CSCI-1200 Data Structures — Fall 2024
Lecture 20 — Hash Tables, part 1

Test 3 Information
e Test 3 will be held Thursday, November 14th, 2024 from 6:00-7:50pm.
— Student’s assigned test room, row, and seat assignments will be re-randomized. Test 3 seating assignments
will be posted and emailed Tuesday, November 12th.
— No make-ups will be given except for pre-approved absence or emergency or illness, and a written excuse
from the Dean of Students or the Student Experience office or the RPI Health Center will be required.

— If you have a letter from Disability Services for Students and you have not already emailed it to
ds_instructors@cs.rpi.edu, please do so IMMEDIATELY. Meredith Widman will be in contact to
make arrangements for your test accommodations.

e Coverage: Lectures 1-20, Labs 1-12, HW 1-8.

— Practice problems from previous tests are available on the course website.
— Sample solutions to the practice problems will be posted on Wednesday morning.

— The best way to prepare is to completely work through and write out your solution to each problem, before
looking at the answers.

— You should practice timing yourself as well. The test will be 110 minutes and there will be 100 points.
If a problem is worth 25 points, budgeting 25 minutes for yourself to solve the problem is a good time
management technique.

— The exam will be handwritten on paper. You’re also encouraged to practice legibly handwriting your
answers to the practice problems on paper.

e OPTIONAL: Prepare a 2 page, black & white, 8.5x11”, portrait orientation .pdf of notes you would like to
have during the test. This may be digitally prepared or handwritten and scanned or photographed. The file
may be no bigger than 2MB. You will upload this file to Submitty gradeable “Test 3 Notes Page (Optional)”
before Wednesday, November 13th @11:59pm. We will print this and attach it to your test. No other notes
may be used during the test.

e Going in to the test, you should know what big topics will be covered on the test. As you skim through the
problems, see if you can match up those big topics to each question. Even if you are stumped about how to
solve the whole problem, or some of the details of the problem, make sure you demonstrate your understanding
of the big topic that is covered in that question.

e Re-read the problem statement carefully. Make sure you didn’t miss anything.

o Additional Notes:

— Please use the restroom before entering the exam room. Except for emergencies, students must remain in
their seats until they are ready to turn in their exam. You may leave early if you finish the exam early.

— Bring your Rensselaer photo ID card. We will be checking IDs when you turn in your exam.

— Bring your own pencil(s) & eraser (pens are ok, but not recommended). The test will involve handwriting
code on paper (and other short answer problem solving). Neat, legible handwriting is appreciated. We
will be somewhat forgiving to minor syntax errors — it will be graded by humans not computers :)

— Do not bring your own scratch paper. The exam packet will include sufficient scratch paper.

— Computers, cell-phones, smart watches, calculators, music players, headphones, etc. are not permitted.
Please do not bring your laptop, books, backpack, etc. to the test room — leave everything in your dorm
room. Unless you are coming directly from another class or sports/club meeting.



Review from Lecture 19
e ds_set erase implementation
e Some more practice exercises with trees & Big O Notation
e Limitations of our ds_set implementation, brief intro to red-black trees

Today’s Lecture

e “the single most important data structure known to mankind”

Hash Tables, Hash Functions, and Collision Resolution

Performance of: Hash Tables vs. Binary Search Trees

Collision resolution: separate chaining

Using a hash table to implement a set/map
— Iterators, find, insert, and erase

20.1 Definition: What’s a Hash Table?

e A table implementation with constant time access.

— Like a set, we can store elements in a collection. Or like a map, we can store key-value pair associations in
the hash table. But it’s even faster to do find, insert, and erase with a hash table! However, hash tables
do not store the data in sorted order.

e A hash table is implemented with an array at the top level.

e Each element or key is mapped to a slot in the array by a hash function.

20.2 Definition: What’s a Hash Function?
e A simple function of one argument (the key) which returns an integer index (a bucket or slot in the array).
e Ideally the function will “uniformly” distribute the keys throughout the range of legal index values (0 — k-1).

e What’s a collision?
When the hash function maps multiple (different) keys to the same index.

e How do we deal with collisions?
One way to resolve this is by storing a linked list of values at each slot in the array.

20.3 Example: Caller ID

e We are given a phonebook with 50,000 name/number pairings. Each number is a 10 digit number. We need to
create a data structure to lookup the name matching a particular phone number. Ideally, name lookup should
be O(1) time expected, and the caller ID system should use O(n) memory (n = 50,000).

e Note: In the toy implementations that follow we use small datasets, but we should evaluate the system scaled
up to handle the large dataset.

e The basic interface:

// add several names to the phonebook

add (phonebook, 1111, "fred");

add (phonebook, 2222, "sally");

add (phonebook, 3333, "george");

// test the phonebook

std::cout << identify(phonebook, 2222) << " is calling!" << std::endl;
std::cout << identify(phonebook, 4444) << " is calling!" << std::endl;

e We'll review how we solved this problem in Lab 9 with an STL vector then an STL map. Finally, we’ll
implement the system with a hash table.



20.4 Caller ID with an STL Vector

std::vector<std::string> phonebook(10000, "UNKNOWN CALLER");

void add(std::vector<std::string> &phonebook, int number, std::string name) {
phonebook [number] = name; }

std::string identify(const std::vector<std::string> &phonebook, int number) {
return phonebook[number]; }

Exercise: What’s the memory usage for the vector-based Caller ID system?
What’s the expected running time for find, insert, and erase?

20.5 Caller ID with an STL Map

std: :map<int,std::string> phonebook;

void add(std::map<int,std::string> &phonebook, int number, std::string name) {
phonebook [number] = name; }

std::string identify(const std::map<int,std::string> &phonebook, int number) {
map<int,std::string>::const_iterator tmp = phonebook.find(number);
if (tmp == phonebook.end()) return "UNKNOWN CALLER"; else return tmp->second;
}

Exercise: What’s the memory usage for the map-based Caller ID system?
What’s the expected running time for find, insert, and erase?

20.6 Now let’s implement Caller ID with a Hash Table

#define PHONEBOOK_SIZE 10

Y

class Node {
public:

Y

5182764321
dan

int number;
string name;
Node* next;

6175551212
fred

};

// create the phonebook, initially all numbers are unassigned
Node* phonebook [PHONEBOOK_SIZE] ;
for (int i = 0; i < PHONEBOOK_SIZE; i++) {

Y

5182761234
alice

phonebook[i] = NULL;

}

5182761267
carol

\

©Co~NOoOUlhWNPEO
Y

// corresponds a phone number to a slot in the array
int hash_function(int number) {

}

// add a number, name pair to the phonebook
void add(Node* phonebook [PHONEBOOK_SIZE], int number, string name) {

// given a phone number, determine who is calling
void identify(Node* phonebook [PHONEBOOK_SIZE], int number) {

5182765678
bob

| 5182764488

erin




20.7 Exercise: Choosing a Hash Function

What’s a good hash function for this application?

What’s a bad hash function for this application?

20.8 Exercise: Hash Table Performance

What’s the memory usage for the hash-table-based Caller ID system?

What’s the expected running time for find, insert, and erase?

20.9 What makes a Good Hash Function?

Goals: fast O(1) computation and a random-like (but deterministic), uniform distribution of keys
throughout the table, despite the actual distribution of keys that are to be stored.

For example, using: f(k) = abs(k)%N as our hash function satisfies the first requirement, but may not
satisfy the second.

Another example of a dangerous hash function on string keys is to add or multiply the ascii values of each char:

unsigned int hash(string const& k, unsigned int N) {
unsigned int value = O;
for (unsigned int i=0; i<k.size(); ++i)
value += k[i]; // conversion to int is automatic
return k % N;

}
The problem is that different permutations of the same string result in the same hash table location.
This can be improved through multiplications that involve the position and value of the key:

unsigned int hash(string const& k, unsigned int N) {
unsigned int value = 0;
for (unsigned int i=0; i<k.size(); ++i)
value = value*8 + k[i]; // conversion to int is automatic
return k % N;

}

The 2nd method is better, but can be improved further. The theory of good hash functions is quite involved
and beyond the scope of this course.

20.10 How do we Resolve Collisions? METHOD 1: Separate Chaining

Each table location stores a linked list of keys (and values) hashed to that location (as shown above in the
phonebook hashtable). Thus, the hashing function really just selects which list to search or modify.

This works well when the number of items stored in each list is small, e.g., an average of 1. Other data
structures, such as binary search trees, may be used in place of the list, but these have even greater overhead
considering the (hopefully, very small) number of items stored per bin.

NOTE: We’ll see another method for collision resolution in Lecture 21.

20.11 Building our own Hash Table: A Hash Set

The class is templated over both the key type and the hash functor type.
NOTE: We'll talk about functions vs. functors in Lecture 21. Just pretend it’s a function for now!

template < class KeyType, class HashFunc >
class ds_hashset { .. };

We use separate chaining for collision resolution. Hence the main data structure inside the class is:

std::vector< std::list<KeyType> > m_table;



20.12 Hash Set Iterators

e Iterators move through the hash table in the order of the storage locations rather than the chronological order
of insertion or a sorted ordering imposed by operator<.

e Thus, the visiting/printing order appears random-like, and depends on the hash function and the table size.

— Hence the increment operators must move to the next entry in the current linked list or, if the end of the
current list is reached, to the first entry in the next non-empty list.

e The iterator must store:

— A pointer to the hash table it is associated with. This reflects a subtle point about types: even though
the iterator class is declared inside the ds_hashset, this does not mean an iterator automatically knows
about any particular ds_hashset.

— The index of the current list in the hash table.
— An iterator referencing the current location in the current list.
20.13 Implementing begin() and end()

e begin(): Skips over empty lists to find the first key in the table. It must tie the iterator being created to
the particular ds_hashset object it is applied to. This is done by passing the this pointer to the iterator
constructor.

e end(): Also associates the iterator with the specific table, assigns an index of -1 (indicating it is not a normal
valid index), and thus does not assign the particular list iterator.

e Exercise: Implement the begin() function.

20.14 TIterator Increment, Decrement, & Comparison Operators
e The increment operators must find the next key, either in the current list, or in the next non-empty list.

e The decrement operator must check if the iterator in the list is at the beginning and if so it must proceed to
find the previous non-empty list and then find the last entry in that list. This might sound expensive, but
remember that the lists should be very short.

e The comparison operators must accommodate the fact that when (at least) one of the iterators is the end, the
internal list iterator will not have a useful value.

20.15 Insert & Find
e Computes the hash function value and then the index location.

e If the key is already in the list that is at the index location, then no changes are made to the set, but an iterator
is created referencing the location of the key, a pair is returned with this iterator and false.

e If the key is not in the list at the index location, then the key should be inserted in the list (at the front is
fine), and an iterator is created referencing the location of the newly-inserted key a pair is returned with this
iterator and true.

e Exercise: Implement the insert () function, ignoring for now the resize operation.

e Find is similar to insert, computing the hash function and index, followed by a std::find operation.

20.16 Erase

e Two versions are implemented, one based on a key value and one based on an iterator. These are based on
finding the appropriate iterator location in the appropriate list, and applying the list erase function.

20.17 Resize

e Cannot simply call resize on the current vector. Must make a new vector of the correct size, and re-insert each
key into the resized vector. Why? Exercise: Write resize()

e NOTE: Any insert operation invalidates all ds_hashset iterators because the insert operation could cause a
resize of the table. The erase function only invalidates an iterator that references the current object.
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