
Programming in LispProgramming in LispProgramming in LispProgramming in Lisp

Lecture #3Lecture #3
Kenneth W. FlynnKenneth W. Flynn
RPI CSRPI CS

OutlineOutlineOutlineOutline

Items from last time
More on lists
Arrays
Structures
Input / Output
Control

New SyllabusNew SyllabusNew SyllabusNew Syllabus

Homework #1 is now due 9/18/98
Homework #2 is now due 10/2/98
Homework #3 is still due 10/18/98
Days for particular topics have also changed, and
may do so again as the course develops. The
homework dates are firm.
Exam #1 will be ????

Items From Last TimeItems From Last TimeItems From Last TimeItems From Last Time

'T is the symbol for truth. Don't use it as a
variable!
Be careful of parens...

(let* ((x 1) (y (+ 2 3))) (* x y))
Variable bindings are in a list
let takes as arguments the code to be evaluated

Code should be inside (let)

Items From Last Time II -- SyntaxItems From Last Time II -- SyntaxItems From Last Time II -- SyntaxItems From Last Time II -- Syntax

or
Evaluates arguments from left to right; returns first
argument that is true. If none are true, returns nil.

and
Evaluates arguments from left to right; returns nil if
it encounters a false argument, otherwise returns
value of last argument.
(and 1 3) returns 3

>, <, >=, <=
Examples:

(> 3 1) asks: is 3 > 1 ?
(> 3 2 1) asks: is 3 > 2 > 1 ?
(< 1 2 3) asks: is 1 < 2 < 3

Similiar for others
Graham, 353 is incorrect. Try Steele, 293 for
more info and examples

Items From Last Time IIIItems From Last Time IIIItems From Last Time IIIItems From Last Time III

Kenneth W. Flynn (1-6)
09/09/98

Items From Last Time IVItems From Last Time IVItems From Last Time IVItems From Last Time IV

Recursion
Typically try basis case first. Prevents many
common errors.

(quote 13 (/ 1 0)) returns 13. So quote is
correct!

Mapping FunctionsMapping FunctionsMapping FunctionsMapping Functions

All about mapcar
mapcar is used to apply a function to each
element in one or more lists
mapcar's first argument is a function
One by one, the nth arguments of each list are
passed to the function

Function Passing: #'Function Passing: #'Function Passing: #'Function Passing: #'

#' Sharp Quote
All functions can be passed as parameters

#'+
#'-
#'list
#'my-function

Used in many standard functions
Generics...

lambda lambda lambda lambda FunctionsFunctionsFunctionsFunctions
(A rose without a name...)(A rose without a name...)(A rose without a name...)(A rose without a name...)

Sometimes you create a function just to pass it to
something like mapcar
Instead of naming the function, you can create a
function with no name -- a lambda function
Simply use the special symbol lambda instead of
the function name
#'(lambda (x y) (+ x y)) is our old friend the
adder

mapcarmapcarmapcarmapcar Examples Examples Examples Examples

> (mapcar #'+ '(1 2) '(1 2))
(2 4)
> (mapcar #'(lambda (x y)
 (+ x y)
)
 '(1 2)
 '(1 2)
)
(2 4)

membermembermembermember

(member object list) returns a cons begining with
object if present
member takes several keyword arguments
Keyword arguments are of the form
:keyword key-value
:test equilvalance-function
:key function-to-be-applied-first
Order is irrelevant

Kenneth W. Flynn (7-12)
09/09/98

member member member member Examples IExamples IExamples IExamples I

> (member 2 '(1 2 3))
(2 3)
> (member 3 '(1 2 3)
 :key #'(lambda (x)
 (+ x 1)
)
)
(2 3)

> (member '(1 2)
 '((2 3) (1 2)))
NIL
> (member '(1 2)
 '((2 3) (1 2))
 :test #'equal)
((1 2))

member member member member Examples IIExamples IIExamples IIExamples II

SequencesSequencesSequencesSequences

length
(length '(1 2 3)) returns 3

reverse
(reverse '(1 2 3)) returns (3 2 1)

(sort list sort-function)
(sort '(3 1 2) #'>) returns (3 2 1)

Dotted ListsDotted ListsDotted ListsDotted Lists

Proper list refers to a list in which every cdr
points to another cons (or nil)
Dotted list refers to the case when this is not true

1 2

(1 . 2)

To Dot Or Not To Dot?To Dot Or Not To Dot?To Dot Or Not To Dot?To Dot Or Not To Dot?

Lisp displays a list with the dot only for the cons
which is not proper
So a cons can be used as a two field data
structure.
Better ways of doing this, though... Structures
come to mind

ArraysArraysArraysArrays

Creation
make-array

1 required argument -- list of dimensions or
integer
:initial-element initializes array

Retrieval
aref

Returns reference to element

Kenneth W. Flynn (13-18)
09/09/98

Array ExampleArray ExampleArray ExampleArray Example

> (setf x (make-array 3
 :initial-element 0))
#(0 0 0)
> (setf (aref x 1) 1)
1
> (setf (aref x 2) 2)
2
> x
#(0 1 2

VectorsVectorsVectorsVectors

Just one dimensional arrays
Create with vector

Simliar to list
Can access quickly with svref instead of aref
> (setf x (vector 1 2 3))
#(1 2 3)
> (svref x 2)
3

StructuresStructuresStructuresStructures

Special kind of vector
When you define a structure, Lisp does a lot of
work (code generation) for you.
Define a structure with

(defstruct structure-name member ...)
Zero or more members are either an atom giving
the member name, or a list containing the member
name and a default initializer

Use equalp to compare structures

Buy One, Get Many FreeBuy One, Get Many FreeBuy One, Get Many FreeBuy One, Get Many Free

Defining a structure gives you the following
functions:

(make-structure)
Creation

(structure-member)
Access

(structure-p)
Type checking

(make-structure)(make-structure)(make-structure)(make-structure)

Takes as keyword arguments the name of each
member.
Returns a new instance of the structure
Example:

(make-circle :radius 3)
Members default to nil

Structures ExampleStructures ExampleStructures ExampleStructures Example

> (defstruct rectangle length
(width length))
RECTANGLE
> (make-rectangle :length 3)
#S(RECTANGLE LENGTH 3 WIDTH 3)

Kenneth W. Flynn (19-24)
09/09/98

> (setf x (make-rectangle
:length 3))
#S(RECTANGLE LENGTH 3 WIDTH 3)
> (rectangle-p x)
(#<STRUCTURE-CLASS RECTANGLE...
> (rectangle-p nil)
NIL
> (rectangle-p 5)
NIL

Structures Example IIStructures Example IIStructures Example IIStructures Example II Structures Example IIIStructures Example IIIStructures Example IIIStructures Example III

> (rectangle-length x)
3

Input / OutputInput / OutputInput / OutputInput / Output

Several steps:
Create pathname -- (make-pathname :name name)
Create stream -- (open pathname :direction :input)
Do I/O -- (read-line stream input-string)
Close stream (close stream)

Or:
Create pathname
Use (with-open-file)

Input / OutputInput / OutputInput / OutputInput / Output

open and with-open-file take arguments to
control stream type

:direction [:input | :output]
> (with-open-file (in-stream (make-pathname
:name hello.txt) :direction :input)
 (format t "~A~%" (read in-stream)))
For more information, refer to Chapter #7 of
Graham or stop by my or Jin's office hours.

ControlControlControlControl

Iteration
Conditionals
Multiple Values
A Note On Scope

Iteration: DoIteration: DoIteration: DoIteration: Do

do
(do ((Variable initial-binding update-expression)
 (Variable initial-binding ...) ...) ;Variables
 ((ending-predicate) return-value) ;Returns
 (expression) ...
)

Also do* (evaluates bindings in order each time)

Kenneth W. Flynn (25-30)
09/09/98

Do, a loop, a useful loop...Do, a loop, a useful loop...Do, a loop, a useful loop...Do, a loop, a useful loop...

Order
Initial values are bound
Loop condition is checked (if reached, return)
Evaluate expressions
Update variables
Check loop condition...

Do examples! Now!Do examples! Now!Do examples! Now!Do examples! Now!

> (do* ((num 9 (- num 1))
 (root (sqrt num) (sqrt num))
 (lst (cons root 'nil)
 (cons root lst))
)
 ((= num 1) lst)
 ()
)
(1.0 1.4142135623731 1.73205080756888
2.0 2.23606797749979 2.44948974278318
2.64575131106459 2.82842712474619 ...)

Iteration AlsoIteration AlsoIteration AlsoIteration Also

dolist
Iterates through list items

dotimes
Your basic for loop

If you understand do, you can follow these.
Refer to p. 88 of Graham for gory details...

ConditionalsConditionalsConditionalsConditionals

(cond ((predicate) (expressions))
 ((predicate) (expressions)) ...
)
Powerful! Replaces if then else if then else ...

> (cond ((and t nil) 'Nope)
 ((or nil nil) 'Still-nope)
 ((or 13 (/ 1 0)) 'Ah-ha!)
 (t 'Default)
)
AH-HA

Multiple ValuesMultiple ValuesMultiple ValuesMultiple Values

For functions that return multiple values, use
(multiple-values-bind)
By example:
> (multiple-value-bind (x pos)
(read-from-string "123") (format
t "~%Read the number: ~A up to
position: ~A~%" x pos))
Read the number: 123 up to
position: 3

A Note On ScopeA Note On ScopeA Note On ScopeA Note On Scope

let, defun both create a new lexical context
Scope!
Local variables overide globals, just like in C
Just something to be aware of...

Kenneth W. Flynn (31-36)
09/09/98

Whew!Whew!Whew!Whew!

We've covered a lot today!
For next week

Read Chapters 4,5, and 7 in Graham
Homework #1 (Due 9/18. New due date!)

If you need help, see me or the TA.
Yes, the project is hard.
Good luck!

Kenneth W. Flynn (37-42)
09/09/98

