
Programming in LispProgramming in LispProgramming in LispProgramming in Lisp

Lecture #5Lecture #5
Kenneth W. FlynnKenneth W. Flynn
RPI CSRPI CS

OutlineOutlineOutlineOutline

Symbols
Packages
Numbers

SymbolsSymbolsSymbolsSymbols

We've seen symbols in three contexts so far:
> (setf sym 3)
3
(let ((sym 3)) ...)
>'Sym
SYM

Symbols -- ContextSymbols -- ContextSymbols -- ContextSymbols -- Context

The first of these refers to a special (or global)
variable.
The second refers to a lexical (or local) variable
The third refers to a global symbol
But these are all uses of symbols!

SpecialSpecialSpecialSpecial Variables Variables Variables Variables

Also called dynamic variables
Created by setf, defvar, and others.
Scope is from when bound to a value until
whenever.
Global...
Should rarely be used.

LexicalLexicalLexicalLexical, Perplexical, Perplexical, Perplexical, Perplexical

lexical or static variables are created by functions
like let, do, etc.
Can only be referenced within textual region
defined
However, bindings can be changed at any time...
Remember closure.

Kenneth W. Flynn (1-6)
09/23/98

Back to Symbols...Back to Symbols...Back to Symbols...Back to Symbols...

A symbol to hold a lexical variable is never really
created -- the value is merely substituted as
needed.
Symbols, however, are big structures that include
pointers to values and functions
Special variables are symbols whose value
pointers point to the value of the variable
Named functions are symbol pointers as well

Symbols are represented internally a little like
this:

Name

Value

Function

...

#<right-triangle-p>

"RIGHT-TRIANGLE-P

Symbol StructureSymbol StructureSymbol StructureSymbol Structure

Symbol NamesSymbol NamesSymbol NamesSymbol Names

Remember Lisp converts symbols to all caps.
Use (symbol-name symbol) to get a string holding
the name of the symbol
Symbol names can have whitespace -- use | | to
enclose the symbol when declaring it:
'|This is a really long symbol name|

Symbol Values (Global Vars)Symbol Values (Global Vars)Symbol Values (Global Vars)Symbol Values (Global Vars)

> (setf global-var 3)
3
> (symbol-value 'global-var)
3

This demonstrates that the value of a global
variable is held in a symbol

PackagesPackagesPackagesPackages

Similiar to Java's package management system in
some ways
All symbols are included in some package
A package is a namespace or context which
parameterizes symbol names
Symbols are by default in common-lisp-user

Symbols on PackagesSymbols on PackagesSymbols on PackagesSymbols on Packages

You can create symbols with (intern)
Reverses process of (symbol-name)
Returns symbol and whether the symbol
previously existed

nil -- Didn't exist
:internal -- Already present in this package
:external -- Imported from another package
:inherited -- Imported via use-package

Kenneth W. Flynn (7-12)
09/23/98

Intern Intern Intern Intern Examples (Not what you're Examples (Not what you're Examples (Not what you're Examples (Not what you're
thinking!)thinking!)thinking!)thinking!)

> (intern "KENN")
KENN
NIL
> (intern "KENN" 'common-lisp)
CL::KENN
NIL
> (intern "CAR" 'common-lisp)
CAR
:EXTERNAL

Packages IIPackages IIPackages IIPackages II

Create packages with (defpackage)
(defpackage "PACKAGE-NAME"
 (:use "COMMON-LISP" ...)
 (:nicknames "PN")
 (:export "SYM1" "SYM2" ...)
)

(in-package 'PACKAGE-NAME)

Packages...Packages...Packages...Packages...

Packages allow for source code management
To use other packages, we can refer to exported
symbols as PACKAGE-NAME:SYMBOL, or
PN:SYMBOL
Use-ing a package allows us to not have to have
the qualifier
Most implementations auto use 'Common-Lisp

Symbols AgainSymbols AgainSymbols AgainSymbols Again

Name

Value

Function

...

#<car>

"CAR"

Package 'COMMON-LISP

Symbols know their package name and are
contained within

KeywordsKeywordsKeywordsKeywords

Keyword arguments, or symbols beginning with a
mere : -- such as :input are in the KEYWORD
package
They are put there silently. They are then
accessible anywhere -- :symbol means look in that
package, which is auto "used."
Functions that take symbols as args should use
keywords

NumbersNumbersNumbersNumbers

Lisp has many functions to handle numbers
But first, we need to talk about types:
Although we never see it, all Lisp variables have a
data type.
These types are not mutally exclusive!
See Steele, pg. 50 for complete list

Kenneth W. Flynn (13-18)
09/23/98

Data TypesData TypesData TypesData Types

Numbers
Characters
Symbols
Lists
Arrays
Packages
Streams

Structures
Functions

Hash-Tables
ReadTables
Random-States

Number TypesNumber TypesNumber TypesNumber Types
t

number

complex real

nil

float rational

ratio integer

typeptypeptypeptypep

(typep 123 'integer)
T
(typep 3.3 'float)
T
Can be used with any type, even a structure you
define
Also (numberp, integerp, etc...)

More on NumbersMore on NumbersMore on NumbersMore on Numbers

Conversion
(float) (truncate) (floor) (ceiling) (round) ...
Take any number of args.

Comparision
= does numeric checking
#'eql requires same type and numeric equal

Some Notes On StyleSome Notes On StyleSome Notes On StyleSome Notes On Style

Lisp is functional
All functions return at least one value
Functions do not modify their arguments, instead
they return a new value
This is what we mean by "no variables"
No side-effects
Use as few setf's as possible! This will avoid
errors.

House of Lisp StyleHouse of Lisp StyleHouse of Lisp StyleHouse of Lisp Style

In source files, should only find package
definitions, global constants, and functions
Do not declare global variables unless you have a
very, very, very good reason!
Then use (load) to load your file

Kenneth W. Flynn (19-24)
09/23/98

That's ItThat's ItThat's ItThat's It

Covered Chapters #8, 9 in Graham
For next week:

Project #2 spec due soon
Take a break.

Next Week:
Macros
Exception Handling

Kenneth W. Flynn (25-30)
09/23/98

