CSCI 4150 Introduction to Artificial Intelligence, Fall 1999
Assignment 2: out Tuesday September 7, due Tuesday September 14

The required parts of this assignment are to be turned in electronically to the directory / dept / cs/ ai / submi t 2.
See the course home page for more details.

The only addition to the set of procedures you should know are map and appl y. Again, you should not
be using the “more advanced” features of Scheme, in particular set ! and its variants and iterative control
forms.

For the questions 4, 5, and 6, you will write some of the support code for the 8-puzzle which you will
use in Assignment 3.

READING: Read Chapters 1 and 2 of Russell and Norvig. I consider sections 1.2 and 1.3 interesting but
optional. Regarding Chapter 2 — we’re not going overboard on agents, but you should read this to under-
stand the framework of the rest of the text.

1. (optional) Write procedures using map and/or appl y that do the following;:

(a) take the square root of every number in a list
(b) adds a constant (passed as an argument) to every number in a list

(c) given a list of points, returns the point closest to the origin. For example:
(closest-point "((0 4) (3 2) (-11))) ==>(-11)

2. (10 points) Write a procedure (mag X) that returns the magnitude of a vector x represented as a list
of numbers. The vector X may be of any dimension. For example:

(mag ' (3 4)) => 5
(mag ' (4 -2 8 7 11)) ==> 15.937377450509228

3. (15 points) Write the following procedures:

(a) (positions |st e) thatreturns a list of numbers corresponding to the position of every oc-
currence of element e in the list | st . For example:

(positions "(1 35337 2) 3 ==> (134)

The order of the elements in the returned list is not important.

(b) Using the above posi t i ons function, write a nonrecursive function ( posi ti ons-list st el-
ement s) using map and/or appl y which returns a single list of positions of every occurrence
of an element of the list el enent s in the list | st . For example:

(define test-list "(abcebcf kl mockf ac))
(positions-list test-list "(bc k)) ==> (4115 115 2 12 7)

The order of the elements in the returned list is not important.

4. (10 points) Write a procedure ( ep- di stance i j) that computes the Manhattan distance from cell
i tocellj . Recall that Manhattan distance is the rectilinear distance from one cell to another. Assume
the cells are numbered as follows:



For example, the Manhattan distance from cell 0 to 7 is 3 (i.e. 1 right and 2 down).

. (10 points) Write a function (swap | st i j) that returns a new list based on | st except that ele-
ments i and]j are swapped. Assume that the first element of a list is element 0. For example:

(swap '(1 2 3456 7 8 space) 58) ==> (1 2 3 4 5 space 7 8 6)

. (25 points) Write a procedure (ep-chil dren s) that generates the successors to a state of the 8-
puzzle problem.

For example:

11 2] 3 11 2] 3 11 2] 3
S T B S S
4| 5| 6 == 4| 5 | and 4] 5] 6
e e e e oo - e oo - -
71 8| 71 8] 6 71 | 8

(ep-children (1 2 345 6 7 8 space))
==> ((1 2 3 45 space 7 86) (123456 7 space 8))

You may find your swap procedure from the previous problem useful here.

. (5 points) This problem is for those of you who enjoy a little more challenging problem or just have
some extra time on your hands. Do this problem last because it’s harder than the rest and is only
worth 5 points!

Write a procedure ( per mut e x) which takes a list x and produces a list of all the permutations of X.
For example:

(permute "(a bc)) ==>((ab¢c) (ach) (bac) (bca (cab) (cba))

The order is not important so long as you generate all permutations.



