Programming in Lisp

Lecture #2

Kenneth W. Flynn i
RPI CS

Outline

1l Items from last time

il Recursion, briefly

il How to run Lisp

2l 170, Variables and other miscellany
W Lists

il Arrays

\u Other data structures

TA

il Jin Li
i lij3@rpi.edu
i Office Hours:
A M: 2-3:30 pm
AW10am-12 pm
i Office: ???

[tems From Last Time |

w(cdr nil)
A Returns nil
12 Unlimited arguments?
A &rest
A We'll talk about this next week

Items From Last Time Il -- (listp)
i > (listp 'a) il > (listp nil)
NIL T
il > (listp 1) i > (listp '(HELLO))
NIL T
i > (listp '(1 2 3)) i > (listp (5))
T ;; Error:
> (listp '())
-

[tems From Last Time Ill --*

il The following characters cannot appear in
symbols:
AQ" #
i So, "*hi* is valid:
w> (listp "*hi*)
NI L
>

Kenneth W. Flynn (1-6)
09/09/98




Recursion, Briefly How To Run Lisp

1l Frequently we'll write recursive Lisp functions 2 Under UNIX

Wi Recursive functions should have A kel, gel
A Basis case (at least one) A Specify in homework which used
A Recursive case A :q if you make an error

il Don't forget terminating condition A "D to exit

2l Under Win '95
A Goto http://www.franz.com/dload/dload.html
A Select Allegro CL Lite for Windows

How To Write Lisp load
1l Use a text editor with paren matching! 12l Allows you to not write programs at the top-level
Avi I2l Reads a file and executes commands inside the file
@ :set sm as if you typed them at the top-level
A emacs il > (load "hello.lsp")
A Others? t
\ul Load code into Lisp and then try it...

Output With format format Examples |
i Output is done with the format command w>(format t "~%dello World. ~%)
Wl (format destination format-string args...) Hel 1o Veorl d.
12l Destination is “t" for the console Nl L
1l Format string is similar to C's printf function w> (format t "~9%Awo plus two is
12l Usually returns nil, but we don't care! ~A. ~% (+ 2 2))
Two plus two is 4.
NI L

Kenneth W. Flynn (7-12)
09/09/98



format Examples I

w> (format t "~%Nords fail,
bui l di ngs ~A." "tunbl e")
Words fail, buildings tunble.

w> (format t "~%rhe ~A opens
~A~% "ground" "w de.")
The ground opens wi de.

read and read-line

1 read
A "Incredibly powerful” says the text.
A Reads input and parses into Lisp objects
\2l read-line
A Reads up to a newline; puts input into string
A Prefered for reading from console

read and read-line Examples
w> (read)?2
2

w> (read)Hello
HELLO

w> (read-line)Hello World
"Hell o Worl d"

T

progn

i Used to create a "block"
i Allows side-effects
1l Value of last expression evaluated is returned

1l Avoid if possible; frequently needed for debuging
output, etc.

progn Example

w(defun stupid-hello ()
(progn
(format t "~%el |l 0")
(format t " Worl d~%)

)
)

So Many Forms of Equality...

il For numbers, you have (= args...)
A>(=111
t
\ul For others you have: eq, eql, equal, equalp
A eq: Implementationly identical (rarely used)
A eql: Logically identical (what we were thinking)
A equal: Object identical (lists)
1l Stick with equal (more info on Steele 103-110)

Kenneth W. Flynn (13-18)
09/09/98




Equality Examples
m> (equal "(1 2 3) '"(1 2 3))
T

w> (eq '(123) '(123))
NI L

w> (equal "Hello" "Hello")
T

w> (=1 1.0
T

setf
1l Assigns value to variable
A Side-effect
w> (setf x '(1 2 3))
(1 2 3)
> X
(1 2 3)

let

1l Introduces new local variables
1l Form (let Variable-Bindings-List Expressions*)

and expressions to set them equal to. These are
your new local variables

A Implicit progn

A Variable-Bindings-List is a list of pairs of variables

let Example

w> (let ((x "Hello")
(y " Wworld")

(format t "~%A~A~%
)
Hello World
NI L

X y)

Lists

W Lisp lists

Wl List construction functions
1l Access (review)

2l Mapping functions

12l Sets, Sequences

i Dotted lists

Lisp Lists |

nil

Kenneth W. Flynn (19-24)
09/09/98




Lisp Lists I

i A "cons" refers to a pair of pointers
A The first pointer may point to data or another cons
A The second may point to data, another cons, or nil
A cons is used to construct such a pair

W car refers to the first pointer

i cdr refers to the second pointer

List Construction Functions

1l copy-list literally copies a list
A (copy-list list)
\ul append copies the list arguments onto the
beginning of the last list argument
A (append list1 list2 list3)
A listd -> list2 -> list3
i Don't forget list and cons

Access (Review)

il car and cdr (first and rest), first, second, third...
2 nth returns nth car in the list
A>(nth2'(123)
3

\l nthedr returns the nth cdr in the list (confused?)
A >(nthedr2'(1 2 3 4))
(34)
1l last returns the last cons in the list

Mapping Functions

il All about mapcar

\ul mapcar is used to apply a function to each
element in one or more lists

il mapcar's first argument is a function

1l One by one, the nth arguments of each list are
passed to the function

Function Passing: #'

i #' Sharp Quote
il All functions can be passed as parameters
A #'+
A#H-
A #'list
A #'my-function
12l Used in many standard functions
12l Generics...

lambda Functions
(A rose without a name...)

12l Sometimes you create a function just to pass it to
something like mapcar

il Instead of naming the function, you can create a
function with no name -- a lambda function

il Simply use the special symbol lambda instead of
the function name

i #'(lambda (x y) (+ x y)) is our old friend the
adder

Kenneth W. Flynn (25-30)
09/09/98




mapcar Examples

w> (mapcar # + '(1 2) '(1 2))

(2 4)

w> (mapcar #' (lanbda (x y)
(+ xy)

(1 2)
(1 2)

)
(2 4)

member

i (member object list) returns a cons begining with
object if present

i member takes several keyword arguments

i Keyword arguments are of the form
:keyword key-value

1 :test equilvalance-function
1l :key function-to-be-applied-first
| Order is irrelevant

member Examples |

w> (nmenber 2 ' (1 2 3))
(2 3)
w> (nmenber 3 '(1 2 3)
c key #' (I anbda (x)

member Examples I

w> (menber ' (1 2)
"((23) (1 2))
NI L

w> (nmenber ' (1 2)

"((23) (1 2)
ctest # equal)

((12))

(+ x 1)
)
(2 3)
Sequences
il length
A (length (1 2 3)) returns 3
Il reverse

A (reverse '(1 2 3)) returns (3 2 1)
i (sort list sort-function)
A (sort'(312)#'>)returns (32 1)

Dotted Lists

Wl Proper list refers to a list in which every cdr
points to another cons (or nil)

i Dotted list refers to the case when this is not true

(1.2)

Kenneth W. Flynn (31-36)
09/09/98




To Dot Or Not To Dot?

i Lisp displays a list with the dot only for the cons
which is not proper

il So a cons can be used as a two field data
structure.

1l Better ways of doing this, though... Structures
(next week) come to mind

Arrays

! Creation
A make-array
@ 1 required argument -- list of dimensions or
integer
@ :initial-element initializes array
1l Retrieval
A aref
@ Returns reference to element

Array Example

w> (setf x (make-array 3
cinitial-elenment 0))

#(0 0 0)

w> (setf (aref x 1) 1)

1

w> (setf (aref x 2) 2)

2

> X

#(0 1 2

Vectors

12l Just one dimensional arrays
il Create with vector
A Simliar to list
\ul Can access quickly with svref instead of aref
w> (setf x (vector 1 2 3))
#(1 2 3)
w> (svref x 2)
3

Whew!

1l We've covered a lot today!
12l For next week

A Read Chapters 3 and 4 in Graham

A Start Homework #1 (Due 9/14. New due date!)
121 On the next exciting episode

A Structures

A Control Flow

A Gory function details

Kenneth W. Flynn (37-42)
09/09/98




