
Programming in LispProgramming in LispProgramming in LispProgramming in Lisp

Lecture #1Lecture #1

Welcome!Welcome!Welcome!Welcome!

Programming in Lisp
Course Number CSCI 2210-01
Class Meetings

Sage 3303
Aug. 24 - Oct. 14
Wednesdays, 4 - 6 pm

InstructorInstructorInstructorInstructor

Kenneth W. Flynn
BS Physics
MS Computer Science (May '99)
Ph. D Astrophysics (Someday)

Email: flynnk@rpi.edu
Office Hours

TextsTextsTextsTexts

Ansi Common Lisp by Paul Graham; Prentice
Hall, 1996

ISBN 0-13-370875-6
RequiredRequired

Lisp by Guy L. Steele
Optional

Course NotesCourse NotesCourse NotesCourse Notes

Course notes and other materials will be available
via the course website:

http://www.cs.rpi.edu/courses/fall98/lisp/
Check the website frequently

GradingGradingGradingGrading

Two schemes...

Item Weights Alternative
Weights

Halfway Quiz 15% 15%
Final Exam 15% -
Class Participation 25% 25%
Homework #1 15% 20%
Homework #2 15% 20%
Homework #3 15% 20%

Kenneth Flynn (1-6)
09/08/98

Course Policies (I)Course Policies (I)Course Policies (I)Course Policies (I)

Homework
Due at 11:59:59 on date given in syllabus and on
assignment
Late homework is penalized 10% for each RPI class
day late. Extensions may be requested until noon of
the date due
Students may work in teams of 2. Both students
will receive the same grade

Course Policies (II)Course Policies (II)Course Policies (II)Course Policies (II)

Exams
May cover material from lectures or readings
Time conflicts should see me ASAP

And now...And now...And now...And now...

Lisp!
Name comes from LISt Processor
Lisp is... well, different
In Lisp, data == programs
So why learn Lisp?

AI uses
Different (buzzword alert!) paradigm for
programming

LispLispLispLisp

Lisp is interactive
Most of the time when Lisp is waiting for input,
we say it is at the topleveltoplevel..
We can type lisp expressions into the toplevel and
they will be evaluated:

> 1
1
>

Atoms & ListsAtoms & ListsAtoms & ListsAtoms & Lists

Atoms
A single element of a particular data type.

Lists
Lists may contain atoms or other lists
Enclosed in parens "(atom atom atom list)"
We'll talk more about lists later, and a lot more
next week

Atoms & Lists ExamplesAtoms & Lists ExamplesAtoms & Lists ExamplesAtoms & Lists Examples

Atoms
1
3.3
WUMPUS

Lists (LISp)
(1 2 3)
(1 3 FIVE)
(A LIST (A NESTED LIST))

Kenneth Flynn (7-12)
09/08/98

ExpressionsExpressionsExpressionsExpressions

Syntatic structure
(Operator Argument Argument ...)
That's 0 or more arguments
Expressions are lists! (Ponder this a moment!)

> (*)
1
> (* 1)
1
> (* 2)
2
> (* 2 2)
4
> (* 1 2 3)
6

Expression ExamplesExpression ExamplesExpression ExamplesExpression Examples

EvaluationEvaluationEvaluationEvaluation

Evaluation (what happens when you press enter)
happens in two steps:

The arguments are evaluated, left to right
Call by value occurs for the given operator
(function)

This is the Evaluation Rule for Common Lisp

Evaluation ExampleEvaluation ExampleEvaluation ExampleEvaluation Example

> (/ (* 4 6) 3)
/ is the operator, skip this
(* 4 6) is the first argument, let's evaluate
* is the operator, skip this
4 is the first argument, it evaluates to itself
6 is the second argument, it evaluates to itself
* is now called with the arguments 4 and 6
(*4 6) is replaced by 24

Evaluation Example IIEvaluation Example IIEvaluation Example IIEvaluation Example II

We currently have: (/ 24 8)
The second argument to / is 8, it evaluates to
itself
/ is now called with the arguments 24 and 8
(/ 24 8) is replaced by 3
This is returned to the toplevel

More Expression ExamplesMore Expression ExamplesMore Expression ExamplesMore Expression Examples

> (/ (* 4 6) 3)
8
> (quote hello)
HELLO
> 'hello
HELLO

Kenneth Flynn (13-18)
09/08/98

The Quote OperatorThe Quote OperatorThe Quote OperatorThe Quote Operator

These are equivalent
 (quote Hello)
'Hello

Special Operator
Disobeys the Evaluation Rule

Quote says "Don't evaluate my argument"

> (quote hello)
HELLO
> 'hello
HELLO
> hello
;; Error: Unbound variable HELLO in #<function 1
#x810FC0>

Quote ExamplesQuote ExamplesQuote ExamplesQuote Examples

SymbolsSymbolsSymbolsSymbols

When Lisp returns something like:
> 'ARTICHOKE
ARTICHOKE

This is a symbol
We'll talk more about symbols later, but for
now...
Symbols are names for other things. One role
they fill is that of variables.

The Story So Far...The Story So Far...The Story So Far...The Story So Far...

Atoms
Lists
Expressions
Evaluation (The Evaluation Rule)
Symbols
'

listlistlistlist

Another operator
This one builds lists
> (list 1 2 3)
(1 2 3)
> (list 1 (+ 1 1) 3)
(1 2 3)
> (list 'Tada (+ 1 1) 3)
(TADA 2 3)

list list list list IIIIIIII

These do the same thing:
(list 1 2 3)
'(1 2 3)

Kenneth Flynn (19-24)
09/08/98

nilnilnilnil

Symbol
Represents empty list -- a list with no elements
> 'nil
NIL
> nil
NIL

nil evaluates to itself

'()
NIL

Is There No Is There No Is There No Is There No TruthTruthTruthTruth in Beauty? in Beauty? in Beauty? in Beauty?

Lisp has the concept of Boolean values
The value "True" is represented by t
> t
T
The value "False" is represented by nil

This is a second use for nil
Functions that determine truth are called
predicates

Predicates: listpPredicates: listpPredicates: listpPredicates: listp

listp
Is the argument a list?
> (listp 'Beauty)
NIL
> (listp '(No Lie))
T

Predicates: nullPredicates: nullPredicates: nullPredicates: null

null
Is the argument an empty list?
> (null nil)
T
> (null '(The Truth Is Out There))
NIL

Predicates: notPredicates: notPredicates: notPredicates: not

not
Returns opposite of the argument
> (not t)
NIL
> (not nil)
T
Does exactly the same as null. For readibility,
though...

"if", "and", "or", but no "but"s "if", "and", "or", but no "but"s "if", "and", "or", but no "but"s "if", "and", "or", but no "but"s

These statements begin to allow for logic in your
programs
if is the simplest form of flow control (which is
somewhat different than in iterative languages)

Kenneth Flynn (25-30)
09/08/98

(if 'Truth-Statement 'Then-do-this 'Else-do-this)
if is a macro. Macros disobey the Evaluation Rule
(The exceptions prove the rule?)
For if: The first argument is always evaluated
If the first argument is true, the second argument is
evaluated, and it's value returned
If the first argument is false, the third argument is
evaluated instead, and it's value is returned.

IfIfIfIf if examplesif examplesif examplesif examples

>(if t 'A 'B)
A
> (if nil 'a 'b)
B

and / orand / orand / orand / or

and
Macro
Returns true if all arguments are true
Lazy evaluation (stops at first false argument)

or
Macro
Returns true if any argument true
Lazy evalution (stops at first true argument)

Functions Functions Functions Functions (defun)(defun)(defun)(defun)

Create new functions with defun.
Syntax: (defun function-name (parameter-list)
(expressions))
Macro
Functions make up the majority of functionality
provided

Function ExamplesFunction ExamplesFunction ExamplesFunction Examples

>(defun adder (x y)
 (+ x y)
)
>(adder 3 2)
5
>(adder 1.0 3.5)
4.5

ReviewReviewReviewReview

Atoms, Lists, Expressions, Evaluation (The
Evaluation Rule), Symbols, '
Predicates (listp, null, not, and, or)
Macros (conceptually)
Functions (pratically)
This class was an introduction of a lot of
concepts. From now on, we'll be more focused.

Kenneth Flynn (31-36)
09/08/98

On the Next Exciting Episode!On the Next Exciting Episode!On the Next Exciting Episode!On the Next Exciting Episode!

Input and Output
Variables (or not...)
Lisp Data Structures: lists and arrays

For Next Week...For Next Week...For Next Week...For Next Week...

Read Chapter #2 in Graham
We didn't cover everything in Chapter #2

Some we will do next week
Some we will come back to

Operations on ListsOperations on ListsOperations on ListsOperations on Lists

Lots of this next week, but for now:
car returns the first element
cdr returns a list containing everything except
the first element

> (car '(1 2 3))
1
> (cdr '(1 2 3))
(2 3)
>

Operations on Lists IIOperations on Lists IIOperations on Lists IIOperations on Lists II

cons builds a list. It takes the first argument and
attachs it to the beginning of the second
argument:
> (cons 1 '(2 3))
(1 2 3)
> (first '(1 2 3))
1
> (second '(1 2 3))
2
>

Kenneth Flynn (37-42)
09/08/98

