Outline

= |tems from last time

Programming in Lisp = Control
A lteration
= Functions
= Questions (Homework, Exam)
Lecture #4
Kenneth W. Flynn
RPICS
Exam 1 Items From Last Time
= Exam #1 will be = When accessing members in a structure, the
A 9/22 6-8 pm (Location TBA) access function is of the form:
A 9/25 4-6 pm (Location TBA) A (defstruct rectangle width length)
& Students who cannot make the first exam time A (setf x (make-rectangle))
should email me today. Only students who have A (rectangle-width x)
notified me in advance will be permitted to take A (rectangle-length x)
the exam on 9/25! A INCORRECT: (x-length)
Items From Last Time II Control
= 0 is not false = |teration
> (if O (format t "~%0 is not ® Conditionals
false!~%) (format t "~%0 is - :
fal sel ~4)) Multiple Values

0 is not false! = A Note On Scope

NI L

Kenneth W. Flynn (1-6)
09/16/98



[teration: Do

= do
A (do ((Variable initial-binding update-expression)
(Variable initial-binding ...) ...) ;Variables
((ending-predicate) return-value) ;Returns
(expression) ...

)

E Also do* (evaluates bindings in order each time)

Do, a loop, a useful loop...

= Order
A |Initial values are bound
A Loop condition is checked (if reached, return)
A Evaluate expressions
A Update variables
A Check loop condition...

Do examples! Now!

2> (do* ((num9 (- num1))
(root (sqgrt num (sqrt num))
(I'st (cons root "nil)
(cons root Ist))

%(= num 1) |st)
0

)
® (1.0 1.4142135623731 1.73205080756888
2.0 2.23606797749979 2.44948974278318
2.64575131106459 2.82842712474619 ...)

[teration Also

= dolist
A lterates through list items
= dotimes
A Your basic for loop
= |f you understand do, you can follow these.
= Refer to p. 88 of Graham for gory details...

Conditionals

E (cond ((predicate) (expressions))
((predicate) (expressions)) ...
)

= Powerful! Replaces if then else if then else ...
#> (cond ((and t nil) ' Nope)

((or nil nil) "Still-nope)
((or 13 (/ 1 0)) 'Ah-ha!)
(t 'Default)

2 AH- HA

Multiple Values

& For functions that return multiple values, use
(multiple-values-bind)
& By example:
a> (multiple-value-bind (x pos)
(read-fromstring "123") (format
t "~%Read the nunmber: ~A up to
position: ~A~% X pos))
a Read the nunber: 123 up to
position: 3

Kenneth W. Flynn (7-12)
09/16/98




A Note On Scope Functions
i |et, defun both create a new lexical context & Functions created with (defun) are global
= Scope! & | ocal functions can be created with (labels)
=l |ocal variables overide globals, just like in C A Similiar to let
 This issue is somewhat more complicated then we A [nstead of variables and bindings, include function
will cover definitions
labels Example Parameters
w(defun silly (x) H Function parameters can be of 3 types
(1 abel's (Eagg% §Xg E‘*‘ ; ng) A Required
a X + X .
(add2 (addl x)) ngIIs must include these parameters
A Optional
) @ Default to nil (or specified value) if not present
A Key
@ Default to nil (or specified value) if not present;
passed using :key syntax

Optional Parameters Keyword Parameters
= &opt i onal u &key
o (defun add (x &optional (y 0)) s> (defun our-cons
(+ xvy) (&key (left "Bl ank)
(right 'Blank))

ADD (cons left right)
w> (add 2) )

2 OUR- CONS
2> (add 2 1)

3

Kenneth W. Flynn (13-18)
09/16/98



Keyword Examples

= > (our-cons)

(BLANK . BLANK)

#> (our-cons :right 'Hello)

(BLANK . HELLO

2> (our-cons 'Hello)

;; Error: Keyword w thout

#> (our-cons :left "Hello :right "Wrld)
(HELLO . WORLD)

Rest Parameters

=+ takes any number of arguments

= We can do this with & est

= Any values after the rest token will be bound into
a list, and that will be bound to the variable
following the rest token

& Combining rest and keyword parameters does
not do what seems intuitive

Rest Example (zzz...)

u (defun our-adder (& est args)
(do* ((sum O (+ sum curnum)
(curnum O (car nums-list))
(nuns-list args (cdr nunms-list))

%(null nuns-list) (+ sumcurnum)
0

Closure

= Functions which reference variables defined
outside of their own lexical context are said to be
closures.

& Functions are defined in some lexical scope, even
though they are part of the global environment.

u Variables from the scope in which they are
defined "stick with them" when they are called
from outside that scope.

Closure Example (Slam!)

2> (let ((noise 'Slam)
(defun slam () noise)

SL?AM

2> (slam
SLAM

o> (setf noise 'Ding)
DI NG

o> (slam
SLAM

That's It!

= Question & Answer Time
A Homework #1
A Exam #1
= Exam #1 will cover Chapters 2-6

Kenneth W. Flynn (19-24)
09/16/98




