
Programming in LispProgramming in LispProgramming in LispProgramming in Lisp

Lecture #2Lecture #2
Kenneth W. FlynnKenneth W. Flynn
RPI CSRPI CS

OutlineOutlineOutlineOutline

Items from last time
Recursion, briefly
How to run Lisp
I/O, Variables and other miscellany
Lists
Arrays
Other data structures

TATATATA

Jin Li
lij3@rpi.edu
Office Hours:

M: 2-3:30 pm
W 10 am - 12 pm

Office: ???

Items From Last Time IItems From Last Time IItems From Last Time IItems From Last Time I

(cdr nil)
Returns nil

Unlimited arguments?
&rest

We'll talk about this next week

> (listp 'a)
NIL
> (listp 1)
NIL
> (listp '(1 2 3))
T
> (listp '())
T

> (listp nil)
T
> (listp '(HELLO))
T
> (listp (5))
;; Error:

Items From Last Time II -- (listp)Items From Last Time II -- (listp)Items From Last Time II -- (listp)Items From Last Time II -- (listp) Items From Last Time III -- 'Items From Last Time III -- 'Items From Last Time III -- 'Items From Last Time III -- '

The following characters cannot appear in
symbols:

() ; " ' ` , #

So, '*hi* is valid:
> (listp '*hi*)
NIL
>

Kenneth W. Flynn (1-6)
09/09/98

Recursion, BrieflyRecursion, BrieflyRecursion, BrieflyRecursion, Briefly

Frequently we'll write recursive Lisp functions
Recursive functions should have

Basis case (at least one)
Recursive case

Don't forget terminating condition

How To Run LispHow To Run LispHow To Run LispHow To Run Lisp

Under UNIX
kcl, gcl
Specify in homework which used
:q if you make an error
^D to exit

Under Win '95
Goto http://www.franz.com/dload/dload.html
Select Allegro CL Lite for Windows

How To Write LispHow To Write LispHow To Write LispHow To Write Lisp

Use a text editor with paren matching!
vi

:set sm
emacs
Others?

Load code into Lisp and then try it...

loadloadloadload

Allows you to not write programs at the top-level
Reads a file and executes commands inside the file
as if you typed them at the top-level
> (load "hello.lsp")
t

Output With Output With Output With Output With formatformatformatformat

Output is done with the format command
(format destination format-string args...)
Destination is "t" for the console
Format string is similar to C's printf function
Usually returns nil, but we don't care!

format format format format Examples IExamples IExamples IExamples I

>(format t "~%Hello World.~%")
Hello World.

NIL
> (format t "~%Two plus two is
~A.~%" (+ 2 2))
Two plus two is 4.

NIL

Kenneth W. Flynn (7-12)
09/09/98

> (format t "~%Words fail,
buildings ~A." "tumble")
Words fail, buildings tumble.

> (format t "~%The ~A opens
~A~%" "ground" "wide.")
The ground opens wide.

format format format format Examples IIExamples IIExamples IIExamples II read read read read and and and and read-lineread-lineread-lineread-line

read
"Incredibly powerful" says the text.
Reads input and parses into Lisp objects

read-line
Reads up to a newline; puts input into string
Prefered for reading from console

read read read read and and and and read-lineread-lineread-lineread-line Examples Examples Examples Examples

> (read)2
2
> (read)Hello
HELLO
> (read-line)Hello World
"Hello World"
T

prognprognprognprogn

Used to create a "block"
Allows side-effects
Value of last expression evaluated is returned
Avoid if possible; frequently needed for debuging
output, etc.

progn progn progn progn ExampleExampleExampleExample

(defun stupid-hello ()
 (progn
 (format t "~%Hello")
 (format t " World~%")
)
)

So Many Forms of EqualitySo Many Forms of EqualitySo Many Forms of EqualitySo Many Forms of Equality

For numbers, you have (= args...)
> (= 1 1 1)
t

For others you have: eq, eql, equal, equalp
eq: Implementationly identical (rarely used)
eql: Logically identical (what we were thinking)

equal: Object identical (lists)

Stick with equal (more info on Steele 103-110)

Kenneth W. Flynn (13-18)
09/09/98

Equality ExamplesEquality ExamplesEquality ExamplesEquality Examples

> (equal '(1 2 3) '(1 2 3))
T
> (eq '(1 2 3) '(1 2 3))
NIL
> (equal "Hello" "Hello")
T
> (= 1 1.0)
T

setfsetfsetfsetf

Assigns value to variable
Side-effect

> (setf x '(1 2 3))
(1 2 3)
> x
(1 2 3)

letletletlet

Introduces new local variables
Form (let Variable-Bindings-List Expressions*)

Variable-Bindings-List is a list of pairs of variables
and expressions to set them equal to. These are
your new local variables
Implicit progn

letletletlet Example Example Example Example

> (let ((x "Hello")
 (y " World")
)
 (format t "~%~A~A~%" x y)
)
Hello World

NIL

ListsListsListsLists

Lisp lists
List construction functions
Access (review)
Mapping functions
Sets, Sequences
Dotted lists

Lisp Lists ILisp Lists ILisp Lists ILisp Lists I

1 2 3

cons

cdr

nil

car

Kenneth W. Flynn (19-24)
09/09/98

Lisp Lists IILisp Lists IILisp Lists IILisp Lists II

A "cons" refers to a pair of pointers
The first pointer may point to data or another cons
The second may point to data, another cons, or nil
cons is used to construct such a pair

car refers to the first pointer
cdr refers to the second pointer

List Construction FunctionsList Construction FunctionsList Construction FunctionsList Construction Functions

copy-list literally copies a list
(copy-list list)

append copies the list arguments onto the
beginning of the last list argument

(append list1 list2 list3)
list1 -> list2 -> list3

Don't forget list and cons

Access (Review)Access (Review)Access (Review)Access (Review)

car and cdr (first and rest), first, second, third...
nth returns nth car in the list

>(nth 2 '(1 2 3))
3

nthcdr returns the nth cdr in the list (confused?)
>(nthcdr 2 '(1 2 3 4))
(3 4)

last returns the last cons in the list

Mapping FunctionsMapping FunctionsMapping FunctionsMapping Functions

All about mapcar
mapcar is used to apply a function to each
element in one or more lists
mapcar's first argument is a function
One by one, the nth arguments of each list are
passed to the function

Function Passing: #'Function Passing: #'Function Passing: #'Function Passing: #'

#' Sharp Quote
All functions can be passed as parameters

#'+
#'-
#'list
#'my-function

Used in many standard functions
Generics...

lambda lambda lambda lambda FunctionsFunctionsFunctionsFunctions
(A rose without a name...)(A rose without a name...)(A rose without a name...)(A rose without a name...)

Sometimes you create a function just to pass it to
something like mapcar
Instead of naming the function, you can create a
function with no name -- a lambda function
Simply use the special symbol lambda instead of
the function name
#'(lambda (x y) (+ x y)) is our old friend the
adder

Kenneth W. Flynn (25-30)
09/09/98

mapcarmapcarmapcarmapcar Examples Examples Examples Examples

> (mapcar #'+ '(1 2) '(1 2))
(2 4)
> (mapcar #'(lambda (x y)
 (+ x y)
)
 '(1 2)
 '(1 2)
)
(2 4)

membermembermembermember

(member object list) returns a cons begining with
object if present
member takes several keyword arguments
Keyword arguments are of the form
:keyword key-value
:test equilvalance-function
:key function-to-be-applied-first
Order is irrelevant

member member member member Examples IExamples IExamples IExamples I

> (member 2 '(1 2 3))
(2 3)
> (member 3 '(1 2 3)
 :key #'(lambda (x)
 (+ x 1)
)
)
(2 3)

> (member '(1 2)
 '((2 3) (1 2)))
NIL
> (member '(1 2)
 '((2 3) (1 2))
 :test #'equal)
((1 2))

member member member member Examples IIExamples IIExamples IIExamples II

SequencesSequencesSequencesSequences

length
(length '(1 2 3)) returns 3

reverse
(reverse '(1 2 3)) returns (3 2 1)

(sort list sort-function)
(sort '(3 1 2) #'>) returns (3 2 1)

Dotted ListsDotted ListsDotted ListsDotted Lists

Proper list refers to a list in which every cdr
points to another cons (or nil)
Dotted list refers to the case when this is not true

1 2

(1 . 2)

Kenneth W. Flynn (31-36)
09/09/98

To Dot Or Not To Dot?To Dot Or Not To Dot?To Dot Or Not To Dot?To Dot Or Not To Dot?

Lisp displays a list with the dot only for the cons
which is not proper
So a cons can be used as a two field data
structure.
Better ways of doing this, though... Structures
(next week) come to mind

ArraysArraysArraysArrays

Creation
make-array

1 required argument -- list of dimensions or
integer
:initial-element initializes array

Retrieval
aref

Returns reference to element

Array ExampleArray ExampleArray ExampleArray Example

> (setf x (make-array 3
 :initial-element 0))
#(0 0 0)
> (setf (aref x 1) 1)
1
> (setf (aref x 2) 2)
2
> x
#(0 1 2

VectorsVectorsVectorsVectors

Just one dimensional arrays
Create with vector

Simliar to list
Can access quickly with svref instead of aref
> (setf x (vector 1 2 3))
#(1 2 3)
> (svref x 2)
3

Whew!Whew!Whew!Whew!

We've covered a lot today!
For next week

Read Chapters 3 and 4 in Graham
Start Homework #1 (Due 9/14. New due date!)

On the next exciting episode
Structures
Control Flow
Gory function details

Kenneth W. Flynn (37-42)
09/09/98

