d + 1 nodes, we conclude that  the leaf x of 
To gets a label of size f~(d) = f~(n). []  

4.2 The one-port model 
It turns out that  an appropriate adaptat ion of Algorithm 
Wake g~ LabelA can be made to work for trees in the one- 
port model as well, in asymptotically optimal time. 

THEOREM 4.4. Given an n-node tree T and a source s in 
the one-port model, Algorithm Time-Slots assigns distinct 
labels from the range [1, n] to all the nodes. Its time complex- 
ity is at most 3bb(T,s), hence it is asymptotically optimal. 
Its message and bit complexities are O(n) and O(nlogn) ,  
respectively. 

For arbitrary networks, the straightforward DFS algorith- 
m working in 2m rounds has asymptotically optimal time 
and message complexity, as implied by the following natural  
lower bound for the one-port model. (The proof is deferred 
to the full paper [10].) 

THEOREM 4.5. Any labeling algorithm working for arbi- 
trary networks in the one-port model must take at least m 
rounds on every m-edge network. 
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