Chapter 2

Overview of STL
Components

[This is a draft of one chapter of the 2nd edition of STL Tutorial and Reference
Guide—C++ Programming with the Standard Template Library by David R.
Musser and Atul Saini, to be published by Addison-Wesley in 1999. Copyright
© 1998 All rights reserved.]

STL contains six major kinds of components: containers, generic algorithms,
iterators, function objects, adaptors, and allocators. In this chapter we will
cover just the highlights of each kind of component, saving the details for later
chapters.

2.1 Containers

In STL, containers are objects that store collections of other objects. There are
two categories of STL container types: sequence containers and sorted associa-
tive containers.

2.1.1 Sequence Containers

Sequence containers organize a collection of objects, all of the same type T, into
a strictly linear arrangement. The STL sequence container types are as follows:

e T a[N], that is, ordinary C++ array types, which provide random access
to a sequence of fixed length N (random access means that the time to
reach the ith element of the sequence is constant; that is, the time doesn’t
depend on 7);

e vector<T>, providing random access to a sequence of varying length, with
constant time insertions and deletions at the end;

e deque<T>, also providing random access to a sequence of varying length,
with constant time insertions and deletions at both the beginning and the
end;

e 1ist<T>, providing only linear-time access to a sequence of varying length
(O(N), where N is the current length), but with constant time insertions
and deletions at any position in the sequence.

It may seem surprising that arrays are included in this list, but that’s because
all STL generic algorithms are designed to work with arrays in the same way
they work with other sequence types. One example, using STL’s generic reverse
algorithm with strings (character arrays), was given in Section 1.6.1, and we’ll

15



16 Copyright © 1998 David R. Musser All rights reserved

see other examples in Section 2.2. Another case in which many STL algorithms
work with standard C++ types is streams, as defined by the standard C++
iostream library. That is, many algorithms can read from input streams and
write their results to output streams.

A container also provides one or more means of stepping through the objects
in the collection via other objects called iterators, which we’ll discuss at length
later. For now, let’s note that for all STL containers—both sequence containers
and sorted associative containers—it is possible to step through the objects in
the container as though they were arranged in a linear sequence.

Section 1.6.2 gave an example using vectors. The same example can be
written using lists instead:

"ex02-01.cpp" ? =
// Demonstrating generic reverse algorithm on a list.}

#include <iostream>
#include <algorithm>
#include <list>

#include <assert.h>
using namespace std;

list<char> lst(const char* s)
// Return list<char> containing the characters of s
// (not including the terminating null).

{
list<char> x;
while (*s !'= ’\0’)
x.push_back(*s++) ;
return x;
}
int main()
{
cout << "Demonstrating generic reverse algorithm on a list"
<< endl;
list<char> listl = 1lst("mark twain");
reverse(listl.begin(), listl.end());
assert(listl == 1lst("niawt kram"));
return 0;
}

The example could also be written equally well using deques. As we’ll see,
vectors, lists, and deques are not completely interchangeable, but in this case
each one works as well as the other. That’s because each defines push back,
begin, and end member functions with the same abstract meaning, though the
implementations are quite different: vectors are represented using arrays; lists
are represented using doubly linked nodes; and deques are implemented with
a two-level array structure. The only difference that might be apparent to the
user in the above example of using the generic reverse function would be in
performance. In this simple case there wouldn’t be a noticeable difference in
performance, but in other cases, using different algorithms and larger sequences,
there can be a tremendous performance advantage of using one kind of sequence
over another. (But none is a winner in all cases, which is why more than one is
provided in the library.)

2.1.2 Sorted Associative Containers

Sorted associative containers provide an ability for fast retrieval of objects from
the collection based on keys. The size of the collection can vary at run time.
STL has four sorted associative container types:



Copyright © 1998 David R. Musser All rights reserved 17

e set<Key>, which supports unique keys (contains at most one of each key
value) and provides for fast retrieval of the keys themselves;

e multiset<Key>, which supports duplicate keys (possibly contains multiple
copies of the same key value) and provides for fast retrieval of the keys
themselves;

e map<Key, T>, which supports unique keys (of type Key) and provides for
fast retrieval of another type T based on the keys;

e multimap<Key, T>, which supports duplicate keys (of type Key) and pro-
vides for fast retrieval of another type T based on the keys.

A simple example of a sorted associative container is map<string, long>, which
might be used to hold associations between names and telephone numbers, for
example, to represent a telephone directory. Given a name, such a map would
provide for fast retrieval of a phone number, as in the following example pro-
gram.

"ex02-02.cpp" ? =
// Demonstrating an STL map
#include <iostream>
#include <map>
#include <string>
using namespace std;

int main()

{
map<string, long, less<string> > directory;
directory["Bogart"] = 1234567;
directory["Bacall"] 9876543;
directory["Cagney"] = 3459876;
// etc.

// Read some names and look up their numbers.
string name;
while (cin >> name)
if (directory.find(name) != directory.end())
cout << "The phone number for " << name
<< " ig " << directory[name] << "\n";
else
cout << "Sorry, no listing for " << name << "\n";
return 0;

In this program, we use the C++ standard library string class from the header
file string. We declare directory as a map with string as the Key type
and long as the associated type T. The third template parameter to the map
container is less<string>, which is a function object used to compare two
keys. This particular function object compares strings according to the usual
alphabetical ordering (we will discuss such function objects in Section 2.4 and
in Chapter 8).

We next insert some names and numbers in the directory with array-like
assignments such as directory["Bogart"] = 1234567. This notation is possi-
ble because the map type defines operator[] analogously to the corresponding
operator on arrays. If we know name is in the directory, we can retrieve the
associated number with directory[name]. In this program we first check to
see if name is a key stored in directory using find, a member function of the
map container (and all of the sorted associative containers). The find function
returns an iterator that refers to the entry in the table with name as its key if



18 Copyright © 1998 David R. Musser All rights reserved

there is such an entry; otherwise it returns an “off-the-end” iterator, which is the
same iterator returned by the end member function. Thus, by comparing the
iterator returned by find with that returned by end, we are able to determine
whether there is an entry in the table with key name.

The STL approach to containers differs in a major way from other C++
container class libraries: STL containers do not provide many operations on
the data objects they contain. Instead, in STL that’s done mainly with generic
algorithms, the next topic.

2.2 Generic Algorithms

Two of the simplest generic algorithms in STL are find and merge.

2.2.1 The Generic find Algorithm

As a simple example of the flexibility of STL algorithms, consider the find
algorithm, used to search a sequence for a particular value. It’s possible to use
find with any of the STL containers. With arrays, we might write

"ex02-03.cpp" ? =
// Demonstrating generic find algorithm with an array.}
#include <iostream>
#include <string.h>
#include <assert.h>
#include <algorithm>
using namespace std;

int main()
{
cout << "Demonstrating generic find algorithm with "
<< "an array." << endl;
const char¥ s = "C++ is a better C";
int len = strlen(s);

// Search for the first occurrence of the letter e.
const char* where = find(&s[0], &s[len], ’e’);

assert (*where == ‘e’ && *(where+l) == ’t’);
return 0;
}
This program uses find to search the elements in s[0], ..., s[len-1] to see if
any is equal to e. If e does occur in the array s, the pointer where is assigned
the first position where it occurs, so that *where == ’e’. In this case it does

occur in the array, but if it didn’t, then find would return &s[len]. This return
value is the location one position past the end of the array.

Now, instead of an array, we might have our data stored in a vector, a type
of container that provides fast random access like arrays but also can grow and
shrink dynamically. To find an element in a vector, we can use the same find
algorithm as we used for arrays:

"ex02-04.cpp" ? =
// Demonstrating the generic find algorithm with a vector.
#include <iostream>
#include <string.h>
#include <assert.h>
#include <vector>
#include <algorithm>
using namespace std;



Copyright © 1998 David R. Musser All rights reserved 19

int main()
{
cout << "Demonstrating generic find algorithm with "
<< "a vector." << endl;

char* s = "C++ is a better C";
int len = strlen(s);

// Initialize vectorl with the contents of string s.
vector<char> vector1(&s[0], &s[lenl);

// Search for the first occurrence of the letter e.
vector<char>::iterator
where = find(vectorl.begin(), vectorl.end(), ’e’);

assert (*where == ’e’ && *(where + 1) == ’t’);
return 0;

This time we construct a vector containing the same characters as array s,
using a constructor member of class vector that initializes the vector using
the sequence of values in an array. Instead of char*, the type of where is
vector<char>::iterator. Iterators are pointer-like objects that can be used
to traverse a sequence of objects. When a sequence is stored in a char array,
the iterators are C++ pointers (of type char*), but when a sequence is stored
in a container such as vector, we obtain an appropriate iterator type from the
container class. Each STL container type C defines C: :iterator as an iterator
type that can be used with type C containers.
In either case, when the find algorithm is called as in

where = find(first, last, value);

it assumes that

e iterator first marks the position in a sequence where it should start
processing, and

e last marks the position where it can stop processing.

Such starting and ending positions are exactly what the begin and end member
functions of the vector class (and all other STL classes that define containers)
supply.

If the data elements are in a list, once again we can use the same find
algorithm:

"ex02-05.cpp" ? =
// Demonstrating the generic find algorithm with a list.

#include <iostream>
#include <string.h>
#include <assert.h>
#include <list>

#include <algorithm>
using namespace std;

int main()
{
cout << "Demonstrating generic find algorithm with "
<< "a list." << endl;
char* s = "C++ is a better C";
int len = strlen(s);



20 Copyright © 1998 David R. Musser All rights reserved

// Initialize listl with the contents of string s.
list<char> list1(&s[0], &s[lenl);

// Search for the first occurrence of the letter e.
list<char>::iterator
where = find(listl.begin(), listl.end(), ’e’);

assert (*where == ’e’ && *(++where) == ’t’);
return 0;

There is one subtle difference between this program and the previous one using
a vector, due to the fact that the iterators associated with list containers do
not support the operator + used in the expression * (where + 1). The reason is
explained in Chapter 4. All STL iterators are required to support ++, however,
and that is what we use in the expression * (++where).!

If we have our data in a deque, which is a random-access container similar
to arrays and vectors but allowing even more flexibility in the way it can grow
and shrink, we can once again use find:

"ex02-06.cpp" ? =
// Demonstrating the generic find algorithm with a deque.
#include <iostream>
#include <string.h>
#include <assert.h>
#include <deque>
#include <algorithm>
using namespace std;

int main()

{

cout << "Demonstrating generic find algorithm with "
<< "a deque." << endl;
charx s = "C++ is a better C";
int len = strlen(s);
// Initialize dequel with the contents of string s.
deque<char> dequel(&s[0], &s[len]);
// Search for the first occurrence of the letter e.
deque<char>::iterator
where = find(dequel.begin(), dequel.end(), ’e’);

assert (*where == ’e’ && *(where+l) == ’t’);
return 0;

}

This program is identical to the vector version except for the substitution of
“deque” for “vector” throughout (deque iterators, unlike list iterators, do sup-
port the + operator).

In fact, the £ind algorithm can be used to find values in all STL containers.
The key point with find and all other STL generic algorithms is that since they
can be used by many or all containers, individual containers do not have to
define as many separate member functions, resulting in reduced code size and
simplified container interfaces.

1In analogy to ++ on built-in types, STL defines ++ on iterators to change the value of the
iterator as a side-effect, so ++where is not exactly equivalent to where+1. It doesn’t matter in
this case since the program makes no further use of where.



Copyright © 1998 David R. Musser All rights reserved 21

2.2.2 The Generic merge Algorithm

The flexibility of STL generic algorithms is even greater than the examples
involving find have indicated. Consider an algorithm such as merge, which
combines the elements of two sorted sequences into a single sorted sequence. In
general, if merge is called as

merge(firstl, lastl, first2, last2, result);

it assumes that

e firstl and lastl are iterators marking the beginning and end of one
input sequence whose elements are of some type T;

e first2 and last2 are iterators delimiting another input sequence, whose
elements are also of type T;

e the two input sequences are in ascending order according to the < operator
for type T; and

e result marks the beginning of the sequence where the result should be
stored.

Under these conditions the result contains all elements of the two input se-
quences and is also in ascending order. This interface is flexible enough that
the two input sequences and the result sequence can be in different kinds of
containers, as the next example shows.

"ex02-07.cpp" ? =
// Demonstrating the generic merge algorithm with an array, a
// list, and a deque.
#include <iostream>
#include <string.h>
#include <assert.h>
#include <list>
#include <deque>
#include <algorithm>
using namespace std;

list<char> 1lst(const char* s)
// Return list<char> containing the characters of s
// (not including the terminating null).

{
list<char> x;
while (*s !'= ’\0’)
x.push_back (*s++) ;
return x;
}

deque<char> deq(const char* s)
// Return deque<char> containing the characters of s
// (not including the terminating null).
{
deque<char> x;
while (*s != ’\0’)
x.push_back(*s++) ;
return x;

}

int main()
{
cout << "Demonstrating generic merge algorithm with "
<< "an array, a list, and a deque." << endl;



22

Copyright © 1998 David R. Musser All rights reserved

char* s = "acegikm";
int len = strlen(s);
list<char> listl = lst("bdfhjlnopqrstuvwxyz");

// Initialize dequel with 26 copies of the letter x:
deque<char> dequel(26, ’x’);

// Merge array s and listl, putting result in dequel:

merge (&s[0], &s[len], listl.begin(), listl.end(),
dequel.begin());

assert(dequel == deq("abcdefghijklmnopqrstuvwxyz")) ;

return 0;

In this program we create a deque to hold the result of merging array s and
list1. Note that the character sequences in both s and 1ist1 are in ascending
order, as is the result produced by merge in dequel.

We can even merge portions of one sequence with portions of another. For

example, we can modify the above program to merge the first 5 characters of s
with the first 10 characters of dequel, putting the result into 1ist1 (note that
we reverse the roles of 1ist1 and dequel from the previous program).

"ex02-08.cpp" ? =

// Demonstrating generic merge algorithm, merging parts of an
// array and a deque, putting the result into a list.
#include <iostream>

#include <string.h>

#include <assert.h>

#include <list>

#include <deque>

#include <algorithm>

using namespace std;

list<char> lst(const char* s)
// Return list<char> containing the characters of s
// (not including the terminating null).

{
list<char> x;
while (*s !'= ’\0’)
x.push_back (¥s++) ;
return x;
}

deque<char> deq(const char* s)
// Return deque<char> containing the characters of s
// (not including the terminating null).
{
deque<char> x;
while (*s !'= ’\0’)
x.push_back (*s++) ;
return x;

}

int main()
{
cout << "Demonstrating generic merge algorithm,\n"
<< "merging parts of an array and a deque, putting\n"
<< "the result into a list." << endl;
char* s = "acegikm";

deque<char> dequel = deq("bdfhjlnopqrstuvwxyz");



Copyright © 1998 David R. Musser All rights reserved 23

// Initialize listl with 26 copies of the letter x:
list<char> list1(26, °’x’);

// Merge first 5 letters in array s with first 10 in

// dequel, putting result in listil:

merge(&s[0], &s[5], dequel.begin(), dequel.begin() + 10,
listl.begin());

assert(listl == 1st("abcdefghijlnopqxxxxxxxxxxx"));
return O;

These are simple examples, but they already hint at the immense range of
possible uses of such generic algorithms.

2.3 Iterators

Understanding iterators is the key to understanding fully the STL framework
and learning how to best make use of the library. STL generic algorithms are
written in terms of iterator parameters, and STL containers provide iterators
that can be plugged into the algorithms, as we saw in Figure 1-1 in Chapter 1.
Figure 2-1 again depicts this relationship, together with relationships between
other major categories of STL components. These very general components
are designed to “plug together” in a myriad of different useful ways to produce
the kind of larger and more specialized components found in other libraries.
The main kind of “wiring” for connecting components together is the category
called iterators (drawn as “ribbon cables” in Figure 2-1 and Figure 2-2, which
depicts the hierarchical relationship among different iterator categories). One
kind of iterator is an ordinary C++ pointer, but iterators other than pointers
may exist. These other kinds of iterators are required, however, to behave like
pointers in the sense that one can perform operations like ++ and * on them
and expect them to behave similarly to pointers: for instance, ++i advances an
iterator i to the next location, and *i returns the location so that it can be
stored into, as in *i = x, or its value can be used in an expression, as in x =
*i.

Consider the STL generic function accumulate. When called with iterators
first and beyond and a value init,

accumulate(first, beyond, init);

adds up init plus the values in positions first up to, but not including, beyond,
and returns the sum. For example, we could write the following program to
compute and print the sum of the values in a vector.

"ex02-09.cpp" ? =
// Demonstrating the generic accumulate function.
#include <iostream>
#include <vector>
#include <numeric>
#include <assert.h>
using namespace std;

int main()
{
cout << "Demonstrating the accumulate function." << endl;
int x[5] = {2, 3, 5, 7, 11};
// Initialize vectorl to x[0] through x[4]:
vector<int> vector1(&x[0], &x[5]1);



24 Copyright © 1998 David R. Musser All rights reserved

int sum = accumulate(vectorl.begin(), vectorl.end(), 0);

assert(sum == 28);
return 0;

}

This program uses accumulate to add up the integers in vector1l, which is
traversed using iterators vectorl.begin() and vectorl.end(). We could also
use accumulate with the array x, by writing

sum = accumulate(&x[0], &x[5], 0);

or, say, with a list of doubles, as in

double y[5] = {2.0, 3.0, 5.0, 7.0, 11.0};
list<double> 1list1(&y[0], &y[5]1);
sum = accumulate(listl.begin(), listl.end(), 0.0);

In each case, the abstract meaning is the same—adding to the initial value the
values in the range indicated by the iterators—but the type of iterators and the
type of the initial value determine how accumulate is adapted to the specific
task.

Let’s look more closely at the way accumulate uses iterators. It can be
defined as follows:

template <class InputlIterator, class T>
T accumulate(InputIterator first, InputIterator beyond, T init)

{
while (first != beyond)
init = init + *first++;
return init;

}

The only operations it performs on iterators are incrementing with postfix ++,
dereferencing with *, and inequality checking with !=. These operations, to-
gether with prefix ++ and equality checking, ==, are the only operations required
by the category of iterators called input iterators. One other characteristic of
input iterators, from which they get their name, is that the * operation is only
required to be able to read from positions in a container, not to write into them.
Output iterators, on the other hand, require the same operations except that *
is required only to be able to write, but not to read.

STL defines three other categories of iterators: forward iterators, bidirec-
tional iterators, and random access iterators. Except for input and output
iterators, the relationship between these categories is hierarchical, as shown in
Figure 2-2. That is, each category adds new requirements to those imposed
by the previous category, which means that iterators in a later category are
also members of earlier ones. For example, a bidirectional iterator is also a for-
ward iterator, and a random access iterator is also a bidirectional and a forward
iterator.

Algorithms that are written to work with input iterators, such as accumulate,
find, and merge, are more generic than those that require more powerful iter-
ators, such as sort, which requires random access iterators. For example, sort
cannot be used with STL list containers, because list iterators are only bidirec-
tional and not random access. Instead, STL provides a list member function for
sorting that works efficiently with its bidirectional iterators. As we will see in
Chapter 4, STL’s goal of efficiency motivates placing limitations on the general-
ity of some generic algorithms, and the organization of iterators into categories
is the chief means of achieving this goal.



Copyright © 1998 David R. Musser All rights reserved 25

2.4 Function Objects

The accumulate function discussed in the previous section is very general in
terms of its use of iterators, but not as general as it might be in terms of the
assumptions it makes about the type of values to which the iterators refer (called
the value type of the iterators). The accumulate definition assumes there is a
+ operator defined on the value type, by its use of + in the expression

init = init + *first++;

This allows the function to be used with any of the C++ built-in numeric types,
or with any user-defined type T in which such an operator is defined, to add
up the values in a sequence. But the abstract notion of accumulation applies
to more than just addition; one can equally well accumulate a product of a
sequence of values, for example. Thus STL provides another, more general,
version of accumulate:

template <class Inputlterator, class T, class BinaryOperation>

T accumulate(InputIterator first, InputIterator last,
T init, BinaryQOperation binary_op)

{
while (first != last)
init = binary_op(init, *first++);
return init;
}

Instead of being written in terms of +, this definition introduces another param-
eter, binary_op, as the binary operation used to combine values.

How can this more general version of accumulate be used to compute a
product? If we define a function mult as in the following program, we can use
it as the binary op parameter to accumulate:

"ex02-10.cpp" 0 =
// Using the generic accumulate algorithm to compute a product,
// using a function object.
#include <iostream>
#include <vector>
#include <numeric>
#include <assert.h>
using namespace std;

class multiply {
public:
int operator() (int x, int y) const { return x * y; }

};

int main()

{
cout << "Using generic accumulate algorithm to "
<< "compute a product." << endl;

int x[5] = {2, 3, 5, 7, 11};

// Initialize vectorl to x[0] through x[4]:
vector<int> vectorl(x, x+5);

int product = accumulate(vectorl.begin(), vectorl.end(),
1, multiply());

assert (product == 2310);
return 0;



26 Copyright © 1998 David R. Musser All rights reserved

(Note that we also changed the initial value from 0 to 1, which is the proper
“identity element” for multiplication.) Here we are passing to accumulate an
ordinary function, but C++ also supports another possibility: passing a function
object, by which we mean an object of a type defined by a class or struct in which
the function call operator is defined. Here’s how it can be done, in one of the
simplest forms possible:

"ex02-11.cpp" 0 =

// Using the generic accumulate algorithm to compute a product,
// using a function object.

#include <iostream>

#include <vector>

#include <numeric>

#include <assert.h>

using namespace std;

class multiply {
public:
int operator() (int x, int y) const { return x * y; }

};

int main()
{
cout << "Using generic accumulate algorithm to "
<< "compute a product." << endl;

int x[5] = {2, 3, 5, 7, 11};

// Initialize vectorl to x[0] through x[4]:
vector<int> vectori(x, x+5);

int product = accumulate(vectorl.begin(), vectorl.end(),
1, multiply());

assert(product == 2310);
return O;

By defining the function call operator, operator (), in classmultiply, we define
a type of object that can be applied to an argument list, just as a function can.
Note that the object passed to accumulate is obtained by a call of the (default)
constructor of the class, multiply (). Note also that this object has no storage
associated with it, just a function definition (in some cases, though, it is useful
to store data in function objects).

What’s the advantage, if any, of using function objects rather than ordi-
nary functions? We’ll answer this question in detail in Chapter 8, but the main
idea is that function objects can carry with them additional information that
an ordinary function cannot, and this information can be used by generic algo-
rithms or containers that need more complex knowledge about a function than
accumulate does. Another important reason to prefer function objects is effi-
ciency, since the compiler can inline the definitions of functions given as member
functions of classes, like the operator () member given in class multiply, so
that there is no overhead of function calling. When an ordinary function is used,
one adds calling overhead to the computation the function body does.

Before leaving this topic, we should mention that in 02-11 it wasn’t really
necessary to define class multiply, since STL includes such a definition, al-
though in a more general form:



Copyright © 1998 David R. Musser All rights reserved 27

template <class T>
class multiplies : public binary_function<T, T, T> {
public:
T operator() (const T& x, const T& y) const {
return x * y;
}
h
This class inherits from another STL component, binary function, whose pur-

pose is to hold extra information about the function, as will be discussed in
Chapter 8. Using this definition, the program can be written as follows:

"ex02-12.cpp" 0 =
// Using the generic accumulate algorithm to compute a product,
// using a function object.
#include <iostream>
#include <vector>
#include <numeric>
#include <functional>
#include <assert.h>
using namespace std;

int main()
{
cout << "Using generic accumulate algorithm to
<< "compute a product." << endl;

int x[5] = {2, 3, 5, 7, 11};

// Initialize vectorl to x[0] through x[4]:
vector<int> vectorl(x, x+5);

int product = accumulate(vectorl.begin(), vectorl.end(),
1, multiplies<int>());

assert (product == 2310);
return O;

The class multiplies is defined in the header function.h, which is already
included by algo.h, so we do not need any additional header files. With
multiplies<int>(), we just call the default constructor of class multiplies
instantiated with type int. A few of the other STL-provided function objects
are shown in the fourth column of Figure 2-1 in Section 2.3.

2.5 Adaptors

A component that modifies the interface of another component is called an
adaptor. Adaptors are depicted in the last column of Figure 2-1 in Section
2.3. For example, reverse_iterator is a component that adapts an iterator
type into a new type of iterator with all the capabilities of the original but
with the direction of traversal reversed. This is useful because sometimes the
standard traversal order is not what’s needed in a particular computation. For
example, find returns an iterator referring to the first occurrence of a value in a
sequence, but we might want the last occurrence instead. We could use reverse
to reverse the order of the elements in the sequence and then use find, but we
can do it without disturbing or copying the sequence by using reverse iterators.
In Figure 2-1, a reverse iterator component is depicted as having the “wires”
for ++ and -- crossed.

Continuing with accumulate as an example, it might not appear too useful
to traverse a sequence in reverse order to accumulate its values, since the sum



28 Copyright © 1998 David R. Musser All rights reserved

should be the same as with a forward traversal. That’s true of a sequence of
integers, with + as the combining function, since on integers + obeys the laws
(x + y) + 2=z + (y + 2) (associativity) and z + y = y + 2 (commutativity),
but these properties can fail for floating-point numbers because of round-off and
overflow errors (associativity can fail even with ints because of overflow). With
floating-point numbers, round-off errors are usually smaller if the numbers are
added in order of increasing size; otherwise, values that are very small relative
to the running sum may have no effect at all on the sum. Suppose we have
a vector of values in descending order and we want to accumulate their sum.
In order to add them in ascending order, we can use accumulate with reverse
iterators:

"ex02-13.cpp" 0 =

// Demonstrating generic accumulate algorithm with a reverse
// iterator.

#include <iostream>

#include <vector>

#include <numeric>

#include <assert.h>

using namespace std;

int main()

{
cout << "Demonstrating generic accumulate algorithm with "
<< "a reverse iterator.'" << endl;
float small = (float)1.0/(1 << 26);
float x[5] = {1.0, 3*small, 2%small, small, small};
// Initialize vectorl to x[0] through x[4]:
vector<float> vectorl(&x[0], &x[5]);
cout << "Values to be added: " << endl;
vector<float>::iterator i;
cout.precision(10) ;
for (i = vectorl.begin(); i != vectorl.end(); ++i)
cout << *i << endl;
cout << endl;
float sum = accumulate(vectorl.begin(), vectorl.end(),
(float)0.0);
cout << "Sum accumulated from left = " << sum << endl;
float suml = accumulate(vectorl.rbegin(), vectorl.rend(),
(float)0.0);
cout << "Sum accumulated from right = " << (double)suml << endl;
return 0;
}

In computing sum1, we use vector member functions rbegin and rend to obtain

iterators of type vector<float>: :reverse_iterator, which, like vector<float>: :iterator,
is defined as part of the vector interface. The output of this program will vary

depending on the precision used in type float, but the value of small was

chosen to make a difference between sum and sumil for a precision of about 8

decimal places.[4] In this case, the output is as follows:



Copyright © 1998 David R. Musser All rights reserved 29

Demonstrating accumulate function with a reverse iterator.
Values to be added:

1

4.470348358e-08

2.980232239e-08

1.490116119e-08

1.490116119e-08

Sum accumulated from left = 1

Sum accumulated from right = 1.000000119

The sum accumulated from the right, using the smaller values first, is the more
accurate one.

The type vector<float>::reverse_iterator is actually defined using an
iterator adaptor. We could have used this adaptor directly in our program by
writing

(Reverse iterator specialization 25a)
start(vectorl.end()), finish(vectorl.begin());
float suml = accumulate(start, finish, (float)0.0);

Here start and finish are declared as variables of type

reverse_iterator<vector<float>::iterator, float,
float&, ptrdiff_t>

in which the first template parameter, vector<float>::iterator, is an iter-
ator type and the second, float, is the corresponding value type. The third
parameter, floatg&, is a reference type for the value type, and the last parameter,
ptrdiff t, is a distance type for the iterator type (a type capable of represent-
ing differences between iterator values). This reverse_iterator type provides
++ and -- operators, just as vector<float>::iterator does, but with their
meanings exchanged. As a convenience, each of the container types that STL
defines provides a reverse_iterator type already defined in this way, along
with rbegin and rend member functions that return iterators of this type.

Besides reverse iterators, STL also has another kind of iterator adaptor. In-
sert iterators are provided to allow generic algorithms to operate in an “insert
mode” rather than in their ordinary overwrite mode; they are applied to con-
tainers and produce output iterators. Insert iterators are especially useful for
transferring a data sequence from an input stream or container to another con-
tainer without having to know in advance the length of the sequence. Iterator
adaptors are described more fully in Chapter 10.

STL also defines several kinds of container adaptors and function adaptors.
A stack adaptor transforms a sequence container into a container with the more
restricted interface of a last-in, first-out stack. A queue adaptor transforms a
sequence container into a first-in, first-out queue, and a priority queue adaptor
produces a queue in which values are accessible in an order controlled by a
comparison parameter. These container adaptors are described more fully in
Chapter 9.

The function adaptors STL provides include negators, binders, and adaptors
for pointers to functions. A negatoris a kind of function adaptor used to reverse
the sense of predicate function objects, which are function objects that return
a bool value. A binder is used to convert binary function objects into unary
function objects by binding an argument to some particular value. A pointer-
to-function adaptor transforms a pointer to a function into a function object;
it can be used to give compiled code more flexibility than one can obtain using
standard function objects (which helps to avoid the “code bloat” that can result
from using too many compiled combinations of algorithms and function objects
in the same program). These function adaptors are described in more detail in
Chapter 11.



30 Copyright © 1998 David R. Musser All rights reserved

2.6 Allocators

Every STL container class uses an Allocator class to encapsulate information
about the memory model the program is using. Different memory models have
different requirements for pointers, references, integer sizes, and so forth. The
Allocator class encapsulates information about pointers, constant pointers, ref-
erences, constant references, sizes of objects, difference types between pointers,
allocation and deallocation functions, as well as some other functions. All op-
erations on allocators are expected to be amortized constant time.

Since memory model information can be encapsulated in an allocator, STL
containers can work with different memory models simply by providing different
allocators.

We do not cover allocators in detail in this book, since the default allocator
class supplied with STL implementations is sufficient for most programmers’
needs. For programmers who do need to define new allocators, Chapter 22
describes the information that an allocator must provide.

For further insight on the motivation for allocators being a part of STL, see
Ref. 13 (although it should be noted that the details of the way allocators are
provided have changed since that paper was written).



