Welcome!
= Programming in Lisp
Programming in Lisp A Course Number CSCI 2210-01
A Class Meetings
@ Sage 3303
® Aug. 24 - Oct. 14
Lecture #1 @ Wednesdays, 4 - 6 pm
Instructor Texts
= Kenneth W. Flynn = Ansi Common Lisp by Paul Graham; Prentice
A BS Physics Hall, 1996
A MS Computer Science (May '99) A ISBN 0-13-370875-6
A Ph. D Astrophysics (Someday) A Required
= Email: flynnk@rpi.edu E Lisp by Guy L. Steele
= Office Hours A Optional
Course Notes Grading
= Course notes and other materials will be available B Two schemes...

via the course website:
A http://www.cs.rpi.edu/courses/fall98/lisp/

Item Weights Alternative
i Weights
& Check the website frequently ey Oz = e
Final Exam 15% -
Class Participation 25% 25%
Homework #1 15% 20%
Homework #2 15% 20%
Homework #3 15% 20%

Kenneth Flynn (1-6)
09/08/98



Course Policies (1) Course Policies (I1)

= Homework = Exams
A Due at 11:59:59 on date given in syllabus and on A May cover material from lectures or readings
assignment A Time conflicts should see me ASAP

A Late homework is penalized 10% for each RPI class
day late. Extensions may be requested until noon of
the date due

A Students may work in teams of 2. Both students
will receive the same grade

And now... Lisp
= Lisp! = |isp is interactive
= Name comes from LISt Processor = Most of the time when Lisp is waiting for input,
M Lisp is... well, different we say it is at the toplevel.
u |n Lisp, data == programs = We can type lisp expressions into the toplevel and
u So why learn Lisp? they will be evaluated:
A Al uses > 1
A Different (buzzword alert!) paradigm for 1
programming >
Atoms & Lists Atoms & Lists Examples
= Atoms = Atoms
A Asingle element of a particular data type. al
= Lists A 33
A Lists may contain atoms or other lists 4 WUMPUS
A Enclosed in parens "(atom atom atom list)" E Lists (LISp)
a We'll talk more about lists later, and a lot more A (123
next week A (13FIVE)
A (ALIST (A NESTED LIST))

Kenneth Flynn (7-12)
09/08/98



Expressions

E Syntatic structure

& (Operator Argument Argument ...)

= That's O or more arguments

& Expressions are lists! (Ponder this a moment!)

Expression Examples

Evaluation

= Evaluation (what happens when you press enter)
happens in two steps:
A The arguments are evaluated, left to right
A Call by value occurs for the given operator
(function)

& This is the Evaluation Rule for Common Lisp

Evaluation Example

4>/ (*46)3

&/ is the operator, skip this

E (* 4 6) is the first argument, let's evaluate

E * js the operator, skip this

= 4 is the first argument, it evaluates to itself

E 6 is the second argument, it evaluates to itself
& * js now called with the arguments 4 and 6

m (*4 6) is replaced by 24

Evaluation Example Il

= We currently have: (/ 24 8)

= The second argument to / is 8, it evaluates to
itself

=/ is now called with the arguments 24 and 8
u (/24 8)is replaced by 3
& This is returned to the toplevel

More Expression Examples

>(/(*46)3)
8
> (quote hello)
HELLO
> 'hello
HELLO

Kenneth Flynn (13-18)
09/08/98




The Quote Operator Quote Examples

> (quote hello)

& These are equivalent HELLO
A (quote Hello) > "hello
A 'Hello HELLO

> hello

& Special Operator ) ) .
. . :; Error: Unbound variable HELLO in #<function 1
A Disobeys the Evaluation Rule 81 0FCO>

& Quote says "Don't evaluate my argument”

Symbols The Story So Far...
= When Lisp returns something like: = Atoms
> 'ARTICHOKE o | jsts
ARTICHOKE B Expressions
“ : .
This is a symbol Evaluation (The Evaluation Rule)
= Symbols

= We'll talk more about symbols later, but for
now...

= Symbols are names for other things. One role
they fill is that of variables.

o’

list list Il

= Another operator & These do the same thing:

5 This one builds lists A (list123)

B> (list123) a'123)
(123

o >(listl(+11)3)
(123

B > (list 'Tada (+ 1 1) 3)
(TADA 2 3)

Kenneth Flynn (19-24)
09/08/98



]
|
|

]

nil

Symbol

Represents empty list -- a list with no elements
> "nil

NIL

> nil

NIL

A nil evaluates to itself

()

NIL

Is There No Truth in Beauty?

= Lisp has the concept of Boolean values
& The value "True" is represented by t
o>t
T
& The value "False" is represented by nil
A This is a second use for nil
= Functions that determine truth are called
predicates

Predicates: listp

listp
A Is the argument a list?
A > (listp 'Beauty)
NIL
a > (listp '(No Lie))
T

Predicates: null

= null
A Is the argument an empty list?
A > (null nil)
T

A > (null '(The Truth Is Out There))
NIL

Predicates: not

not
A Returns opposite of the argument
A > (nott)
NIL
a > (not nil)
T

A Does exactly the same as null. For readibility,
though...

"if*, "and", "or", but no "but"s

E These statements begin to allow for logic in your
programs

= if is the simplest form of flow control (which is
somewhat different than in iterative languages)

Kenneth Flynn (25-30)

09/08/98




If if examples

g (if 'Truth-Statement 'Then-do-this 'Else-do-this) = >(ift'A'B)
A ifisa macro. Macros disobey the Evaluation Rule A
(The exceptions prove the rule?) = > (if nil 'a'b)
A For if: The first argument is always evaluated B

A If the first argument is true, the second argument is
evaluated, and it's value returned

A If the first argument is false, the third argument is
evaluated instead, and it's value is returned.

and 7 or Functions (defun)

= and = Create new functions with defun.

A Macro

A Returns true if all arguments are true

A Lazy evaluation (stops at first false argument)
or

A Macro

A Returns true if any argument true

A Lazy evalution (stops at first true argument)

m Syntax: (defun function-name (parameter-list)
(expressions))

= Macro

© Functions make up the majority of functionality
provided

Function Examples

w>(defun adder (x vy)
(+ x vy)

o >(adder 3 2)
5

o >(adder 1.0 3.5)
4.5

Review

= Atoms, Lists, Expressions, Evaluation (The
Evaluation Rule), Symbols, '

= Predicates (listp, null, not, and, or)
= Macros (conceptually)
& Functions (pratically)

= This class was an introduction of a lot of
concepts. From now on, we'll be more focused.

Kenneth Flynn (31-36)




On the Next Exciting Episode!

& [nput and Output
= Variables (or not...)
= Lisp Data Structures: lists and arrays

For Next Week...

& Read Chapter #2 in Graham

A We didn't cover everything in Chapter #2
@ Some we will do next week
@ Some we will come back to

Operations on Lists

= |ots of this next week, but for now:
= car returns the first element
& cdr returns a list containing everything except

the first element

Operations on Lists Il

= cons builds a list. It takes the first argument and

attachs it to the beginning of the second
argument:

> (car (12 3)
1
> (cdr (1 2 3))
(23)

>

> (cons 1'(2 3))
(123)

> (first '(1 2 3))
1
> (second ‘(1 2 3))
2
>

Kenneth Flynn (37-42)

09/08/98




