
Data Structures and Algorithms — CSCI 230
Discrete Mathematics Overview — Part B

Proof by Induction

• Mathematical induction is used to prove statements true for all integers
greater than or equal a certain base value n0. Here are three example
statements we will prove in class using mathematical induction:

–
n∑

i=0

ai =
an+1 − 1

a − 1
for n ≥ 0 and a 6= 1.

– n! < nn, for n ≥ 2.

– A complete binary tree of height h ≥ 0 contains exactly 2h+1 − 1
nodes.

• An inductive proof always has three main components:

Basis case: Prove the statement is true for n = n0 (and perhaps n =
n0 + 1, etc.).

Inductive hypothesis: Assume the statement is true for all k, n0 ≤ k <
n.

Induction step: Prove that for all n ≥ n0, the inductive hypothesis
implies that the statement is true for n.

• The principle of mathematical induction states that if the basis case and
induction step are both proved, then the statement holds for all n ≥ n0.

• Notes:

– At first proofs by induction appear to be circular, but in fact they are
not. Instead, think of a set of dominoes standing on end: the basis
case is the act of pushing over the first domino (or two); the induction
step is the relationship between the positions of the dominoes showing
that for every domino, if its precedecessors fall over, it will fall over
as well.

– Sometimes the inductive hypothesis is written n0 ≤ k ≤ n and the
induction step proves that the inductive hypothesis shows the state-
ment to be true for n + 1.

– At other times, the inductive step is to show for all n ≥ n0, if the
statement is true for n then it is true for n + 1. Students more
comfortable with this method of inductive proof are welcome to use
it here.

– Very often the inductive hypothesis is not written out explicitly.

Let’s see how the three examples mentioned above are proved using mathemat-
ical induction.

1.
n∑

i=0

ai =
an+1 − 1

a − 1
for n ≥ 0 and a 6= 1.

Basis case: When n = 0, the summation reduces to a0 = 1, and the
right side of the equation is (a0+1 − 1)/(a − 1) = 1. Since these are
both 1, the basis case is proved.

Induction step: For any given n ≥ 1, if the statement is true for 0 ≤
k < n, then

n∑

i=0

ai =
∑n−1

i=0 ai + an

= a(n−1)+1−1
a−1 + an by the induction hypothesis

= an−1
a−1

+ an a−1
a−1

= an−1+an+1−an

a−1

= an+1−1
a−1

completing the induction step.

2. n! < nn, for n ≥ 2.

Basis case: For n = 2, the left side of the inequality evaluates to 2 and
the right side evaluates 4. Since 2 < 4, the basis case is established.

Induction step: For n > 2, if k! < kk for 2 ≤ k < n then in particular

(n − 1)! < (n − 1)n−1.

Multiplying both sides of this inequality by n shows that

n! < n · (n − 1)n−1.

But, since n − 1 < n (obviously),

n! < n · (n − 1)n−1 < n · nn−1.

So,
n! < nn.

3. A complete binary tree of height h ≥ 0 contains exactly 2h+1 − 1 nodes.

Basis case: Any binary tree of height h = 0 is complete and has exactly
one node. Since 20+1 − 1 = 2 − 1 = 1, the basis case is established.

Induction step: For h > 0, assume any complete binary tree of height
k, 0 ≤ k ≤ h−1, contains 2k+1−1 nodes, and consider any complete
binary tree, T , of height h. Removing the root of T creates two
complete binary trees of height h−1, one formed from the left subtree

2

of T and the other formed from the right. By the inductive hypothesis
each of these has 2(h−1)+1 − 1 = 2h − 1 nodes. Therefore, T had

(2h − 1) + (2h − 1) + 1

nodes to start with (the 1 at the end is for the root node). Adding
these values shows that T had

2h+1 − 1

nodes, which completes the proof.

Class Exercises on Induction

1. Prove each of the following by mathematical induction.

(a)
n∑

i=1

(2i − 1) = n2 for n ≥ 1.

Proof:
Basis: For n = 1, the left hand side is 2 × 1 − 1 = 1 and the right hand side is
12 = 1, so the basis case is established.

Induction step: Assume
∑n

i=1(2i−1) = n2 for some n ≥ 1. We show that
∑n+1

i=1 (2i−
1) = (n + 1)2, as follows:

n+1∑

i=1

(2i − 1) =
n∑

i=1

(2i − 1) + 2(n + 1) − 1

=
n∑

i=1

(2i − 1) + 2n + 1

= n2 + 2n + 1 by the induction hypothesis
= (n + 1)2.

(b) n < 2n for n ≥ 0.
Proof:

Basis: For n = 0, we have 0 < 1 = 20, which establishes the basis case.

3

Induction step: Assume n < 2n for some n ≥ 0, we attempt to show that n + 1 <
2n+1:

2n+1 = 2 × 2n

> 2n by the induction hypothesis

Hmmm, we need to know this is ≥ n +1, but in fact 2n 6 ≥n +1 when n = 0. What
to do?

Answer: We must go back and prove another basis case, for n = 1.
Basis: For n = 1, we have 1 < 2 = 21, which establishes the second basis case.
Next we have to restate and prove the induction step:

Induction step: Now assume n < 2n for some n ≥ 1; we show that n + 1 < 2n+1:

2n+1 = 2 × 2n

> 2n by the induction hypothesis
≥ n + 1 since n ≥ 1.

(c) Any set containing n elements has 2n different possible subsets.
Hint: In the inductive step, consider a particular element a of the set and count
all the subsets that do contain a and all those that do not.

Basis: For n = 0, we have a set of 0 elements; i.e., the empty set, which has 1
subset, itself. Since 1 = 20, this establishes the basis case.

Induction step: Let S be a set with n > 0 elements. Let a be a particular element
of S. Let T be the set of all subsets of S and Ta be the set of all subsets of S−{a}.
By the induction hypothesis, |Ta| = 2n−1. Every set in Ta is also a subset of S, so
T has at least 2n−1 elements. For every set U in Ta, we also have U ∪ {a} ⊆ S,
which gives 2n−1 more subsets of S in T , for a total of 2n−1 + 2n−1 = 2n.

2. What is wrong with the following inductive proof showing that all horses
are the same color? (Or, more specifically, in any set H of n horses, each
horse in H has the same color as every other horse in H .)

Basis: n = 1. One horse is trivially the same color as itself.

Induction Step: We have to prove for each n ≥ 2 that if in all sets
containing fewer than n horses all horses are the same color, then in
any set of n horses all horses are the same color. Let H be any set
containing n horses, and label the horses h1, h2, . . . , hn. Let H1 =
H −{hn} and let H2 = H −{h1}. By the inductive hypothesis, since
|H1| = n − 1, all horses in H1 are the same color; call it c1. Also
by the inductive hypothesis, since |H2| = n − 1, all horses in H2 are
the same color; call it c2. Also, since H1 ∩ H2 = {h2, . . . , hn−1},
horses h2, . . . , hn−1 are each both colors c1 and c2. Hence, c1 = c2.
Therefore, all horses in H are the same color.

4

Recursion

Here is an outline of five steps I find useful in writing and debugging recursive
functions:

1. Handle the base case(s) first, at the start of the function.

2. Define the problem solution in terms of smaller instances of the problem.
This defines the necessary recursive calls.

3. Figure out what work needs to be done before making the recursive call(s).

4. Figure out what work needs to be done after the recursive call(s) com-
plete(s) to finish the solution.

5. Assume the recursive calls work correctly, but make sure they are pro-
gressing toward the base case(s)!

Here are two example recursive functions: factorial and mergesort.

int Fact(int n)
{
if (n == 0 || n == 1)

return 1;
else

return n * Fact(n-1);
}

template <class T>
void MergeSort(T * pts, int n)
{
MergeSort(pts, 0, n-1);

}

templage <class T>
void MergeSort(T * pts, int low, int high)
{
if (low == high) return;

int mid = (low + high) / 2;
MergeSort(T, low, mid);
MergeSort(T, mid+1, high);

// At this point the lower and upper halves
// of "pts" are sorted. All that remains is
// to merge them into a single sorted list.
// We will discuss the details of this later.

}

5

Class Exercises on Recursion

1. Assume the following structure for a node in a binary tree:

struct TreeNode {
int value;
TreeNode * left_child;
TreeNode * right_child;

};

Write a recursive function to count the number of nodes in the binary tree
whose root is pointed to by T. Note the structural similarity between your
solution and the inductive proof about complete binary trees.

2. The following is a recursive version of binary search. Will it work cor-
rectly? Why or why not?

template <class T>
bool RBinSearch(T * pts, int low, int high,

T point, int& loc)
{

if (high == low) {
loc = low;
return pts[loc] == point;

}
int mid = (low + high) / 2;
if (pts[mid] <= point)
return RBinSearch(pts, mid, high, point, loc);

else
return RBinSearch(pts, low, mid-1, point, loc);

}

3. The Fibonacci numbers are defined recursively as

f0 = 0
f1 = 1
fn = fn−1 + fn−2, n ≥ 2

(The notation fn means the same thing as f(n), i.e. f is a function of n.)

(a) Write a recursive function to calculate fn.

(b) How many recursive calls will your function make to calculate f3, f4,
f5, etc? Can you write a recursive expression similar to the recursive
formula for the Fibonacci numbers to count the number of recursive
calls?

6

Review Problems

Here are a few review problems which have appeared on homeworks or tests in
previous semesters. Practice writing solutions carefully and then compare to
solutions provided on-line. If you can solve these problems and the problems
we worked on in class then you are ready for the chapter quiz!

1. Give an inductive proof showing that for all integers n ≥ 5, 4n + 4 < n2.

2. Give an inductive proof showing that for all positive integers n,

n∑

i=1

1
(2i − 1)(2i + 1)

=
n

2n + 1
.

3. Give an inductive proof showing that for all n ≥ 1,

n∑

i=1

i(i!) = (n + 1)!− 1

4. Evaluate the following summations.

(a)
100∑

i=0

(−1)i

(b)
2n∑

i=5

i

(c)
n∑

i=0

(ai − 2i + n)

(d)
n−1∑

i=0

(
c +

i−1∑

j=0

(j + 2)
)

5. Prove using mathematical induction that fn > (3/2)n, for n ≥ 5. Here, fn

is the nth Fibonacci number. Use the definition of the Fibonacci numbers
given in the text on page 6. Study the example inductive proof on page 6
carefully.

6. Write the code necessary to accomplish the merging step in MergeSort.
This code should follow the comments in the main MergeSort function.

7

