
Programming in LispProgramming in LispProgramming in LispProgramming in Lisp

Lecture #6Lecture #6
Kenneth W. FlynnKenneth W. Flynn
RPI CSRPI CS

OutlineOutlineOutlineOutline

CLOS
Defining Classes
Methods
Examples

Object Oriented ProgrammingObject Oriented ProgrammingObject Oriented ProgrammingObject Oriented Programming

Dominant paradigm in C++, Java
Possible to do in Lisp as well
This diverges from the traditional functional
model of programming in some respects

Some TerminologySome TerminologySome TerminologySome Terminology

Class
A definition of an object, "the theory," you might
say.

Instance
A initialized object, "the pratice"

Generic Function
A function that behaves in certain ways depending
on the types of arguments it receives

More TerminologyMore TerminologyMore TerminologyMore Terminology

Methods

Slots
Fields in a class, the class attributes
Similiar to fields in a structure

Let's Do This By Example...Let's Do This By Example...Let's Do This By Example...Let's Do This By Example...

Say we want some classes: shape, triangle,
right-triangle
Say we want some methods: area, move
Let's implement this:

Kenneth W. Flynn (1-6)
10/07/98

Class-y DefinitionsClass-y DefinitionsClass-y DefinitionsClass-y Definitions

(defclass class-name () (slot1 slot2 slot3...))
Examples:

(defclass point () (x y))

(defclass shape () (position))

There's more to this story, as we will see shortly

Instantly Creating InstancesInstantly Creating InstancesInstantly Creating InstancesInstantly Creating Instances

You guessed it:
(make-instance 'Class-name)

Examples:

(make-instance 'point)

(make-instance 'shape)

Setting SlotsSetting SlotsSetting SlotsSetting Slots

Much as with aref's, or structure fields
(slot-value Instance Slot-name)
Use with setf to set a slot

A Slightly More Elaborate ExampleA Slightly More Elaborate ExampleA Slightly More Elaborate ExampleA Slightly More Elaborate Example

>(let ((pos (make-instance 'point))
 (my-shape (make-instance 'shape)))
 (setf (slot-value pos 'x) 3)
 (setf (slot-value pos 'y) 2)
 (setf (slot-value my-shape 'position)
 pos)
 (slot-value (slot-value my-shape
 'position)
 'x)
)

3

Slot OptionsSlot OptionsSlot OptionsSlot Options

We can set several different things for each slot:
Default value
Initializers
Access functions
Class versus Instance Slots

Slot Default ValueSlot Default ValueSlot Default ValueSlot Default Value

:initform intial-value
Examples:
(defclass point ()
 ((x :initform 0)
 (y :initform 0)
)
)

Kenneth W. Flynn (7-12)
10/07/98

Slot Initializer ArgumentsSlot Initializer ArgumentsSlot Initializer ArgumentsSlot Initializer Arguments

Tells make-instance to accept an argument that
will be used as the initial value for a particular
slot; Overides initform.
:initarg Init-arg-name

>(defclass point ()
 ((x :initform 0
 :initarg :x)
 (y :initform 0
 :initarg :y)
)
)
> (slot-value
 (make-instance 'point :x 5)
 'x
)

5

Initarg ExamplesInitarg ExamplesInitarg ExamplesInitarg Examples

Slot AccessorsSlot AccessorsSlot AccessorsSlot Accessors

We can define alternatives to slot-value to read
and write values to slots

:accessor (read and write)
:reader
:writer

Note that slot-value will always work

Access Denied!Access Denied!Access Denied!Access Denied!
(defclass shape ()
 ((position :initform (make-instance 'point
 :x 0
 :y 0)
 :initarg :pos
 :reader shape-pos)
)
)
> (shape-pos (make-instance 'shape))
#<POINT #xE8E1A0>
> (setf (shape-pos (make-instance 'shape))
(make-instance 'point :x 5 :y 5))
;; Error

The Case OfThe Case OfThe Case OfThe Case Of
Class vs. Instance AllocationClass vs. Instance AllocationClass vs. Instance AllocationClass vs. Instance Allocation

Instance Allocation
What we expect: Each instance has a slot with a
value. Changing one instance leaves the others
unaffected

Class Allocation
Each instance shares a copy of the slot. Changing
one instance changes them all

Each Of Is Allocated...Each Of Is Allocated...Each Of Is Allocated...Each Of Is Allocated...

(defclass shape ()
 ((position :initform (make-instance 'point
 :x 0
 :y 0)
 :initarg :pos
 :reader
 (color :initform 'BLUE
 :initarg :color
 :accessor cur-color
 :allocation :class)
)
)

Kenneth W. Flynn (13-18)
10/07/98

...But Four Score and Forty Slots...But Four Score and Forty Slots...But Four Score and Forty Slots...But Four Score and Forty Slots

> (setf x (make-instance 'shape))
#<SHAPE #xE84A54>
> (cur-color x)
BLUE
> (setf y (make-instance 'shape :color
'Green))
#<SHAPE #xE8A974>
> (cur-color y)
GREEN
> (cur-color x)
GREEN

SuperclassesSuperclassesSuperclassesSuperclasses

We can define a class to be a subclass of another.
It will inherit slots, and functionality
(defclass class-name (super1 super2 ...)
 (slot1 slot2 slot3...))
Precendence when multiple overlapping
superclasses is given in a complex way. Suffice it
to say that there is a precendence list for each
class, in general going from most specific to least.

Superclass ExampleSuperclass ExampleSuperclass ExampleSuperclass Example
(Leaping Tall Buildings...)(Leaping Tall Buildings...)(Leaping Tall Buildings...)(Leaping Tall Buildings...)

(defclass triangle (shape)
 ((side1 :initarg :a
 :initform 1
 :accessor tri-a)
 (side2 :initarg :b
 :initform 1
 :accessor tri-b)
 (side3 :initarg :c
 :initform 1
 :accessor tri-c)
)
)

(defclass right-triangle (triangle)
 ((side3 :initarg :hypo
 :accessor hypo)
)
)

> (tri-c (make-instance 'right-triangle))
1
> (hypo (make-instance 'right-triangle))
1

...In A Single Bound...In A Single Bound...In A Single Bound...In A Single Bound

MethodsMethodsMethodsMethods
(defmethod method-name
 ((param param-class) (param param-class) ...)
 Body
)
Similiar to defun (key, optional, rest), except
different versions can be defined for different
classes. The most specific is called, based on
param-classes, from left to right.
Can only specialize required params.

Method ParametersMethod ParametersMethod ParametersMethod Parameters

...must be "Congruent" for a method to be
installed for a subclass. This means

They must have the same number of required
params.
They must have the same number of optional
params.
They must both either use key or rest params or not
use key or rest params. (Key for one and rest for
the other is ok. So is different numbers of key.)

Kenneth W. Flynn (19-24)
10/07/98

Watson, You Know My MethodsWatson, You Know My MethodsWatson, You Know My MethodsWatson, You Know My Methods
(Deitel / Deitel)(Deitel / Deitel)(Deitel / Deitel)(Deitel / Deitel)

(defmethod radial-dist (p) 'Unknown)
(defmethod radial-dist ((p point))
 (sqrt (+ (* (point-x p) (point-x p))
 (* (point-y p) (point-y p))
)
)
)
> (radial-dist 5)
UNKNOWN
> (radial-dist (make-instance 'point))
0.0

Before, After, and AroundBefore, After, and AroundBefore, After, and AroundBefore, After, and Around

We can define methods to run before, after, or
instead of other methods
Standard Method Combination

Run most specific around-method
Otherwise

All before methods from most specific to least
The most specific primary method
All after methods from least specific to most

Arou- Before Methods After -ndArou- Before Methods After -ndArou- Before Methods After -ndArou- Before Methods After -nd

Use :before, :after, and :around to alter method
placement
Second argument to defmethod

ExampleExampleExampleExample

(defclass silly () ())
(defclass sillier (silly) ())
(defmethod met (c) (format t "0"))
(defmethod met ((c silly)) (format t "1"))
(defmethod met :before ((c silly)) (format
t "~%0"))
(defmethod met :after ((c silly)) (format t
"2~%"))
(defmethod met ((c sillier)) (format t "S"))
(defmethod met :around ((c sillier))
(format t "~%A") (call-next-method))

Example IIExample IIExample IIExample II

>(met (make-instance 'silly))
012

>(met (make-instance 'sillier))
A
0S2

That's It!That's It!That's It!That's It!

For the future
Work on Project #2 (Friday)
Work on Project #3 (10/23)
Final Exam (10/16)

Goodbye!

Kenneth W. Flynn (25-30)
10/07/98

