
Dr. Memory Uncovered

Derek Bruening

Memory Bugs Are Hard
Internal corruption may not be externally visible

Observable symptoms are often delayed and non-deterministic

Testing usually relies on randomly happening to hit visible symptoms

Often remain in shipped products and can show up in customer usage

Outline
● Introduction
● Memory Bugs, Part 1: Bad Pointers

○ a.k.a. Unaddressable Accesses

● Memory Bugs, Part 2: Bad Values
○ a.k.a. Uninitialized Reads

● Memory Bugs, Part 3: Lost Pointers
○ a.k.a. Memory Leaks

● Implementation
● Related Tools
● History

I can help you
avoid bad
pointers!

Approach: Look for Known-Bad Behavior
Tracking which pointer corresponds to which variable/object is hard

Thus, knowing where a pointer should point is hard

But, knowing where a pointer should not point is feasible

Probabilistic error detection!

Addressable Memory

exe lib stackheap

address space

Bad
pointers!

Good
pointers

current frame

unallocated

Stack Layout

caller’s frame

int x[16];

Bad
pointers!

caller’s frame
...

caller’s frame

x:

Heap Layout

paddingrequested sizeheader paddingrequested sizeheader

int *x = new int;
int *y = new int;

Bad
pointers!

x: y:

Track Good Versus Bad Memory

unaddressable good

allocate
(new, push)

deallocate
(delete, pop)

Heap Overflow

paddingrequested sizeheader paddingrequested sizeheader

86: int *x = new int;
87: int *y = new int;
88: *(x+1) = 42;

Error #1: UNADDRESSABLE ACCESS
Reading 4 bytes @ 0xa58c4 - 0xa58c8
Next lower object: 0xa58c0 - 0xa58c4
Offending code:
 myapp!main() myapp.c:88

x: y:

0xa58c0 0xa58c4

x+1:

Error!

Freed Memory

paddingfreed memoryheader paddingrequested sizeheader

int *x = new int;
int *y = new int;
delete x;

Bad
pointers!

x: y:

Use After Free/Delete

paddingfreed memoryheader paddingrequested sizeheader

86: int *x = new int;
87: int *y = new int;
88: delete x;
89: *x = 42;

Error #1: UNADDRESSABLE ACCESS
Writing 4 bytes @ 0xa58c0 - 0xa58c4
Write overlaps freed 0xa58c0 - 0xa58c4
Offending code:
 myapp!main() myapp.c:89

x: y:

0xa58c0

Error!

Redzones
int *x = new int;
std::cout << *(x+8);

x:

padrequesthdr redzoneredzone
x:

requesthdr

padrequesthdr padrequesthdr padrequesthdr requesthdr

Bad
pointers!

Delayed Frees
When delete or free is called, do not return the memory for re-use.

Also called “quarantine”.

Outline
● Introduction
● Memory Bugs, Part 1: Bad Pointers

○ a.k.a. Unaddressable Accesses

● Memory Bugs, Part 2: Bad Values
○ a.k.a. Uninitialized Reads

● Memory Bugs, Part 3: Lost Pointers
○ a.k.a. Memory Leaks

● Implementation
● Related Tools
● History

I help to find
bad values
too!

current frame

Stack Layout

int x[16];

uninitialized Bad
values!

unallocated

caller’s frame

Bad
pointers!

caller’s frame
...

x:

Track Three States of Memory

definedunaddressable uninitialized

allocate:
new, push

deallocate

write

deallocate

allocate: mmap, calloc

16

Heap Layout

paddingheader

int *x = new int[3];

Bad
pointers!

Bad
values!

x[1] = 42;

x: x[1]:

Word Granularity

class mydata {
 public:
 bool b;
 int i;
};
void foo(mydata d);
mydata x;
x.b = true;
x.i = 42;
foo(x);

byte 3

x.i:

byte 2
byte 1
byte 0

x.b:

byte 3
byte 2
byte 1
byte 0

Uninitialized Reads Are Everywhere
In

iti
al

iz
e

1
by

te

R
ea

d
4

by
te

s

C
om

pa
re

1

by
te

19

Is this uninitialized
read an error?

W
rit

e
4

by
te

s

Copy by value for call to foo() foo() { ... }

No, foo() only uses
the first byte.

byte 2
byte 1
byte 0
byte 3
byte 2
byte 1
byte 0

byte 3
byte 2
byte 1
byte 0
byte 3
byte 2
byte 1
byte 0

byte 3
byte 2
byte 1
byte 0
byte 3
byte 2
byte 1
byte 0

byte 3
byte 2
byte 1
byte 0
byte 3
byte 2
byte 1
byte 0

byte 3

Solution: Delayed Error Reporting
Report uninitialized read errors on
“meaningful” reads only

○ Conditional branch

○ Pointer

○ System call

Requires propagating state as data
flows through the processor

○ Expensive: now we need to track
colors inside the processor, not just
in memory!

memoryprocessor
write

read

memoryprocessor
write

read

Outline
● Introduction
● Memory Bugs, Part 1: Bad Pointers

○ a.k.a. Unaddressable Accesses

● Memory Bugs, Part 2: Bad Values
○ a.k.a. Uninitialized Reads

● Memory Bugs, Part 3: Lost Pointers
○ a.k.a. Memory Leaks

● Implementation
● Related Tools
● History

Elephants
never lose
their pointers.

Memory Leaks Are Lost Pointers
Reachability-based leak detection: a leak is memory that is no longer reachable by
the application

Global memory that is never freed is not considered a leak
● Acceptable to not free memory whose lifetime matches process lifetime

22

Scanning Memory

exe lib stackheap

address space

Search for
initialized
pointers

Reachable == Not A Leak

paddingheader padding0xa58c0header

0xa58c0:

Unreachable == A Leak

paddingheader paddingheader

0xa58c0:

no pointer
found to any
part of data!

Possibly Reachable Memory

paddingheader padding0xa58c8header

0xa58c0:

Suspicious!
 Large integer that just looks

like a pointer?!

Eliminating False Positives: new[]
C++ arrays allocated via new[] whose elements have
destructors
○ new[] adds header and returns to caller address past header

paddingsizeheader header

0xa58c0:

new[]

Eliminating False Positives: std::string

std::string points to char[] in middle of allocation

paddinglengthheader

0xa58c0:

char[]capacity refcnt

Eliminating False Positives: Multiple Inheritance
A pointer to a class with multiple inheritance that is cast to one of
the parents
○ Points to the sub-object representation in the middle of the allocation

paddingclass Aheader

0xa58c0:

class B

Outline
● Introduction
● Memory Bugs, Part 1: Bad Pointers

○ a.k.a. Unaddressable Accesses

● Memory Bugs, Part 2: Bad Values
○ a.k.a. Uninitialized Reads

● Memory Bugs, Part 3: Lost Pointers
○ a.k.a. Memory Leaks

● Implementation
● Related Tools
● History

Wow, it must
be really
complicated?

Implementation
Monitor every action taken by the application

○ Not just memory reads or write: delayed uninitialized read reporting requires monitoring every
instruction

Replace heap allocator

○ Insert redzones and delay frees

31

Dr. Memory Actions
Category Application Action Corresponding Tool Action

library call new, new[], malloc, HeapAlloc add redzones, mark between as uninitialized

library call realloc, HeapReAlloc add redzones, copy old shadow, mark rest as uninitialized

library call calloc, HeapAlloc(HEAP_ZERO_MEMORY) add redzones, mark between as defined

library call delete, delete[], free, HeapFree mark unaddressable and delay any re-use by malloc

system call file or anonymous memory map mark as defined

system call memory unmap mark as unaddressable

system call pass input parameter to system call report error if any part of parameter is not defined

system call pass output parameter to system call
report error if any part of parameter is unaddressable; if call succeeds, mark memory written by
kernel as defined

instruction decrease stack pointer register mark new portion of stack as uninitialized

instruction increase stack pointer register mark de-allocated portion of stack as unaddressable

instruction copy from immediate mark target as defined

instruction copy from register or memory copy source shadow to target shadow

instruction combine 2 sources (arithmetic, logical, etc. operation) combine source shadows, mirroring application operation, and copy result to target shadow

instruction access memory via base and/or index register report error if addressing register is uninitialized

instruction access memory report error if memory is unaddressable

instruction comparison instruction report error if any source is uninitialized

Instrumentation Overhead

mov rax, qword ptr [rdi]

lea rdx, [rdi]
cmp word ptr [gs:0x000000fe], 0x0000
jnz 0x00007fb3320c7960
test dl, 0x03
jnz 0x00007fb3320c7960
and rdx, qword ptr [0x00007fb3b2374ec0]
add rdx, qword ptr [0x00007fb3b2374eb8]
shr rdx, 0x02
movzx rcx, word ptr [rdx]
test cx, cx
jnz 0x00007fb3320c7960
mov word ptr [gs:0x000000f0], 0x0000
jmp 0x00007fb3320c6338
mov rdx, 0x00007fb3c6035491
mov rcx, 0x00007fb3320c87f8
jmp 0x00007fb3b2434cf1
mov rax, qword ptr [rdi]

Instrumentation Platform: DynamoRIO

br

ret

call

jmp

Original Code
(never run directly)

jmp

br

DynamoRIO Binary
Translator

Dr. Memory

Dr. Memory
Shared

Instrumentation
+

Callouts

Code Cache

Outline
● Introduction
● Memory Bugs, Part 1: Bad Pointers

○ a.k.a. Unaddressable Accesses

● Memory Bugs, Part 2: Bad Values
○ a.k.a. Uninitialized Reads

● Memory Bugs, Part 3: Lost Pointers
○ a.k.a. Memory Leaks

● Implementation
● Related Tools
● History

Remember, kids,
look both ways
before crossing the
street!

Valgrind Memcheck
Similar system in errors found and deployment

Dr. Memory runs the application natively, with instrumentation inserted as inlined
fastpaths and callouts to slowpaths

Valgrind runs instrumentation natively, and emulates the application

Dr. Memory is 2x faster

Dr. Memory supports Windows

36

Performance Comparison With Valgrind

(V
al

gr
in

d
fa

ile
d)

(V
al

gr
in

d
fa

ile
d)

AddressSanitizer
Implements unaddressable checking and leak checking in the compiler

● No uninitialized read detection
○ MemorySanitizer

● Only detects bugs in recompiled code
○ Also intercepts common libc and libc++ function calls

● Binary pays cost of checks on every run, so a separate dedicated build is
required

AddressSanitizer Performance
Faster (2x vs native) than Dr. Memory (10x) or Valgrind (20x)

● Not propagating values for uninitialized reads
● Ignores compiler “glue code”
● Register allocation and optimizations integrated with application

Bug Coverage Comparison

Tool

Bugs in
entire
program
and
libraries

Use-
after-
free

Heap
over/
under
flow

Stack
var over/
under
flow

Global
var over/
under
flow

Uninitiali
zed
reads

Leaks
with no
stale
pointers

Leaks
with
stale
pointers

Dr. Memory

Valgrind

Address
Sanitizer

Example Bad Pointer Missed by AddressSanitizer

#include <pthread.h>
#include <iostream>
void *func(void *) { return nullptr; }
int main() {
 pthread_t *p = new pthread_t;
 delete p;
 pthread_create(p, nullptr, func,
 nullptr);
 std::cout << "All good\n";
 return 0;
}

$ clang++ -fsanitize=address -g noasan2.cpp -lpthread && ./a.out
All good

$ clang++ -g noasan2.cpp -lpthread &&
~/DrMemory-Linux-2.3.0-1/bin64/drmemory -- ./a.out
~~Dr.M~~ Dr. Memory version 2.3.0
~~Dr.M~~
~~Dr.M~~ Error #1: UNADDRESSABLE ACCESS of freed memory: writing
0x41eb30-0x41eb38 8 byte(s)
~~Dr.M~~ # 0 libpthread.so.0!__pthread_create_2_1
~~Dr.M~~ # 1 main [.../noasan2.cpp:6]
~~Dr.M~~ Note: @0:00:01.054 in thread 1759547
~~Dr.M~~ Note: next higher malloc: 0x41eb90-0x41ecb0
~~Dr.M~~ Note: 0x41eb30-0x41eb38 overlaps memory 0x41eb30-0x41eb70 that was
freed here:
~~Dr.M~~ Note: # 0 replace_operator_delete_array [.../alloc_replace.c:2999]
~~Dr.M~~ Note: # 1 main [.../noasan2.cpp:5]
~~Dr.M~~ Note: instruction: mov %rbx -> (%rax)
All good

Example Leak Missed by AddressSanitizer

#include <iostream>
void func1() {
 char buf1[1024];
 int *ptr = new int[4];
 std::cout<<"ptr="<<std::hex<<ptr<<"\n";
 char buf2[1024];
 buf1[0] = 'a';
 buf2[0] = 'b';
}
void func2() {
 char buf1[1024 + sizeof(int*)];
 char buf2[1024];
 exit(0);
}
int main() {
 func1();
 func2();
 return 0;
}

$ clang++ -fsanitize=address -g noasan.cpp &&
ASAN_OPTIONS="detect_leaks=1" ./a.out
ptr=0x602000000010

$ clang++ -fsanitize=address -g noasan.cpp &&
ASAN_OPTIONS="detect_leaks=1:detect_stack_use_after_return=1" ./a.out
ptr=0x602000000010

$ clang++ -g noasan.cpp && ~/DrMemory-Linux-2.3.0-1/bin64/drmemory -- ./a.out
~~Dr.M~~ Dr. Memory version 2.3.0
ptr=0x41e2e0
~~Dr.M~~
~~Dr.M~~ Error #1: LEAK 16 direct bytes 0x41e2e0-0x41e2f0 + 0 indirect bytes
~~Dr.M~~ # 0 replace_operator_new_array [.../alloc_replace.c:2929]
~~Dr.M~~ # 1 func1 [.../noasan.cpp:4]
~~Dr.M~~ # 2 main [.../noasan.cpp:16]

Outline
● Introduction
● Memory Bugs, Part 1: Bad Pointers

○ a.k.a. Unaddressable Accesses

● Memory Bugs, Part 2: Bad Values
○ a.k.a. Uninitialized Reads

● Memory Bugs, Part 3: Lost Pointers
○ a.k.a. Memory Leaks

● Implementation
● Related Tools
● History

You could
build cool stuff
too!

Dynamo
@HP Labs

on x86

Dynamo + RIO →
DynamoRIO

1999

Dynamo
@HP Labs
on PA-RISC

RIO @MIT
(Runtime Introspection

and Optimization)
2001

late 1990’s 2000

DynamoRIO

Graduate School + Industry History

br

ret

call

jmp

Original Code
(never run directly)

jmp

br

DynamoRIO Binary
Translator

Dr. Memory

Dr. Memory
Shared

Instrumentation
+

Callouts

Code Cache

Security Startup

br

ret

call

jmp

Original Code
(never run directly)

jmp

br

DynamoRIO Binary
Translator

Security
Checks

Security
Shared

Instrumentation
+

Callouts

Code Cache

Dr. Memory in the Real World
Used by the Chrome developers for several years

● Found several hundred bugs in Chrome

Open-source

● Contributions welcome
● Google Summer of Code participant in the past
● RCOS project possibilities

The End
● Introduction
● Memory Bugs, Part 1: Bad Pointers

○ a.k.a. Unaddressable Accesses

● Memory Bugs, Part 2: Bad Values
○ a.k.a. Uninitialized Reads

● Memory Bugs, Part 3: Lost Pointers
○ a.k.a. Memory Leaks

● Implementation
● Related Tools
● History

That’s all,
folks! Thanks
for listening.

