
Programming in LispProgramming in LispProgramming in LispProgramming in Lisp

Lecture #6Lecture #6
Kenneth W. FlynnKenneth W. Flynn
RPI CSRPI CS

OutlineOutlineOutlineOutline

Macros
Definition
Common Errors
Examples

Macro-scopically Speaking...Macro-scopically Speaking...Macro-scopically Speaking...Macro-scopically Speaking...

Macros are an alternative to functions
We've seen several macros already

We've noted that they do not have to evaluate all
of their arguments

Common macros
if, and, or, do, setf ...

Functions, Macros, and Specials; Functions, Macros, and Specials; Functions, Macros, and Specials; Functions, Macros, and Specials;
Oh my!Oh my!Oh my!Oh my!

Three kinds of constructs in Lisp
Functions
Macros
Special Operators

The Lisp compiler handles these differently.
We can write any of these except for special
operators

Macro DefinitionMacro DefinitionMacro DefinitionMacro Definition

Before we show how to write Macros, we should
look at what they actually do.
We can look at functions as being statements of
code executed within a new lexical context
Macros do not have their own lexical context
Instead, they are replacement code, replaced at
compile time -- much like #define's in C, but
more frequently used.

Defining a MacroDefining a MacroDefining a MacroDefining a Macro

(defmacro macro-name (args) (macro-expansion))
This is not as simple as it looks

Macro expansion should expand to look just like
Lisp code. We'll see an example of this in a second.

Kenneth W. Flynn (1-6)
09/30/98

Macro ExampleMacro ExampleMacro ExampleMacro Example

>(defmacro me (x)
 (list 'setf x ''Kenn))
>(setf f '(1 2 3))
(1 2 3)
>(me f)
KENN
>f
KENN

Macro Example IIMacro Example IIMacro Example IIMacro Example II

> (macroexpand '(me f))
(SETQ F 'KENN)
T

(macroexpand) takes a macro call, expands it and
returns what it looks like. This is useful for
debugging.

Macro Example With A Micro ErrorMacro Example With A Micro ErrorMacro Example With A Micro ErrorMacro Example With A Micro Error

(defmacro me-bad (x) (setf x 'Kenn))
> (me-bad x)
;; Error: Unbound variable KENN in #<function
0 #xE8AA0C>
;; Returning to Top Level
WRONG!!!

A Macro to Make Macros Easier:A Macro to Make Macros Easier:A Macro to Make Macros Easier:A Macro to Make Macros Easier:
BackquoteBackquoteBackquoteBackquote

Nifty!
` by itself is identical to '
However, within a backquoted form, you can
turn evaluation back on using the "," prefix
You can also use ,@ to turn evaluation of a list
on, with splicing (each element is inserted).

Backquote ExamplesBackquote ExamplesBackquote ExamplesBackquote Examples

> (setf x 1)
1
> `(You are number ,x)
(YOU ARE NUMBER 1)
>(defmacro me-back (x)
 `(setf ,x 'Kenn))
>(macroexpand '(me-back x))
(SETQ X 'KENN)

Common Macro ErrorsCommon Macro ErrorsCommon Macro ErrorsCommon Macro Errors
(Read "Big Mistakes")(Read "Big Mistakes")(Read "Big Mistakes")(Read "Big Mistakes")

Variable Capture
Shadowing a variable with a new lexical variable

Multiple Evaluation
Evaluating an argument to a macro more than once

Kenneth W. Flynn (7-12)
09/30/98

A Complex ExampleA Complex ExampleA Complex ExampleA Complex Example

Suppose we want to write a repeat-until macro
Let's pass it a function to evaluate as the until,
which takes no arguments (lambda function?)
Let's also pass it a maximum number of times to
loop (to prevent infinite loops)
Let's finallly pass it some expressions.

Repeat-Until, Pass 1Repeat-Until, Pass 1Repeat-Until, Pass 1Repeat-Until, Pass 1
(defmacro repeat-until-or-max
 (done-p max &rest body)
 `(progn
 ,@body
 (do ((numtimes 1 (+ numtimes 1)))
 ((or (funcall ,done-p)
 (= ,max numtimes)
)
 numtimes
)
 ,@body
)
)
)

Example CallExample CallExample CallExample Call

(defun tester ()
 (let ((x 0)
 (y 5))
 (repeat-until-or-max
 #'(lambda () (> x y))
 10
 (setf x (+ x 1))
)
)
)
> (tester)
6

Problem #1Problem #1Problem #1Problem #1
(defun tester2 ()
 (let ((x 0)
 (y 5)
 (numtimes 10))
 (repeat-until-or-max #'(lambda () (> x y))
 numtimes
 (setf x (+ x 1))

)
)
)
> (tester2)
1

Problem #2Problem #2Problem #2Problem #2
(defun tester3 ()
 (let ((x 0)
 (y 5)
 (z 6))
 (repeat-until-or-max #'(lambda () (> x y))
 (setf z (- z 1))
 (setf x (+ x 1))

)
)
)
> (tester3)
3

gensymgensymgensymgensym

Generates "uninterned" symbol -- a symbol that is
not part of any package
Cannot conflict with any of your symbols
Can be used to avoid Variable Capture
> (gensym)
#:G40

Kenneth W. Flynn (13-18)
09/30/98

Avoiding Multiple EvaluationAvoiding Multiple EvaluationAvoiding Multiple EvaluationAvoiding Multiple Evaluation

Use a gensym, and bind it to that which you
don't want to keep evaluating.
See the example...

Correct RepeatCorrect RepeatCorrect RepeatCorrect Repeat
(defmacro repeat-until-or-max-1
 (done-p max &rest body)
 (let ((numtimes (gensym))
 (g-max (gensym)))
 `(let ((,g-max ,max))
 ,@body
 (do ((,numtimes 1 (+ ,numtimes 1)))
 ((or (funcall ,done-p)
 (= ,max ,numtimes)
)
 ,numtimes
)
 ,@body))))

Trying It OutTrying It OutTrying It OutTrying It Out

> (tester-1)
6
> (tester2-1)
6
> (tester3-1)
6

That's It!That's It!That's It!That's It!

For next time
Work on Project #2
Read Chapter #10 on Macros
Try it out!

Next class
CLOS!

Kenneth W. Flynn (19-24)
09/30/98

