Chapter 1

Introduction

[This is a draft of one chapter of the 2nd edition of STL Tutorial and Reference
Guide—C++ Programming with the Standard Template Library by David R.
Musser and Atul Saini, to be published by Addison-Wesley in 1999. Copyright
© 1998 All rights reserved.]

The Standard Template Library—STL—provides a set of C++ container
classes and template algorithms designed to work together to produce a wide
range of useful functionality. Though only a small number of container classes
are provided, they include the most widely useful containers, such as vectors,
lists, sets, and maps. The template algorithm components include a broad range
of fundamental algorithms for the most common kinds of data manipulations,
such as searching, sorting, and merging.

The critical difference between STL and all other C++ container class li-
braries is that STL algorithms are generic: every algorithm works on a variety of
containers, including built-in types, and many work on all containers. In Part T
of this book we look at the why and how of generic algorithms and other key
concepts that give STL many advantages over other software libraries. One of
the most important concepts of STL is the way generic algorithms are defined
in terms of iterators, which generalize C/C++ pointers, together with the way
different kinds of iterators are defined for traversing the different kinds of con-
tainers. Besides containers, generic algorithms, and iterators, STL also provides
function objects, which generalize ordinary C/C++ functions and allow other
components to be efficiently adapted to a variety of tasks. The library also in-
cludes various other kinds of adaptors, for changing the interfaces of containers,
iterators, or function objects, and allocators, for controlling storage manage-
ment. All of these components are discussed in the STL overview in Chapter 2
and in more detail in later chapters of Part I.

Just reading about STL may be interesting, but to become really proficient
in using the library, you’ll have to get some actual programming experience
with it. OQOur descriptions in Part I include many small examples that show
how individual components work, and Part II presents and explains a series of
more substantial programs. Though still small, these examples perform some
nontrivial and useful tasks, displaying some of the power that a good software
library makes available. Part III contains a complete reference guide to the
library.

STL is only one part of a larger software library, the C++ Standard Library
approved by the ANSI/ISO C++ committee in its X3J16 report (Ref. 1).!
Nevertheless, STL remains a coherent framework of fine-grained, interchange-
able components that deserve treatment separate from the rest of the C++
Standard Library. In this book we attempt to provide a complete and precise

1See the Preface for more information on the background of STT, and how it came to be
included in the C++ Standard.
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user-level description of STL. (For a thorough description of one widely-used
implementation of STL, see Ref. 10.)

1.1 Who Should Read This Book

If you are not already familiar with any other software libraries, that shouldn’t
stop you from reading this book. Although comparisons to other libraries are
made in a few places, the main points should be understandable without that
background. All that’s assumed is that you have some experience with the ma-
jor C++ concepts: functions, classes, objects, pointers, templates, and stream
input/output. Many books on C++ provide the needed background. Crucial
features of templates with which some readers might not be familiar (and which
might not be covered yet in some books, as these features have only recently
been added to the language standard) are described in Section 1.3.

1.2 What Generic Programming Is and Why It’s
Important

STL is the embodiment of years of research on generic programming. The pur-
pose of this research has been to explore methods of developing and organizing
libraries of generic—or reusable—software components. Here the meaning of
“reusable” is, roughly, “widely adaptable, but still efficient,” where the adapta-
tion is done by preprocessor or programming-language mechanisms rather than
manual text editing. There has been a substantial amount of other work in
software reuse (other terms often used in this connection are “software building
blocks” or “software ICs”), but two distinguishing characteristics of the work
that led to STL are the high degree of adaptability and efficiency of the compo-
nents.

The essential ideas of the generic component construction approach are
shown in the depiction in Figure 1-1 of library components and the way they
“plug together.” On the right are components called generic algorithms, for op-
erations such as sequence merging, sorting, copying, etc. But these algorithms
are not self-contained; they are written in terms of container access operations,
which are assumed to be provided externally. Providing these container access
operations is the role of the components called iterators (which are depicted in
Figure 1-1 as “ribbon cables”). Each kind of iterator defines container access
operations for a particular data representation, such as a linked-list representa-
tion of sequences, or an array representation.

For this fine-grained component approach to work well, there must be a
certain minimal level of support from the base programming language. For-
tunately, C++ provides such support, especially with its template mechanism.
Programmers who want to use one of the generic algorithms need only select
the algorithm and the container with which it is to be used. The C++ com-
piler takes care of the final step of plugging together the algorithm, which is
expressed as a template function, with the iterators, which are classes that are
associated with the container class.

Programmers can write their own iterator class definitions, perhaps in terms
of some particular list node structure already in use in existing code. An impor-
tant point is that it’s generally a lot easier to program such an iterator definition
than it would be to recode all the generic algorithms to work with that existing
data structure.

Not every generic algorithm and iterator pair can be plugged together; you
could say that they must be “plug-compatible.” (The enforcement of this in
C++ is by means of the normal type-checking C++ compilers do when tem-
plates are instantiated. Attempts to combine incompatible components result
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in compile-time errors.) While it would be possible to make all pairs interface
together, it turns out to be better not to, because some algorithms are efficient
only when using a particular data representation. For example, a sort algorithm
may be efficient only for a random access data structure like an array, not for a
linked list. In such a case the library should provide a separate algorithm that
is suitable for use with lists.

The software library designs that have resulted from this generic program-
ming approach are markedly different from other software libraries:

e The precisely-organized, interchangeable building blocks that result from
this approach permit many more useful combinations than are possible
with more traditional component designs.

e The design is also a suitable basis for further development of components
for specialized areas such as databases, user interfaces, and so on.

e By employing compile-time mechanisms and paying due regard to algo-
rithm issues, component generality can be achieved without sacrificing
efficiency. This is in sharp contrast to the inefficiencies often introduced
by other C++ library structures involving complex inheritance hierarchies
and extensive use of virtual functions.

The bottom-line result of these differences is that generic components are far
more useful to programmers, and therefore far more likely to be used, in prefer-
ence to programming every algorithmic or data structure operation from scratch.

These are tall promises, and you may well be skeptical that STL, or any
library, can fully live up to them. As you read on, though, and start putting
this remarkable library to use in your own programming, we believe you will
agree that STL truly does fulfill the promise of generic programming.

1.3 How C++ Templates Enable
Generic Programming

Adaptability of components is essential to generic programming, so now let’s
look at how C++ templates enable it. There are two kinds of templates in
C++: template classes and template functions.

1.3.1 Template Classes

Template classes have many uses, but the most obvious one is to provide adapt-
able storage containers. To take a very simple example, suppose we want to
create objects that can store two values, an integer and a character. For this
purpose we could define

class pair_int_char {

public:

int first;

char second;

pair_int_char(int x, char y) : first(x), second(y) { }
};

We could then write, for example,

pair_int_char pair1(13, ’a’);
cout << pairl.first << endl;
cout << pairl.second << endl;

If we also want objects that can store, say, a boolean value and a double-precision
floating-point number, we could define
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class pair_bool_double {

public:

bool first;

double second;

pair_bool_double(bool x, double y) : first(x), second(y){}
1

and write, for example,

pair_bool_double pair2(true, 0.1);
cout << pair2.first << endl;
cout << pair2.second << endl;

The same could be repeated for any of the other infinitely many pairs of types,
but a template class permits them all to be expressed with a single definition:

template <class T1, class T2>
class pair {

public:

T1 first;

T2 second;

pair(T1 x, T2 y) : first(x), second(y) { }
};

Here we’ve written the class definition in terms of two arbitrary type names, T1
and T2, which are type parameters. The names are introduced into the definition
as type parameters by the clause

template <class T1, class T2>

which means that we can substitute actual types for T1 and T2 to obtain a
particular specialization of the pair template class. For example, writing

pair<int, char> pair3(13, ’a’);
pair<bool, double> pair4(true, 0.1);

declares pair3 and pair4 with structure equivalent to pairl and pair2, re-
spectively. But now we can also use pair in countless other ways with other
combinations of actual types, such as

pair<double, long> pair5(3.1415, 999);
pair<bool, bool> pair6(false, true);

Types defined by other classes can be used as the actual types; for instance,

pair<pair_int_char, float> pair7(pairl, 1.23);

or, equivalently,

pair<pair<int, char>, float> pair8(pair3, 1.23);

As illustrated here, we can use types produced as template class specializations
anywhere that ordinary types can be used.

The template class definition of pair is a very simple example of a generic
container class since it is adaptable to many different uses. However, there is
usually more to making an ordinary class into a generic one (in the sense of being
truly useful in the widest range of applications) than just adding the template
keyword and type parameter list. Some modifications may be necessary to
ensure that the resulting instances are as efficient as ones defined by ordinary
means, no matter what actual types are substituted. Even in the case of a
template class definition as simple as pair, an improvement can be made. In
defining the template class, we wrote the constructor declaration a little too
simply:

pair(T1 x, T2 y) : first(x), second(y) { }
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The problem with this is that x and y are passed by value, which means that if
they are large objects, an expensive extra copy will be made when the construc-
tor is called. Instead, x and y should be passed as constant reference parameters,
so that only an address is passed. And this is, in fact, the way that pair is
defined as an STL component:

template <class T1, class T2>
class pair {
public:
T1 first;
T2 second;
pair() : first(T1()), second(T20)) { }
pair(const T1& x, const T2& y) : first(x), second(y) { }
};

One other thing added here is the default constructor, pair (), which is useful
in situations where a default initialization of pair objects is needed in another
class definition. In any class definition in which no other constructor is defined,
the compiler defines the default constructor for us, but in this case we have
defined another constructor and the language rules require us to define the
default constructor explicitly.

In the case of more-complex class definitions, there are usually many other
factors involved in making them widely adaptable and efficient. In this book we
will not examine in depth the way STL is implemented, but STL’s originators
gave careful consideration to maintaining efficiency while making components
general.

1.3.2 Template Functions

Template functions can be used to define generic algorithms. A simple example
is a function for computing the maximum of two integers:

int intmax(int x, int y)
{
if x <y
return y;
else
return x;

}

This can be used only to compute the maximum of two ints, but we can easily
generalize it by making it a template function:

template <class T>
T max(T x, T y)
{
if x <y
return y;
else
return x;

}

A big difference from template classes is that you do not have to tell the compiler
which types you are using; the compiler is able to infer them from the types of
the arguments.

int u = 3, v = 4;

double d = 4.7;

cout << max(u, v) << endl; // type int is inferred
cout << max(d, 9.3) << endl; // type double is inferred

The compiler requires that values of the same type be passed for x and y since
the same template type parameter, T, is used for both in the declaration. Thus
the following is an error:
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cout << max(u, d) << endl;

It also requires there to be a definition of the < operator taking two parameters
of type T. For example, recalling one of the uses of the pair template class
definitions given in the previous section

pair<double, long> pair5(3.1415, 999);

the following will not compile because there is no definition of operator< on
two pair<double, long> objects:

return max(pair5, pairb);

But it would compile if we first defined some meaning for operator< on objects
of this type, such as

bool operator<(const pair<double, long>& x,
const pair<double, long>& y)
// Compare x and y on their first members:

{

return x.first < y.first;

}

The way the compiler is able to infer types and match up operator or function
calls with the proper overloaded definitions makes template functions an ex-
tremely useful feature for generic programming. We’ll see more evidence of this
later, especially in Section 2.2 when we examine how STL generic algorithms
are defined by template functions.

Before we leave the max example, though, we should note that the defini-
tion of this template function can be improved just as we discussed for the
constructor in the pair template class definition, by using constant reference
parameters:

template <class T>
const T& max(const T& x, const T& y) {
if x <y
return y;
else
return x;

}
This is essentially the definition used in STL.

1.3.3 Member Function Templates

In ordinary class definitions or template class definitions, member functions may
have template parameters (in addition to any template parameters at the class
level). This relatively new C++ feature is used in the template classes defining
STL containers. For example, each STL container class has an insert member
function that has a template parameter to specify the type of iterators to be
used:

template <class T>

class vector {

template <class InputlIterator>
insert (iterator position, InputIterator first, InputIterator last);

};

As we’ll see in Section 6.1, this insert member function can be used to insert
elements copied from some other container (such as a list), using iterators
supplied by the other container. Defining such a function as a template member
function, with the iterator type as a template parameter, makes it much more
useful than if the iterator type were a fixed type.
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1.3.4 Default Template Parameters

Another relatively new C++ template feature is default template parameters.
For example, the actual form of the STL vector template class definition is

template <class T, class Allocator = allocator<T> >
class vector {

};

The second template parameter, Allocator, has a default value, given by
allocator. All STL container classes use storage management facilities as pro-
vided by Allocator, and allocator is a type (defined by a class) that provides
a standard form of these facilities. Since Allocator has a default value, we do
not have to pass any allocator when we create an instance of vector; that is,
vector<int> is equivalent to vector<int, allocator<int> >.

Allocators are discussed again briefly in Section 2.6 and are covered in detail
in Chapter 22.

1.3.5 The “Code Bloat” Problem with Templates

When different specializations of template classes or template functions are used
in the same program, the compiler in effect creates different versions of the
source code and compiles each one into executable code. (Actually, different
versions aren’t usually produced at the source-code level but rather at some
intermediate level of code representation.) The main benefit is that each copy is
specialized for the types used and thus can be just as efficient as if the specialized
code had been written directly. But there is also a potentially severe drawback:
if many different instances are used, the many copies can make the executable
file huge. This “code bloat” problem is exacerbated by the generality of template
classes and functions in a library such as STL, since they are intended to have
many useful specializations and since programmers are encouraged to use them
as frequently as possible.

Fortunately, there are techniques for avoiding the most severe consequences
of the code bloat problem, at some (usually minor) cost in efficiency. We discuss
these techniques in Sections 11.3 (on page 187) and 17.2 (on page 242).

1.4 Understanding STL’s
Performance Guarantees

STL is unusual among software libraries in that performance guarantees are
included in the interface requirements of all of its components. Such guarantees
are in fact crucial to making wise choices among components, such as choosing
whether to use a list, vector, or deque to represent a sequence in a particular
application. The component performance characteristics are stated using “big-
Oh” notation.

1.4.1 The Big-Oh Notation and Related Definitions

In most cases, talking about the computing time of an algorithm is simplified by
classifying all inputs to the algorithm into subsets characterized by some simple
parameter(s). For algorithms that work on containers, usually the size n of the
container is a convenient choice of parameter. For inputs of size NV, we then
consider the mazimum time, T(N), the algorithm takes. T'(INV) is also called the
worst-case time for inputs of size N.)

To simplify matters further, we focus on how T'(IN) behaves for large N, and
instead of trying to write a precise formula for T(N), we just look for a simple
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function that provides an upper bound on the function. For example, we might
have
T(N) <c¢cN

for some constant ¢ and all sufficiently large N. We say in this case that “the
time grows at worst linearly with the size of the input.” The constant ¢ might
have to be chosen differently when the algorithm is compiled and run on different
machines, so one last simplification that is frequently made is to express such
bounds in a way that hides the constant.

This is done using big- Oh notation; for example, the above relation is written

In general, if there is some function fsuch that
T(N) < cf(N)

for some constant ¢ and all sufficiently large IV, we write

In this book the five main cases of this notation are as follows:

1. T(N) = O(N)

This is the case just mentioned. The algorithm is said to have a linear
time bound or, more simply, to be linear time or just linear.

2. T(N) = O(N?)

The algorithm is said to have a quadratic time bound, or to be quadratic
time or just quadratic.

3. T(N) =0(ogN)

The algorithm is said to have a logarithmic time bound, or to be logarithmic
time or just logarithmic.

4. T(N) = O(NlogN)
The algorithm is said to have an N log N time bound.

5. T(N) = O(1)

The algorithm is said to have an O(1) time bound or a constant time
bound or to be constant time. Note that in this case the big-Oh notation
is shorthand for T'(N) < ¢ for some constant ¢ and all sufficiently large
N.

In each of these cases, it is important to keep in mind that we are characterizing
computing times with upper bounds on worst-case computing times. This can be
misleading if the worst case occurs extremely rarely, as is the case, for example,
with the quicksort algorithm for sorting sequences in place. The worst-case
time for this algorithm is quadratic, which is much slower than other sorting
algorithms such as heapsort or mergesort. Yet for most situations the quicksort
algorithm is the best choice, since it is faster on the average than the other
algorithms. The inputs that cause worst case for sort are in fact so rare that in
most situations they can be ignored. In a few cases such as sort, the descriptions
we give of computing times go beyond the simple big-Oh bounds on worst-case
times to discuss the average times. The average time for an algorithm on inputs
of size N is usually calculated by assuming all inputs of size N occur with equal
probability. However, other probability distributions might be more appropriate
in some situations.
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1.4.2 Amortized Time Complexity

In several cases, the most useful characterization of an algorithm’s computing
time is neither worst-case time nor average time, but amortized time. This
notion is similar to the manufacturing accounting practice of amortization, in
which a one-time cost (such as design cost) is divided by the number of units
produced and then attributed to each unit. Amortized time can be a useful
way to describe the time an operation on some container takes in cases where
the time can vary widely as a sequence of the operations is done, but the total
time for a sequence of N operations has a better bound than just N times the
worst-case time.

For example, the worst-case time for inserting at the end of an STL vector is
O(N), where N is the size of the container, because if there is no extra room the
insert operation must allocate new storage and move all the existing elements
into the new storage. However, whenever a vector of length N needs to be
expanded, 2N spaces are allocated, so no such reallocation and copying are
necessary for the next NV — 1 insertions. Each of these next N — 1 insertions can
be done in constant time, for a total of O(N) time for the N insertions, which
is O(1) time for the insertion operation when averaged over the N operations.
Thus, we say that the amortized time for insertion is constant, or that the time
is amortized constant. Thus, for the above example, the amortized constant
time bound for insertion more accurately reflects the true cost than does the
linear time bound for the worst case. In general, the amortized time for an
operation is the total time for a sequence of N operations divided by N. Note
that although amortized time is an average, there is no notion of probability
involved, as there is with average computing time.

1.4.3 Limitations of the Big-Oh Notation

The big-Oh notation itself has well-known limitations. The time for an O(N)
algorithm might grow at a rate slower than linear growth since it is only an
upper bound, or it might grow faster than a linear rate for small N, since the
bound only holds for large N. Two O(N) algorithms can differ dramatically in
their computing times. One could be uniformly 2, or 10, or 100 times faster than
the other, but the big-Oh notation suppresses all such differences. As one moves
from one compiler or hardware architecture to another, the hidden constants
can change, perhaps enough to alter the case for choosing one algorithm over
another.

For these and many other reasons, it is advisable to do empirical performance
testing of programs under situations that approximate, to the extent possible,
the environment and data that are likely to be encountered in production runs.

1.5 STL Header Files

In order to use STL components in your programs, you must use the preproces-
sor #include directive to include one or more header files. In all of the example
programs in this book, we assume that the STL header files are organized and
named as in the C++ Standard. Headers in the Standard do not use the .h
extension for C++ library headers, except for those that are also C library
headers. Other differences from earlier organizations of the STL library are the
following;:

1. The vector, list, and deque container classes are in <vector>, <list>,
and <deque>, respectively.

2. Both set and multiset are in <set>, and both map and multimap are in
<map>.
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3. The stack adaptor is in <stack>, and the queue and priority queue
adaptors are in <queue>.

4. All STL generic algorithms are in <algorithm>, except generalized nu-
meric algorithms, which are in <numeric>.

5. STL function objects and function adaptors are in <functional>.

For all of the examples in this book we assume the library follows the above
conventions. Some compilers may still use the older library organization used
in the original Hewlett Packard implementation:

1. The STL container class named cisin <c.h>; e.g., vector is in <vector.h>,
list in <list.h>, and so forth.

STL container adaptors (stack, queue, and priority queue) are in <stack.h>.
All STL generic algorithms are in <algo.h>.

STL stream iterator classes and iterator adaptors are in <iterator.h>.

AT e

STL function objects and function adaptors are in <function.h>.

1.6 Conventions Used in Examples

In this book all major and most minor points are illustrated with actual code
examples. The examples in Part I are simple enough to be understandable by
sight, without being run. To make it clear to the reader what these programs
are supposed to do, we make extensive use of the standard C/C++ assert
macro, from C header assert.h. This macro takes a boolean-valued expression
as its single argument and does nothing if that expression evaluates to true,
but prints an informative message and terminates the program if the expression
evaluates to false. First let’s look at an example that doesn’t use STL at all.

"ex01-01.cpp" ? =
// Illustrating the assert macro.
#include <iostream>
#include <assert.h>
#include <string.h>

using namespace std;

int main()
{

cout << "Illustrating the assert macro." << endl;

char* string0 = "mark twain";
char string1[20];

char string2[20];
strcpy(stringl, string0);
strcpy(string2, string0);

int N1 = strlen(stringl);

int N2 = strlen(string2);

assert (N1 == N2);
// Put the reverse of stringl in string2:
for (int k = 0; k != N1; ++k)

string2[k] = stringl[N1-1-k];

assert(strcmp(string2, "niawt kram") == 0);
return 0;
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In this example, the first use of assert checks that the lengths of stringi
and string2, as computed by the standard strlen function, are the same.
The second use of assert checks that string?2 contains the same sequence of
characters as the string "niawt kram", as determined by the standard strcmp
function. If this little program is compiled and run,? it merely prints

Illustrating the assert macro.

But if there is some mistake—either in the computations being illustrated or
in how the assertions are written—the execution will be terminated with a
message identifying which assertion failed. For example, we might have written
the reversal code erroneously as

for (int k = 0; k != N1; ++k)
string2[k] = stringl[N1-k];

(The error is in writing stringl[N1-k] instead of stringl[N1-1-k].) Then
the execution would produce something like3

Illustrating the assert macro.
Assertion failed: strcmp(string2, "niawt kram") == 0,
file: c:\stl\examples\ex01-Ola.cpp, line: 24

We would get a similar message if we wrote the reversal code correctly but wrote
the assertion incorrectly; for example,

for (int k = 0; k != N1; ++k)
string2[k] = stringl[N1-1-k];

assert(strcmp(string2, "naiwt kram") == 0);

where the error is in writing "naiwt" instead of "niawt". Of course, there’s one
other possibility: that we wrote both the code and the assertion incorrectly, but
so that they agree. There’s no foolproof way to avoid this problem entirely, but
one can guard against it to a degree by writing more than one assertion about a
computation, with the hope that at least one will catch any errors in the code.
That’s what we’ve done in many cases in this book.

1.6.1 An STL Example Written Using the assert Macro

We just saw an example of code that reverses a string with a for loop. STL
provides a generic algorithm called reverse that can reverse many kinds of
sequences, including character arrays. Here is an example of its use:

"ex01-02.cpp" ? =
// Using the STL generic reverse algorithm with an array.
#include <iostream>
#include <algorithm> // for reverse algorithm
#include <assert.h>
#include <string.h>
using namespace std;

int main()

{
cout << "Using reverse algorithm with an array" << endl;
char stringl[] = "mark twain";
int N1 = strlen(stringl);

21f you want to try compiling and running this or any other example in this book, it is
not necessary to type it. Source files for all the examples are available via the Internet (see
Appendix B).

3In some cases we discuss an example in terms of modifications to a previous example with-
out presenting it in full, as we do here with a modification to ex01-01.cpp. The files available
on the Internet include complete source files for the modified versions. Two modifications of
ex01-01.cpp are discussed in this section; they are named ex01-01a.cpp and ex01-01b.cpp.
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reverse(&string1[0], &stringi[N1il);
assert(strcmp(stringl, "niawt kram") == 0);
return 0;

}

The arguments to reverse are pointers to the beginning and end of the string,
where by “end” we mean the first position past the actual string contents. This
function reverses the order of the characters in this range in place (unlike our
previous piece of code, which put the result in another string).

1.6.2 Examples Using STL Vectors of Characters

In the example above we used simple char* strings, which are just arrays of
characters. All STL generic algorithms have the nice property that they do
work with arrays, but since arrays are a rather weak feature of C/C++, we’ll
construct most of our examples using one of the sequence containers provided
by STL, such as vectors. Vectors provide all the standard features of arrays but
are also expandable and have many other useful features, as will be discussed
in Sections 2.1.1 and 6.1. Thus, to illustrate reverse, a more typical kind of
example is the following:

"ex01-03.cpp" ? =
// Using the STL generic reverse algorithm with a vector.
#include <iostream>
#include <algorithm>
#include <vector>
#include <assert.h>
using namespace std;

vector<char> vec(char* s)
// Return vector<char> containing the characters of s
// (not including the terminating null).

{
vector<char> x;
while (*s !'= ’\0’)
x.push_back (*s++) ;
return x;

}

int main()

{
cout << "Using reverse algorithm with a vector" << endl;
vector<char> vectorl = vec('"mark twain");
reverse(vectorl.begin(), vectorl.end());
assert(vectorl == vec("niawt kram"));
return 0;

This program defines an auxiliary function, vec, which makes a character ar-
ray into a vector<char>. The function does this using a member function,
push_back, to append one character of the string at a time to the vector, which
starts out empty. The amount of storage allocated to the vector is expanded
as necessary as the characters are appended; this automatic storage allocation
is one of the advantages of vectors (and all STL containers) over arrays. The
program uses this vec function to construct the string to which reverse is ap-
plied and the string to which to compare the result. In the call of reverse,
the program uses vector member functions begin and end, which return the
beginning and ending positions of a vector object. Again the convention is that
the ending position is the first position past the end of the actual contents.
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For the comparison of the result of reverse with vec ("niawt kram"), we use
the == operator, since STL defines this operator as an equality test for vectors.
In general, STL defines the == operator for all of its container classes. Already
we can see one of the advantages of using a vector rather than a bare array:
we can write an equality test on character sequences more naturally than with
strcmp. (The ANSI/ISO Standard C++ library also provides a string class that
makes many operations like equality tests more convenient than they are with
character arrays. We’ll use this string class in later examples.)

1.6.3 Examples Involving User-Defined Types

We use vectors of characters to illustrate STL’s generic algorithms mainly be-
cause we can easily and concisely construct examples using literal character
strings, like "mark twain", by converting them to vectors with simple func-
tions like vec. We make similar use of lists of characters, deques of characters,
and so on, when we need to illustrate features of these STL containers.

It’s important to keep in mind, though, that STL containers can be used to
hold objects of any type, not just characters. Any user-defined type U defined
by a class or struct will also do, although not all container operations will be
available unless certain operators are defined on U. In particular, many container
operations and generic algorithms require the type to have == defined as an
equality operator. In order to convey to the reader the essential properties of
a type to be used with a particular container operation or generic algorithm,
we sometimes construct examples in terms of a class with a minimal definition.
For example:

"ex01-04.cpp" ? =
// Using the STL generic reverse algorithm with a vector
// of objects of a minimal type.

#include <iostream>
#include <vector>

#include <algorithm>
#include <assert.h>
using namespace std;

class U {

public:

unsigned long id;

UO : id@) { }

U(unsigned long x) : id(x) { }

}’
// Define == on U objects (needed for vector ==).
bool operator==(const U& x, const U& y)
{
return x.id == y.id;
}

int main()
{
vector<U> vectorl, vector2;
const int N = 1000;
int k;
for (k = 0; k != N; ++k)
vectorl.push_back(U(k));
for (k = 0; k != N; ++k)
vector2.push_back(U(N-1-k)) ;
cout << "Using generic reverse algorithm with a vector "
<< "of user-defined objects" << endl;
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reverse(vectorl.begin(), vectorl.end());
assert(vectorl == vector2);
return 0;

}

Here the class U is defined to have a data member id. The constructors make it
easy to produce an object with a particular id. Having such an identifier mem-
ber isn’t necessary to the operation of any of the vector operations or generic
algorithms, but it is used here as a convenient way to identify or distinguish
objects of the class.

The reverse algorithm doesn’t use the == operator for type U, but we define
it on pairs of U objects, in terms of the equality of their id members, in order
to be able to check the equality of two vectors. The == operator is defined on
vector objects as long as == is defined on the objects stored in the vectors. For
some member functions or generic algorithms, primarily for merging or sorting,
we need one other operator, <, defined on objects to be stored in a container.
In that case we add a definition similar to that for ==, as follows:

bool operator<(const U& x, const U& y)
{
return x.id < y.id;

}

If operator < is defined on the type of objects stored in a container, it is also
defined on objects of the container type, in a way described in Chapter 6.
In some cases we may also add

ostream& operator<<(ostream& o, const U& x)

{
o << "U Object #" << x.id;
return o;

}

to output objects the id number of a U object.

1.6.4 Examples Involving Nested Containers

By giving examples constructed with character sequences or with sequences of
objects of a user-defined type like U, we show some of the generality of STL
container operations and generic algorithms, but certainly not all. Another
kind of example is sequences in which the objects are other sequences, such as
vectors in which the objects are lists of integers:

vector<list<int> > vectorl, vector2;

An example program using container nesting is given in Chapter 14. One impor-
tant point about such nesting is that if equality is defined on the innermost type
parameter, it is defined on the outermost sequences, since each STL container
extends its parameter’s definition to one for itself. In the preceding example,
equality is defined on int and is therefore also defined on both list<int> and
vector<list<int> >. Thus, we can write

vectorl == vector2
to check the equality of vectorl and vector2. The consistent way in which STL

provides crucial operations like equality is an important element of its design,
as will become apparent as we study STL in more detail.



