
CSCI-1200 Data Structures
Test 2 — Practice Problems

Note: This packet contains selected practice problems from Test 2 from three previous years.
Your test will contain approximately one third to one half as many problems (totalling ∼100 pts).

1 Mock Interview Practice [28 pts]

Ben Bitdiddle is prepping for a coding interview and asks his Data Structures mentor Jenay for help. Please
read through the entire question before working on any of the subproblems. Jenay suggests Ben tackle this
problem from lecture: “Write code to remove duplicates from a sequence of words.”

Ben writes a function remove_dups_1 that takes in an STL vector of STL strings and returns the number
of words that were removed. For this input:
the quick brown fox jumped over the lazy brown dogs and also jumped over the lazy penguin

Calling Ben’s first draft function returns ’6’ and the vector now contains:
also and brown dogs fox jumped lazy over penguin quick the

Jenay observes that while sorting the data makes the program run fast, unfortunately the likely intention
was to preserve the order within the original data.

1.1 Quick but Flawed [14 pts]

Write code that matches the description of Ben’s remove_dups_1 function:

sample solution: 19 line(s) of code

If the input has n words and r words are removed, what is the Big O Notation of remove_dups_1?

1

1.2 Preserving the Sequence [14 pts]

For his second draft, remove_dups_2, Ben starts over from scratch. The function has the same prototype,
but based on Jenay’s feedback it now preserves the original order of the data. So for this input:

the quick brown fox jumped over the lazy brown dogs and also jumped over the lazy penguin

The function returns 6 and the vector now contains:

the quick brown fox jumped over lazy dogs and also penguin

Jenay’s feedback about remove_dups_2 is that he’s using the erase function, which will negatively impact
the performance of this code. Write code that matches the description of Ben’s remove_dups_2 function:

sample solution: 16 line(s) of code

If the input has n words and r words are removed, what is the Big O Notation of remove_dups_2?

Ben copies his code for remove_dups_2 to a new function. The only difference for remove_dups_3 is that
he search-and-replaces ’vector’ with another STL container. The program produces the same answer but
now runs faster. What’s the replacement container? What is the Big O Notation for remove_dups_3?

2

2 Clown Car Data Structures [25 pts]

Write a function named clowncar that takes in two arguments, one of type Vec named a and the other of
type dslist named b. In lecture and lab we talked about the implementations of these two “homemade”
versions of our favorite STL containers. The function should swap the data stored in these two structures
so that after the call a contains the sequence of values that was in b and b contains the data that was in a.

The clowncar function has been appropriately added as a friend function of both Vec and dslist so that
it can directly access the private member variables of both classes. Your implementation of clowncar
SHOULD NOT call any other functions (including member functions of Vec or dslist) and it
SHOULD NOT use iterators. We want to see you directly edit the member variables and work with
the dynamic memory. As a reminder, here are the private member variables of the relevant classes:

Vec

T* m_data;

size_type m_size;

size_type m_alloc;

Node

T value_;

Node<T>* next_;

Node<T>* prev_;

dslist

Node<T>* head_;

Node<T>* tail_;

unsigned int size_;

2.1 Drawing [9 pts]

First, make a detailed memory diagram of sample input to the function: a stores 2 even integers (6 & 8)
and b stores 3 odd integers (15, 17, & 19). Next, neatly edit this diagram to show what will happen when
you call clowncar. Instead of erasing, lightly cross out things that are changed (allowing us to legibly
grade the diagram both before & after the call). Your diagram should match the code you write on the
next page. Be sure to include any temporary variables, and all allocations and deallocations of memory.

3

2.2 Implementation [16 pts]

Now implement the clowncar function. Ensure your function does not have any memory errors or leaks.

sample solution: 29 line(s) of code

4

3 “Missing” dslist Iterator Operators [14 pts]

Louis B. Reasoner is working on a group project and his teammates are upset that the project code below
doesn’t compile. They claim something must be wrong with dslist!

dslist<std::string>::iterator itr = sentence.begin() + 1;

dslist<std::string>::iterator itr2 = itr + 4;

assert (!(itr2 < itr));

while (itr < itr2) {

std::cout << *itr << " ";

++itr;

}

std::cout << std::endl;

Louis tries to explain that dslist is fine. That this code wouldn’t work even if they switched to the STL
list class. He suggests they modify the lines that do not compile to use these functions:

list_iterator<T>& operator++() { ptr_ = ptr_->next_; return *this; }

bool operator!=(const list_iterator<T>& r) const { return ptr_ != r.ptr_; }

Unfortunately, Louis is unable to convince his teammates to change the project code, and with the deadline
fast approaching Louis instead modifies the dslist implementation to make the project code above work.
What two operator member functions does Louis add to the list_iterator class? Write these two
functions as they would appear in the class declaration. Note: You may break the course rule discouraging
multiple line functions inside the class declaration.

sample solution: 16 line(s) of code

5

4 Debugging Skillz [/ 14]

For each program bug description below, write the letter of the most appropriate debugging skill to use to
solve the problem. Each letter should be used at most once.

A) get a backtrace

B) add a breakpoint

C) use step or next

D) add a watchpoint

E) examine different frames of the stack

F) reboot your computer

G) use Dr Memory or Valgrind to locate the leak

H) examine variable values in gdb or lldb

A complex recursive function seems to be entering an infinite loop,
despite what I think are perfect base cases.

The program always gets the right answer, but when I test it with a complex input
dataset that takes a long time to process, my whole computer slows down.

I’m unsure where the program is crashing.

I’ve got some tricky math formulas and I suspect I’ve got an order-of-operations error
or a divide-by-zero error.

I’m implementing software for a bank, and the value of a customer’s bank account is
changing in the middle of the month. Interest is only supposed to be added
at the end of the month.

Select one of the letters you did not use above, and write 3-4 well-written sentences describing of a specific
situation where this debugging skill would be useful. You are encouraged to describe a personal anecdote.

6

5 It’s all Downhill from Here! [16 pts]

Write a recursive function named downhill that takes in 4 arguments: grid,
start, end, and path. It searches the 2D grid of elevations, an STL vector of
STL vectors of integers, for a path from a start location to an end location.
Each step along the path can go up, down, left, or right, but each step must have
a lower elevation value than the current position. If it finds a valid downhill path
from start to end, the function stores the path (an STL vector of locations) and
returns true, otherwise it returns false.

(0,0)

↓
3 2 1 2 5 6

5 5 3 3 4 5

3 9 9 5 3 4

4 8 7 6 7 2

3 3 4 6 6 1
↑

(4,5)

// A Location on the grid

class loc {

public:

loc(int r, int c) :

row(r), col(c) {}

int row;

int col;

};

For the example shown above right, if start is (3,1) and end is
(0,2), then this is a valid downhill path:

(3,1) (3,2) (3,3) (2,3) (1,3) (0,3) (0,2)

Note: There may be multiple valid downhill paths from start
to end, and your function may choose any of these valid paths.

sample solution: 16 line(s) of code

7

6 The Dynamic Tetris Slide [35 pts]

Our implementation of the Tetris game for Homework 3 only allowed pieces to drop vertically. The full game
rules also allow pieces to move horizontally, which can be used by a skilled player to tuck in underneath an
“overhang”. In this problem we will extend our solution with the slide function that allows the square
piece, the ’O’ piece, to slide one space to the right. For this problem you don’t need to worry about sliding
any other piece shape, or about sliding to the left.

Below are two example Tetris games showing how this function works.

3 1

slide(1,2) slide(1,3) slide(2,1)

0 1 1 31 30 01 1 3 3 0 4 4 5 5 0 0 0 4 5 5 00 01 3

O

I I I II

O

OO

O

III

L L

L

L

T T T

T

O O

OO

L L

L

L

T T T

T

O

O

O

O

I

O

O

III

O

O O

O

O

The representation for the Tetris class consists of 3 private
member variables: data, heights, and width. The memory
layout for the 4th diagram above is shown to the right. Remember
that we must maintain the arrays to be exactly as long as
necessary to store the blocks on the board. The space character
is used to represent empty air underneath a block.

The slide function takes in 2 integers, the row and column of
the lower left corner block of the square ’O’ piece that we want to
slide.

L

O O

T

L

TT

T

L

LOO

data:

0heights:

width: 6

4 4 5 5 0

We will also implement the can_slide function which first tests whether a piece is able to slide to the right.
It will return false if the ’O’ piece at the specified row and column is already at the right edge of the board,
e.g., calling can_slide(1,4) in the third image above returns false. It will return false if the ’O’ piece at
the specified row and column is blocked by another piece on the board, e.g., calling can_slide(2,2) in
the 5th image above will return false.

6.1 Algorithm Analysis [5 pts]

Assume that the game board has width w, the height of the tallest column is h, and the number of blocks
(total number of piece characters and space characters) is b. What is the Big O Notation for the running
time of your can_slide and slide functions that you have implemented on the next two pages? Write
two to three concise and well-written sentences justifying your answers.

can_slide:

slide:

6.2 can slide Implementation [12 pts]

bool Tetris::can_slide(int row, int column) const {

// First, let's do some error checking on input arguments

// and the current board state. This will help when we need

// to debug this new function. Write if/else statements

// and/or assertions to verify your assumptions.

8

sample solution: 8 line(s) of code

// Now, we can do the logic necessary to determine whether this piece

// can slide to the right.

sample solution: 6 line(s) of code

}

9

6.3 slide Implementation [18 pts]

void Tetris::slide(int row, int column) {

assert (can_slide(row,column) == true);

sample solution: 26 line(s) of code

}

10

7 Lightning Round [13 pts]

std::vector<std::string> a;

std::list<std::string> b;

// omitted: initialize both containers to hold n = a large number of words

01 a.push_front("apple");

02 b.push_front("banana");

03 a.push_back("carrot");

04 b.push_back("date");

05 std::vector<std::string>::iterator itr_a = a.begin();

06 std::list<std::string>::iterator itr_b = b.begin();

07 itr_a = a.insert(itr_a,"eggplant");

08 itr_a += 5;

09 itr_a = a.erase(itr_a);

10 itr_b += 5;

11 itr_b = b.insert(itr_b,"eggplant");

12 ++itr_b;

13 itr_b = b.erase(itr_b);

14 a.sort();

15 b.sort();

16 std::sort(a.begin(),a.end());

17 std::sort(b.begin(),b.end());

Which lines result in a compilation error?

Which lines cause a segmentation fault?

Which lines have a memory leak?

Which lines run in O(1) time?

Which lines run in O(n) time?

Which lines run in O(n log n) time?

Which lines run in O(n2) time?

11

8 Button Up the Linked Grid [26 pts]

Alyssa P. Hacker and Ben Bitdiddle are working
on a team project based on the linked grid of
Nodes data structure from Homework 5. Alyssa
suggests they start with the print_perimeter

function, which takes in a pointer to a Node

named start, and walks around the edge of
the grid in a clockwise direction. The function
should print the value stored in every Node

visited.

For example, print_perimeter(start) for the
diagram shown on the right will print this
sequence of values to the screen:

B C D H L K J I E A

Alyssa says it’s ok to assume that the grid is
at least two rows tall and at least two columns
wide and that start definitely points to a Node
somewhere on the edge/perimeter of the grid.

template <class T> class Node {

public:

T value;

Node<T> *up,*down,*left,*right;

};

start

up:

down:

le
ft

:

ri
g

h
t:

up:

down:

le
ft

:

ri
g

h
t:

up:

down:

le
ft

:

ri
g

h
t:

up:

down:

le
ft

:

ri
g

h
t:

up:

down:

le
ft

:

ri
g

h
t:

up:

down:

le
ft

:

ri
g

h
t:

up:

down:

le
ft

:

ri
g

h
t:

up:

down:

le
ft

:

ri
g

h
t:

up:

down:

le
ft

:

ri
g

h
t:

up:

down:

le
ft

:

ri
g

h
t:

up:

down:

le
ft

:

ri
g

h
t:

up:

down:

le
ft

:

ri
g

h
t:

L

H

DC

G

J

F

B

I

E

A

K

NULL

NULL

NULL

NULLNULLNULLNULL

NULL

NULL

NULL

NULL NULL NULL NULL

8.1 Implement print perimeter [12 pts]

sample solution: 16 line(s) of code

12

Meanwhile, Ben is working on a function named rebutton, which takes in 2 arguments: start, a pointer
to a Node on the top edge of the grid and a bool shift_up. The function makes a vertical cut to the right
of start and reconnects the Nodes on either side of the cut shifted up (below left) or shifted down (below
right) one row. Ben claims that calling rebutton(start,true) followed by rebutton(start,false) will
restore the original grid. And vice versa.

NULL

up:

down:

le
ft

:

ri
g

h
t:

up:

down:

le
ft

:

ri
g

h
t:

up:

down:

le
ft

:

ri
g

h
t:

up:

down:

le
ft

:

ri
g

h
t:

up:

down:

le
ft

:

ri
g

h
t:

up:

down:

le
ft

:

ri
g

h
t:

up:

down:

le
ft

:

ri
g

h
t:

up:

down:

le
ft

:

ri
g

h
t:

up:

down:

le
ft

:

ri
g

h
t:

up:

down:

le
ft

:

ri
g

h
t:

up:

down:

le
ft

:

ri
g

h
t:

up:

down:

le
ft

:

ri
g

h
t:

L

H

DC

G

K

NULL

NULL

NULL

NULLNULL

NULL NULL

J

F

B

I

E

A

NULLNULL

NULL

NULL

NULL

NULL NULL

start NULL
NULL

up:

down:

le
ft

:

ri
g

h
t:

up:

down:

le
ft

:

ri
g

h
t:

up:

down:

le
ft

:

ri
g

h
t:

up:

down:

le
ft

:

ri
g

h
t:

up:

down:

le
ft

:

ri
g

h
t:

up:

down:

le
ft

:

ri
g

h
t:

up:

down:

le
ft

:

ri
g

h
t:

up:

down:

le
ft

:

ri
g

h
t:

up:

down:

le
ft

:

ri
g

h
t:

up:

down:

le
ft

:

ri
g

h
t:

up:

down:

le
ft

:

ri
g

h
t:

up:

down:

le
ft

:

ri
g

h
t:

J

F

B

I

E

A

NULLNULL

NULL

NULL

NULL

NULL NULL

start

L

H

DC

G

K

NULL

NULL

NULL

NULLNULL

NULL NULL

NULL

8.2 Implement rebutton [14 pts]

sample solution: 28 line(s) of code

13

9 Recursive Maximum Coin Path [23 pts]

Write a recursive function named max_coin_path that searches a 2D grid of
“coins”, an STL vector of STL vector of non-negative integers, for a path back
to the origin (0,0). In walking from the start location (lower right corner of grid)
to the origin (upper left corner), the path is only allowed to move up or left one
grid space at a time. The goal is to find a path that maximizes the sum of the
coins along the path. The function should return the maximum sum.

end

↓
0 0 0 0 3

0 1 0 0 0

0 0 2 0 0

0 0 1 0 0
↑

start

class Location {

public:

Location(int r, int c)

: row(r),col(c) {}

int row;

int col;

};

For the example shown above right, the path
(3,4) (3,3) (3,2) (2,2) (2,1) (1,1) (1,0) (0,0)

collects coins with values 1 + 2 + 1 = 4, which is the maximum coin sum
that can be achieved on this grid. The path achieving that sum should
be stored in the second argument passed to the function, an STL list of
Locations named path. Note: there are a few similar paths that have the
same sum. Your function may return any of these optimal paths.

9.1 Usage [2 pts]

You will implement the max_coin_path on the next page. But first, complete the initial call to the
max_coin_path function below. Assume grid has already been initialized; for example, with the data
shown above. What additional information does your function need to get started?

std::list<Location> path;

int max_coin_sum = max_coin_path(grid,path,);

9.2 Algorithm Analysis [5 pts]

Assume that the grid width and height are w and h respectively, the number of non-zero coins in the grid
is c, and the value of the maximum coin is m. What is the Big O Notation for the running time of your
answer on the next page? Write three to four concise and well-written sentences justifying your answer.

14

9.3 Implementation [16 pts]

Now implement the max_coin_path function. Remember: it should be recursive.

sample solution: 27 line(s) of code

15

10 Linked Tube Repair [/ 33]

Alyssa P. Hacker is working on a modified linked list that is both two-
dimensional and circular. A small sample with height=3 and circumference=4
is shown below. Each templated Node has pointers to its 4 neighbors. The
top and bottom edges of the tube structure have NULL pointers. But the left
and right edges wrap around, like a circularly linked list. This cylindrical tube
structure may have any number of nodes for its height and its circumference.

template <class T>

class Node {

public:

// REPRESENTATION

T value;

Node<T> *up;

Node<T> *down;

Node<T> *left;

Node<T> *right;

};10.1 Tube repair Diagram [/ 4]

First Alyssa wants to tackle the challenge of repairing a hole in the structure. Assume a single Node is
missing from the structure, and we have a pointer n to the Node immediately to the left of the hole. Modify
the diagram below to show all of the necessary edits for a call to repair(n,7);

n

up:

down:

right:

value:

:left

up:

down:

right:

value:

:left

up:

down:

right:

value:

:left

up:

down:

right:

value:

:left

up:

down:

right:

value:

:left

up:

down:

right:

value:

:left

up:

down:

right:

value:

:left

up:

down:

right:

value:

:left

up:

down:

right:

value:

:left

up:

down:

right:

value:

:left

up:

down:

right:

value:

:left

NULL NULL

1 2

NULLNULL

NULL

3

NULL

NULL

NULL

4

5 6 8

9 10 11 12

?

?

?

?

10.2 Thinking about Tube repair Complexity [/ 3]

The repair function should have constant running time in most cases. Describe an example structure with
a single missing Node that can be repaired, but not in constant time. Write 2-3 concise and well-written
sentences. You may want to complete the implementation on the next page before answering.

16

10.3 Tube repair Implementation [/ 13]

Now, implement repair, which takes 2 arguments: a pointer to the Node immediately to the left of the
hole and the value to be stored in the hole. You may assume a single Node is missing from the structure.

sample solution: 26 line(s) of code

17

10.4 Non-Iterative destroy tube Implementation [/ 13]

Now write destroy_tube (and any necessary helper functions) to clean up the heap memory associated
with this structure. The function should take a single argument, a pointer to any Node in the structure.
You may assume the structure has no holes or other errors. You cannot use a for or while loop.

sample solution: 17 line(s) of code

18

11 Rehashing the Vec Assignment Operator [/ 15]

Complete the Vec assignment operator implementation below, while minimizing wasted heap memory.
Assume the allocator is most efficient when all heap allocations are powers of two (1, 2, 4, 8, 16, etc.)

1 template <class T>

2 Vec<T>& Vec<T>::operator=(const Vec<T>& v) {

3 if (this != &v) {

4 delete ;

5 m_size = ;

6 m_alloc = ;

7 m_data = ;

8 for (int i = 0; i < ; ++i) {

9 m_data[i] = ;

10 }

11 }

12 return *this;

13 }

Add code below to perform a simple test of the assignment operator:

Vec<double> v; v.push_back(3.14159); v.push_back(6.02); v.push_back(2.71828);

Is line 12 necessary? Continue your testing code above with a test that would break if line 12 was omitted.

What is the purpose of line 3? Write code for a test that would break if lines 3 and 10 were omitted.

19

12 Essay Revision: Embellishment [/ 14]

Write a function embellish that modifies its single argument, sentence (an STL list of STL strings),
adding the word “very” in front of “pretty” and adding “with a wet nose” after “grey puppy”. For
example:

the pretty kitty sat next to a grey puppy in a pretty garden

Should become:

the very pretty kitty sat next to a grey puppy with a wet nose in a very pretty garden

sample solution: 20 line(s) of code

If there are w words in the input sentence, what is the worst case Big O Notation for this function? If we
switched each STL list to STL vector in the above function, what is the Big O Notation?

STL list: STL vector:

20

13 Essay Revision: Redundant Phrases [/ 15]

Complete redundant, which takes a sentence and 2 phrases and replaces all occurrences of the first phrase
with the second, shorter phrase. For example “pouring down rain” is replaced with “pouring rain”:

it is pouring down rain so take an umbrella → it is pouring rain so take an umbrella

Or we can just eliminate the word “that” (the replacement phrase is empty):

I knew that there would be late nights when I decided that CS was the career for me

→ I knew there would be late nights when I decided CS was the career for me

typedef std::list<std::string> words;

void redundant(sentence, phrase, replace) {

sample solution: 19 line(s) of code

}

21

14 Don’t Ignore Compilation Warnings! [/ 15]

Write a useful but buggy segment of code (or function) that will compile with no errors but will produce
the indicated compilation warning. Put a star ⋆ next to the line of code that will trigger the warning.
Write a concise and well-written sentence describing the intended vs. actual (buggy) behavior of the code.

warning: comparison of integers of different signs: 'int' and 'unsigned int'

warning: control reaches / may reach end of non-void function

warning: variable is uninitialized when used here / in this function

warning: returning reference to local temporary object / reference to stack memory

associated with a local variable returned

22

warning: expression result unused / expression has no effect

warning: unused variable / unused parameter

15 Cyber Insecurity [/ 5]

Ben Bitdiddle wrote the following code fragment to manage his personal information.

1 std::ifstream istr("my_information.txt");

2 std::string s;

3 std::vector<std::string> data;

4 while (istr >> s) { data.push_back(s); }

5 std::vector<std::string>::iterator password = data.begin()+4;

6 data.push_back("credit_card:");

7 data.push_back("1234-5678-8765-4321");

8 data[4] = "qwerty";

9 std::cout << "my password is: " << *password << std::endl;

my information.txt

name: Ben Bitdiddle

password: pa$$word

SSN: 123-45-6789

Write “True” in the box next to each true statement. Leave the boxes next to the false statements empty.

Lines 2 & 3 will produce an “uninitialized read” error when run under gdb or lldb.

Line 5 is not a valid way to initialize an iterator.

Ben’s credit card information is not saved back to the file.

This program might behave differently if re-run on this computer or another computer.

A memory debugger might detect an “unaddressable access of freed memory” error on Line 9.

If we move lines 6 & 7 after line 9, this code fragment will run without memory errors.

This code contains memory leaks that can be detected by Dr. Memory or Valgrind.

These password choices disqualify Ben from any job in computer security.

23

	 Mock Interview Practice [28 pts]
	 Quick but Flawed [14 pts]
	 Preserving the Sequence [14 pts]

	 Clown Car Data Structures [25 pts]
	 Drawing [9 pts]
	 Implementation [16 pts]

	 ``Missing'' dslist Iterator Operators [14 pts]
	 Debugging Skillz [/ 14]
	 It's all Downhill from Here! [16 pts]
	 The Dynamic Tetris Slide [35 pts]
	 Algorithm Analysis [5 pts]
	 can_slide Implementation [12 pts]
	 slide Implementation [18 pts]

	 Lightning Round [13 pts]
	 Button Up the Linked Grid [26 pts]
	 Implement print_perimeter [12 pts]
	 Implement rebutton [14 pts]

	 Recursive Maximum Coin Path [23 pts]
	 Usage [2 pts]
	 Algorithm Analysis [5 pts]
	 Implementation [16 pts]

	 Linked Tube Repair [/ 33]
	 Tube repair Diagram [/ 4]
	 Thinking about Tube repair Complexity [/ 3]
	 Tube repair Implementation [/ 13]
	 Non-Iterative destroy_tube Implementation [/ 13]

	 Rehashing the Vec Assignment Operator [/ 15]
	 Essay Revision: Embellishment [/ 14]
	 Essay Revision: Redundant Phrases [/ 15]
	 Don't Ignore Compilation Warnings! [/ 15]
	 Cyber Insecurity [/ 5]

