CSCI-1200 Data Structures — Fall 2024
Lecture 20 — Hash Tables, part 1

Test 3 Information
e Test 3 will be held Thursday, November 14th, 2024 from 6:00-7:50pm.
— Student’s assigned test room, row, and seat assignments will be re-randomized. Test 3 seating assignments
will be posted and emailed Tuesday, November 12th.
— No make-ups will be given except for pre-approved absence or emergency or illness, and a written excuse
from the Dean of Students or the Student Experience office or the RPI Health Center will be required.

— If you have a letter from Disability Services for Students and you have not already emailed it to
ds_instructors@cs.rpi.edu, please do so IMMEDIATELY. Meredith Widman will be in contact to
make arrangements for your test accommodations.

e Coverage: Lectures 1-20, Labs 1-12, HW 1-8.

— Practice problems from previous tests are available on the course website.
— Sample solutions to the practice problems will be posted on Wednesday morning.

— The best way to prepare is to completely work through and write out your solution to each problem, before
looking at the answers.

— You should practice timing yourself as well. The test will be 110 minutes and there will be 100 points.
If a problem is worth 25 points, budgeting 25 minutes for yourself to solve the problem is a good time
management technique.

— The exam will be handwritten on paper. You’re also encouraged to practice legibly handwriting your
answers to the practice problems on paper.

e OPTIONAL: Prepare a 2 page, black & white, 8.5x11”, portrait orientation .pdf of notes you would like to
have during the test. This may be digitally prepared or handwritten and scanned or photographed. The file
may be no bigger than 2MB. You will upload this file to Submitty gradeable “Test 3 Notes Page (Optional)”
before Wednesday, November 13th @11:59pm. We will print this and attach it to your test. No other notes
may be used during the test.

e Going in to the test, you should know what big topics will be covered on the test. As you skim through the
problems, see if you can match up those big topics to each question. Even if you are stumped about how to
solve the whole problem, or some of the details of the problem, make sure you demonstrate your understanding
of the big topic that is covered in that question.

e Re-read the problem statement carefully. Make sure you didn’t miss anything.

o Additional Notes:

— Please use the restroom before entering the exam room. Except for emergencies, students must remain in
their seats until they are ready to turn in their exam. You may leave early if you finish the exam early.

— Bring your Rensselaer photo ID card. We will be checking IDs when you turn in your exam.

— Bring your own pencil(s) & eraser (pens are ok, but not recommended). The test will involve handwriting
code on paper (and other short answer problem solving). Neat, legible handwriting is appreciated. We
will be somewhat forgiving to minor syntax errors — it will be graded by humans not computers :)

— Do not bring your own scratch paper. The exam packet will include sufficient scratch paper.

— Computers, cell-phones, smart watches, calculators, music players, headphones, etc. are not permitted.
Please do not bring your laptop, books, backpack, etc. to the test room — leave everything in your dorm
room. Unless you are coming directly from another class or sports/club meeting.

Review from Lecture 19
e ds_set erase implementation
e Some more practice exercises with trees & Big O Notation
e Limitations of our ds_set implementation, brief intro to red-black trees

Today’s Lecture

e “the single most important data structure known to mankind”

Hash Tables, Hash Functions, and Collision Resolution

Performance of: Hash Tables vs. Binary Search Trees

Collision resolution: separate chaining

Using a hash table to implement a set/map
— Iterators, find, insert, and erase

20.1 Definition: What’s a Hash Table?

e A table implementation with constant time access.

— Like a set, we can store elements in a collection. Or like a map, we can store key-value pair associations in
the hash table. But it’s even faster to do find, insert, and erase with a hash table! However, hash tables
do not store the data in sorted order.

e A hash table is implemented with an array at the top level.

e Each element or key is mapped to a slot in the array by a hash function.

20.2 Definition: What’s a Hash Function?
e A simple function of one argument (the key) which returns an integer index (a bucket or slot in the array).
e Ideally the function will “uniformly” distribute the keys throughout the range of legal index values (0 — k-1).

e What’s a collision?
When the hash function maps multiple (different) keys to the same index.

e How do we deal with collisions?
One way to resolve this is by storing a linked list of values at each slot in the array.

20.3 Example: Caller ID

e We are given a phonebook with 50,000 name/number pairings. Each number is a 10 digit number. We need to
create a data structure to lookup the name matching a particular phone number. Ideally, name lookup should
be O(1) time expected, and the caller ID system should use O(n) memory (n = 50,000).

e Note: In the toy implementations that follow we use small datasets, but we should evaluate the system scaled
up to handle the large dataset.

e The basic interface:

// add several names to the phonebook

add (phonebook, 1111, "fred");

add (phonebook, 2222, "sally");

add (phonebook, 3333, "george");

// test the phonebook

std::cout << identify(phonebook, 2222) << " is calling!" << std::endl;
std::cout << identify(phonebook, 4444) << " is calling!" << std::endl;

e We'll review how we solved this problem in Lab 9 with an STL vector then an STL map. Finally, we’ll
implement the system with a hash table.

20.4 Caller ID with an STL Vector

std::vector<std::string> phonebook(10000, "UNKNOWN CALLER");

void add(std::vector<std::string> &phonebook, int number, std::string name) {
phonebook [number] = name; }

std::string identify(const std::vector<std::string> &phonebook, int number) {
return phonebook[number]; }

Exercise: What’s the memory usage for the vector-based Caller ID system?
What’s the expected running time for find, insert, and erase?

20.5 Caller ID with an STL Map

std: :map<int,std::string> phonebook;

void add(std::map<int,std::string> &phonebook, int number, std::string name) {
phonebook [number] = name; }

std::string identify(const std::map<int,std::string> &phonebook, int number) {
map<int,std::string>::const_iterator tmp = phonebook.find(number);
if (tmp == phonebook.end()) return "UNKNOWN CALLER"; else return tmp->second;
}

Exercise: What’s the memory usage for the map-based Caller ID system?
What’s the expected running time for find, insert, and erase?

20.6 Now let’s implement Caller ID with a Hash Table

#define PHONEBOOK_SIZE 10

Y

class Node {
public:

Y

5182764321
dan

int number;
string name;
Node* next;

6175551212
fred

};

// create the phonebook, initially all numbers are unassigned
Node* phonebook [PHONEBOOK_SIZE] ;
for (int i = 0; i < PHONEBOOK_SIZE; i++) {

Y

5182761234
alice

phonebook[i] = NULL;

}

5182761267
carol

\

©Co~NOoOUlhWNPEO
Y

// corresponds a phone number to a slot in the array
int hash_function(int number) {

}

// add a number, name pair to the phonebook
void add(Node* phonebook [PHONEBOOK_SIZE], int number, string name) {

// given a phone number, determine who is calling
void identify(Node* phonebook [PHONEBOOK_SIZE], int number) {

5182765678
bob

| 5182764488

erin

20.7 Exercise: Choosing a Hash Function

What’s a good hash function for this application?

What’s a bad hash function for this application?

20.8 Exercise: Hash Table Performance

What’s the memory usage for the hash-table-based Caller ID system?

What’s the expected running time for find, insert, and erase?

20.9 What makes a Good Hash Function?

Goals: fast O(1) computation and a random-like (but deterministic), uniform distribution of keys
throughout the table, despite the actual distribution of keys that are to be stored.

For example, using: f(k) = abs(k)%N as our hash function satisfies the first requirement, but may not
satisfy the second.

Another example of a dangerous hash function on string keys is to add or multiply the ascii values of each char:

unsigned int hash(string const& k, unsigned int N) {
unsigned int value = O;
for (unsigned int i=0; i<k.size(); ++i)
value += k[i]; // conversion to int is automatic
return k % N;

}
The problem is that different permutations of the same string result in the same hash table location.
This can be improved through multiplications that involve the position and value of the key:

unsigned int hash(string const& k, unsigned int N) {
unsigned int value = 0;
for (unsigned int i=0; i<k.size(); ++i)
value = value*8 + k[i]; // conversion to int is automatic
return k % N;

}

The 2nd method is better, but can be improved further. The theory of good hash functions is quite involved
and beyond the scope of this course.

20.10 How do we Resolve Collisions? METHOD 1: Separate Chaining

Each table location stores a linked list of keys (and values) hashed to that location (as shown above in the
phonebook hashtable). Thus, the hashing function really just selects which list to search or modify.

This works well when the number of items stored in each list is small, e.g., an average of 1. Other data
structures, such as binary search trees, may be used in place of the list, but these have even greater overhead
considering the (hopefully, very small) number of items stored per bin.

NOTE: We’ll see another method for collision resolution in Lecture 21.

20.11 Building our own Hash Table: A Hash Set

The class is templated over both the key type and the hash functor type.
NOTE: We'll talk about functions vs. functors in Lecture 21. Just pretend it’s a function for now!

template < class KeyType, class HashFunc >
class ds_hashset { .. };

We use separate chaining for collision resolution. Hence the main data structure inside the class is:

std::vector< std::list<KeyType> > m_table;

20.12 Hash Set Iterators

e Iterators move through the hash table in the order of the storage locations rather than the chronological order
of insertion or a sorted ordering imposed by operator<.

e Thus, the visiting/printing order appears random-like, and depends on the hash function and the table size.

— Hence the increment operators must move to the next entry in the current linked list or, if the end of the
current list is reached, to the first entry in the next non-empty list.

e The iterator must store:

— A pointer to the hash table it is associated with. This reflects a subtle point about types: even though
the iterator class is declared inside the ds_hashset, this does not mean an iterator automatically knows
about any particular ds_hashset.

— The index of the current list in the hash table.
— An iterator referencing the current location in the current list.
20.13 Implementing begin() and end()

e begin(): Skips over empty lists to find the first key in the table. It must tie the iterator being created to
the particular ds_hashset object it is applied to. This is done by passing the this pointer to the iterator
constructor.

e end(): Also associates the iterator with the specific table, assigns an index of -1 (indicating it is not a normal
valid index), and thus does not assign the particular list iterator.

e Exercise: Implement the begin() function.

20.14 TIterator Increment, Decrement, & Comparison Operators
e The increment operators must find the next key, either in the current list, or in the next non-empty list.

e The decrement operator must check if the iterator in the list is at the beginning and if so it must proceed to
find the previous non-empty list and then find the last entry in that list. This might sound expensive, but
remember that the lists should be very short.

e The comparison operators must accommodate the fact that when (at least) one of the iterators is the end, the
internal list iterator will not have a useful value.

20.15 Insert & Find
e Computes the hash function value and then the index location.

e If the key is already in the list that is at the index location, then no changes are made to the set, but an iterator
is created referencing the location of the key, a pair is returned with this iterator and false.

e If the key is not in the list at the index location, then the key should be inserted in the list (at the front is
fine), and an iterator is created referencing the location of the newly-inserted key a pair is returned with this
iterator and true.

e Exercise: Implement the insert () function, ignoring for now the resize operation.

e Find is similar to insert, computing the hash function and index, followed by a std::find operation.

20.16 Erase

e Two versions are implemented, one based on a key value and one based on an iterator. These are based on
finding the appropriate iterator location in the appropriate list, and applying the list erase function.

20.17 Resize

e Cannot simply call resize on the current vector. Must make a new vector of the correct size, and re-insert each
key into the resized vector. Why? Exercise: Write resize()

e NOTE: Any insert operation invalidates all ds_hashset iterators because the insert operation could cause a
resize of the table. The erase function only invalidates an iterator that references the current object.

{}

/7
SSYTO ¥OIVYALI FO pue //
R
{

{} (x3173sTT w4+ ‘di+ ! ()pus: [xopuT w]aTqe’ w<-sy w =j d) zoz
{d+ 1237 3STT w = d 23T 3STT ysey
{()uthaq- [xopuT w]aTgel W<-SY W = I3T 3ISTT W

*3sTT 9y3 ur Axjue 3ser 8yjz o3 o9 //

(xopuUT W-— {()A3dwe" [XopuT w]aTqel W<-SY W 3% () =< XOPUT W {XSpUT W--) IOF
punoy sT orqe3 8y3 ur 3sT1 A3dws-uou //
snotasxd 8y3 TT3un oTqe3l 8Yy3l UMOP YOoBQq ‘9STMILSY3I0 //
} esT®
{ —— I3T3STT U
(()utbaq- [¥opuT W]oTgeRY W<-SY W =j I3T 3ISTT W) IFT
J03eI23T 3ISTT @Yz //
Juswezoep 3snl ‘3STT JueIInd 8yl JO 3IPIS Oyl 3I® 3,usIe oM II //
} ()asad ptoa
erTqe3 8y3 ur Azjuse snortasad eyl purd //
{
{
11— = XopuT w
osT®
pus 8yl 3e aIe oM ‘9sTMIdYI0 //
{()utbeq- [xopuT w]STqe] W<-SY W = I3T ISTT W
((()°zTs aTqel W<-SY W) IUT =j XSpUuT W) IFT
jIe3s 9y3j 03 I3T 3ISTT W 9y3 ubrsse ‘punoj sT 8uo II //
{} (xeput w++
() Aydwe - [xepuT W]STgel W<-SY W 3% (()9ZTS*9TCRI W<-SY W) JUT > XOPUT W

!XSpuT W++) IOF

o7qe3 8y3z ur 3sTT A3dws-uou 3xou 8yl purd //
} o ((pus: [xSpuT w]oTqel W<-SsY W == IJT ISTT W) IT
ISTT STY3 Fo pus 8yjz e &ie aMm JI //

ISTT 8yl ur we3T 3Ixadu // 1IQAT ISTT W ++
} () 3Ixeu proa
erqe3 °y3 ur Azjus 3Ixsu 8yl purdg //
:93eatad

!dws] uanijsx

! ()ao1d<-sTy2

! (sTyayx)dwsy x03RISIT
} (3uT)-—z03exadOo I03RIS]T
{

ISTUYlx uanisax

! ()noad<-sTyU2
} ()--x03exsado 3 x03RIS]T
{

!dus] uanijsx

! () IxaUu<-STY2

{(STU3x) dwel I03BISIT
} (3uT) ++I103exado I03RISD]T
{

!STUY3lx uanieax

{() 3xau<-sTY]
} () ++703e319dO0 3I03BISIAT
JUswWeIOSp puP FUBWSIOUT //

{ (I3T73ISTT W 36X =] I3T ISTT W IIT 3% [- =i XOPUT W’ 3IT)
_i XOpUT W 3Bx =] XopuT W' 3IIT _i sy w:3bx =] Sy w-3I[uanzax }
(361 ®m103RI93T 3SUOD ‘3JT 3I0]1BISIT 3ISuoDd) =;Iro3zerado Tooq PuSTIT
{ (I3TTISTT W 3BT == I3T 3ISTT W 3IIT || T- == XOpuT W’ 3IIT)
3% XOPUT W 30T == XSpUT W°'3IIT 33 SY W 3BT == sy w'3J] uaniax }
(361 ®7103RID]T 3JFSUOD ‘3T RI0JLISIT 3JSuod) ==103eI9dO TOOQ PUSDTIT
‘pue ey3 e psubrsseun bureq //
s103®I193T 3ISTT 8yl I0F 3unoooe jsnuw siojerado uostaedwoo ayr //

{ {I3T73STT Wy uIxnlax } 3suod () yIxo03eirado nadArAsy 3Isuod
“X9pUT JUSIIND 8Yy3j YO8YyD 03 p8du Jou seop pur ‘103vI83T 3ISIT //
jusrino ay3 3noqe Axrom ATuo pesu zojzeredo eousiejersp oYyl //

{sTY3lx uanlax
fI3TTISTT W' PTO = I3T ISTT W
I/X9pUT W' PTO = XOpUT W
fsyTwepro = sy w
} (PTO ®I03EI93T 3Suod)=103ersado %I0JRIS]T
{} (T3T73ISTT W IIT)IIT ISTT W / (XSPUT W' IJT)XSOpUT W ‘ (SY W IJT)Sy u :
(I3T 33SUOD I0]LIS]QT) I03BISIT
{} (T-)xspur w ‘(0)sy w : ()IojerslT
z03@I92dO JUBWULTSSP » SI030ONIJISUOCD AI°PUTIPIO //
:oTTand

{} (90T7)I3T73STT W ‘(XSPUT)XSput W ‘(sy)sy w :
(00T IAT ASTT ysey “‘XSpuT 3JUT ‘SY xI9Sysey sp)I03eIaalT

{} (T-)xXepuT w ‘(SY)sy W : (SY x 3IOSYSEY SP)I03eIa3lT
ATuo 3esysey sp ay3z Aq esn 10 szojzonijsuod a3earad //
:o3eatad

X9pUuT JusIINd 8yl 3P I03pI8]1T JUaIINd // {I3T73STT W IAT 3STT ysey
oTQP] YsSey 8yl UT XSpUuT JUS8IInd // I{XopuT W JUT

!sy w y39sysey sp

NOIIVINASHYdHY ¥OIVYALI //

:o3eatad

serTqeTIRPA 93PATId 03 SS900°P SMOTT® // {19sysey Sp SSeTO pusTIJ
:otTand
} I03eI193T SSETD

‘pejerdwe] ATejeiedes J0uU ST sSnyj pup SSeTO pojseu e se paurjeq //
SSYTO ¥OIVMAII AHI //

//

:otTand

{I3T73STT ysey I03exo3T: :<odALAoM>]3STT: :p3s sweuadAy gopodAia
:o3eatad
} 19sysey sp SseTo
< oungysey sseTdo ‘odArAsy sseTdo > o3eTdwsl
r3oefqo uorjouny e ‘uor3louny ysey 8yl jo //
odA3 ey3 pue Aey jo odA3 8yl yjzoq Isao pejerdwsl ST I8sysey sp oyl //

<ury3TIobTEe> SPNTOUT#

<I03D9A> SPNTOUTH

<butays> spnTouTH

<3STT> SpPNIOUT#

<WeSI3SOT> SPNTOUT#

ruorjouny ysey ay3z Aq pssodwt ispio 8y3 3snl ST 3T -I8pPIO //
Tnybutuesw Aue ur 389sysey oyl ybnoxya dels jJou op sI03RILSIT 8Yl //
1PY3 ST 39SYsSey Sp pup 39S Sp US9M3SQq 90USISIITP TeuIslxe Axewrzd //
syl -99I13 yoieas AIeuTrq P JO pPO]SUT STqP] YSPY © Se SSerdo 18s oyl //
Ty 3Iesysey sp SuTIySp#

Yy 3osysey Sp IOPuITH

¥202 LO:20:9T TIT AON UOW Y- 09T 3Iosysey sp

FTpUSH
Rt
{

ZT qeT ur pejuswerdwt //
} (9zTs mau 3uTr poubTsun)o[qe] 9ZTSSI PTOA
® Jng senyeA awps 8yl YiIMm o7qe3 8yl 8zIsex //
:ojeatad

!Tpus::p3s >> I3sO
{dy >> , , >> 1380
f(pust [T]laTaed w = d {()utbeq- [T]oTqe3 w = d I3T 3ISTT ysey) IoF
fu fu >> T >> 380
} (T++ f()9zTs STqel W>T {0=T JUT paubrsun) zo03
} (x3so ®» wesx3so::p3s)jutad proa
*A317TIn qurad orrqnd ¥ //

!d uanjax
{1- = xoputrT w-d
!(sty3)d zo3zeaslT
} ()pus I03BILSIT
-I03RI9]T pUS UP 93BOID)/

ZT qeT ur pejuswerdwt //
} ()urbeq z03BIo3T
T03PI9]T POIPTOOSSP UP 93PSIO pup 97qP3 8yl uTr Arjus 3IsITI 9yl purq //

{(x3T773sTT wrd)ssers [xopuT w'd]aTgel w
} (d Z03eI93T)oSeIS pPTOA
z03RI93T 8Y3 B °9sely //

{1 uanjyex
! (d)eseas
} osT®
{0 uaniyex
(()pus == d) 3T
! (Key)puTty = d a03RIS]T
‘uoTjouny I03PIS]T OSBIS 9yl 9sn pur A9y 8yl purd //
} (Aoy nadA1Asy 3suod)sseis 3Jut
Aoy oy eseim //

{(d ‘xepuT ‘STY3])IOJRISIT uanlax
osT°®
{()pus<-sTyl uanisax
(()pue- [xepuT]eTger w == d) 3IT
{(Aey ‘()pue- [xepuT]eTgel u
‘()yutbeqg- [¥xepUT]STgeY W) PUTI::pP3s = d I3T 2ASTT ysey
f()ozTs oTgel W g SNTeA YSeY = XSpuTl 3JuT paubrsun
{(Koy)ysey w = onyea ysey 3ur paubrsun
} (KoY mnodA1Aey 3suod)puT I031eIS]T
puty 3SIT pue burxspul ‘uorjouny ysey bursn ‘Asy syl purd //

ZI QBT ® 0Z ©In3oeT UT pejuswerTdwr //
£(T+()9ZTS OTqRY WxZ) ORI 92TS2I<-STYI
(()ezTs oTge3l W x HZISHY YOI NOILOVMA dVOT =< 9zZTs uw) 3IFT
167" T = HZISHY 904 NOILOVYA dVOT 3IeOoTF 3Isuod
} (Ao m3suod odATAS)) JI9SUT < TOOQ ‘I03eI9]T >ITed::p3s
roxsy] ApesiTe jJou ST 3T FT Aoy ey3 3ix9sur //

{ fozZTs W uan3iax } 3sSuod ()9ZTS 3JUT paubrsun

{sTyY3ly uanzax
{
Uysey wpTo = ysey w<-sTy3
{9ZTSTW PTO = 92ZTS W<-STYUI
9Tl W PTO = SRl W<-STY
} (STy3l =i pPT1O%®) 3IFT
} (pTo ®<doungyseq‘sdArAoy>39sysey sp 3Isuod)=103exado 33asysey sp

{} ()3esysey sp.

{} (9zTsTw-pTro)ezTs w ‘(9Tqe3 w'pIo)a[qel w :
(pTO ®<doungyseH ‘odArAay>19sYysey Sp 3JISuod) }asysey sp
*s1030nI135U00 Adoo uorjouny Jequwew 8yl sesn 3sn[zojzonzjzsuod Adop //
(0)®zTs w ‘(9zTS 3TUT)ST9eI W : (QT = 92ZTS 3TUT 3JUT paubrsun)3ssysey sp
‘pesn Ar3TorTdwr ST 309[QO0 uOoT3doUNJy Yysey ayj I0J I030NnI3Suocd //

aTneyeg -"orqP3 8yl Jo ozTs ay3 s3deooe oTqep3l 8yjl IO0F I030NIISU0D //

NOILVINAWATIWI L1HS HSVH //

//

:oT1and
sAey yo zequnu // !{ozTs w 3uT paubrsun
uorjouny ysey // !ysey w oungyseq

erqe3 ren3oe // !oTgei w < <2dALASM>]ASTT::P3IS >I0309A::pP3S
NOIIVINASHIdHAY I1AS HSYH //
//

:ojeatad

¥202 LO:20:9T TIT AON UOW Y- 09T 3Iosysey sp

	Definition: What's a Hash Table?
	Definition: What's a Hash Function?
	Example: Caller ID
	Caller ID with an STL Vector
	Caller ID with an STL Map
	Now let's implement Caller ID with a Hash Table
	Exercise: Choosing a Hash Function
	Exercise: Hash Table Performance
	What makes a Good Hash Function?
	How do we Resolve Collisions? METHOD 1: Separate Chaining
	Building our own Hash Table: A Hash Set
	Hash Set Iterators
	Implementing begin() and end()
	Iterator Increment, Decrement, & Comparison Operators
	Insert & Find
	Erase
	Resize

