CSCI-1200 Data Structures — Fall 2024
Lecture 19 — Trees, Part IV

Test 3 Information

e Test 3 will be held Thursday, November 14th, 2024 from 6:00-7:50pm.
— Student’s assigned test room, row, and seat assignments will be re-randomized. Test 3 seating assignments
will be posted and emailed Tuesday, November 12th.

— No make-ups will be given except for pre-approved absence or emergency or illness, and a written excuse
from the Dean of Students or the Student Experience office or the RPI Health Center will be required.

— If you have a letter from Disability Services for Students and you have not already emailed it to
ds_instructors@cs.rpi.edu, please do so IMMEDIATELY. Meredith Widman will be in contact to
make arrangements for your test accommodations.

e Coverage: Lectures 1-20, Labs 1-12, HW 1-8.

— Practice problems from previous tests are available on the course website.
— Sample solutions to the practice problems will be posted on Wednesday morning.

— The best way to prepare is to completely work through and write out your solution to each problem, before
looking at the answers.

— You should practice timing yourself as well. The test will be 110 minutes and there will be 100 points.
If a problem is worth 25 points, budgeting 25 minutes for yourself to solve the problem is a good time
management technique.

— The exam will be handwritten on paper. You’re also encouraged to practice legibly handwriting your
answers to the practice problems on paper.

e OPTIONAL: Prepare a 2 page, black & white, 8.5x11”, portrait orientation .pdf of notes you would like to
have during the test. This may be digitally prepared or handwritten and scanned or photographed. The file
may be no bigger than 2MB. You will upload this file to Submitty gradeable “Test 3 Notes Page (Optional)”
before Wednesday, November 13th @11:59pm. We will print this and attach it to your test. No other notes
may be used during the test.

e Going in to the test, you should know what big topics will be covered on the test. As you skim through the
problems, see if you can match up those big topics to each question. Even if you are stumped about how to
solve the whole problem, or some of the details of the problem, make sure you demonstrate your understanding
of the big topic that is covered in that question.

e Re-read the problem statement carefully. Make sure you didn’t miss anything.

e Additional Notes:

— Please use the restroom before entering the exam room. Except for emergencies, students must remain in
their seats until they are ready to turn in their exam. You may leave early if you finish the exam early.

— Bring your Rensselaer photo ID card. We will be checking IDs when you turn in your exam.

— Bring your own pencil(s) & eraser (pens are ok, but not recommended). The test will involve handwriting
code on paper (and other short answer problem solving). Neat, legible handwriting is appreciated. We
will be somewhat forgiving to minor syntax errors — it will be graded by humans not computers :)

— Do not bring your own scratch paper. The exam packet will include sufficient scratch paper.

— Computers, cell-phones, smart watches, calculators, music players, headphones, etc. are not permitted.
Please do not bring your laptop, books, backpack, etc. to the test room — leave everything in your dorm
room. Unless you are coming directly from another class or sports/club meeting.

Review from Lecture 18 & Lab 11
e BST / ds_set iterator increment (operator++) & decrement (operator--)

e Every node stores Node parent pointer or
iterator stores a vector of Node pointers (the path from root Node).

e Overview discussion of erase from a BST

Today’s Lecture
e Implement erase from a ds_set
e Some more exercises with trees & Big O Notation

Limitations of our ds_set implementation, brief intro to red-black trees

e BONUS TOPIC: Template Specialization

19.1 Erase

First we need to find the node to remove. Once it is found, the actual removal is easy if the node has no children or
only one child. Draw picture of each case!

hild only a left child only a right child
no chuaren (with potentially a big subtree) (with potentially a big subtree)
_mouse
It is harder if there are two children: A
giraffe snake

e Find the node with the greatest value in the left subtree or the
node with the smallest value in the right subtree.

e The value in this node may be safely moved into the current node af
because of the tree ordering.

e Then we recursively apply erase to remove that node — which is
guaranteed to have at most one child.

snake

Exercise: Write a recursive version of erase.
Note: ignore parent pointers initially!

Exercise: How does the order that nodes are deleted affect the tree structure? Starting with a mostly balanced
tree, give an erase ordering that yields an unbalanced tree.

19.2 A Note about Parent Pointers...

e If we choose to implement the iterators using parent pointers, we will need to:

add the parent to the Node representation

revise insert to set parent pointers (see attached code)
— revise copy_tree to set parent pointers (see attached code)

— revise erase to update with parent pointers

o Exercise: Rewrite erase, now with parent pointers.

19.3 Height and Height Calculation Algorithm

e The height of a node in a tree is the length of the longest path down the tree from that node to a leaf node.
The height of a leaf is 1. We will think of the height of a null pointer as 0.

e The height of the tree is the height of the root node, and therefore if the tree is empty the height will be 0.

Exercise: Write a simple recursive algorithm to calculate the height of a tree.

e What is the best/average/worst-case running time of this algorithm? What is the best/average/worst-case
memory usage of this algorithm? Give a specific example tree that illustrates each case.

19.4 Shortest Paths to Leaf Node

e Now let’s write a function to instead calculate the shortest path to a NULL child pointer.

e What is the running time of this algorithm? Can we do better? Hint: How does a breadth-first vs. depth-first
algorithm for this problem compare?

19.5 A Practice Test Tree Problem

A trinary tree is similar to a binary tree except that each node has at most 3 children. Write a recursive function
named EqualsChildrenSum that takes one argument, a pointer to the root of a trinary tree, and returns true if the
value at each non-leaf node is the sum of the values of all of its children and false otherwise. In the examples below,
the tree on the left will return true and the tree on the right will return false.

v / \\ /l\

int value;

Nodew niddle; / NEVAN \ / |\
Node* right; -1 3 7 -10 / \
};

19.6 Limitations of Our BST Implementation
e The efficiency of the main insert, find and erase algorithms depends on the height of the tree.

e The best-case and average-case heights of a binary search tree storing n nodes are both O(logn). The worst-
case, which often can happen in practice, is O(n).

e Developing more sophisticated algorithms to avoid the worst-case behavior will be covered in Introduction to
Algorithms. One elegant extension to binary search tree is described below...

19.7 Red-Black Trees

In addition to the binary search tree properties, the
following red-black tree properties are maintained 8
throughout all modifications to the data structure:

1. Each node is either red or black.
2. The NULL child pointers are black. 12

3. Both children of every red node are black.
Thus, the parent of a red node must also be black.

4. All paths from a particular node to a NULL child pointer 14
contain the same number of black nodes. Im‘!&!!

What tree does our ds_set implementation produce if we insert the numbers 1-14 in order?
The tree at the right is the result using a red-black tree. Notice how the tree is still quite balanced.
Visit these links for an animation of the sequential insertion and re-balancing;:

https://wuw.cs.usfca.edu/~galles/visualization/RedBlack.html
http://www.youtube.com/watch?v=vDHFF4wjWYU&noredirect=1

e What is the best/average/worst case height of a red-black tree with n nodes?

e What is the best/average/worst case shortest-path from root to leaf node in a red-black tree with n nodes?

19.8 Exercise | /6]

Fill in the tree on the right with the integers 1-7
to make a binary search tree. Also, color each
node “red” or “black” so that the tree also
fulfills the requirements of a Red-Black tree.

Draw two other red-black binary search
trees with the values 1-7.

Note: Red-Black Trees are just one algorithm for self-balancing binary search tree.
Others include: AVL trees, Splay Trees, (& more!).

https://www.cs.usfca.edu/~galles/visualization/RedBlack.html
http://www.youtube.com/watch?v=vDHFF4wjWYU&noredirect=1

19.9 BONUS TOPIC: Template Specialization Example

Writing templated functions is elegant and powerful, but sometimes we do not want to handle all types in exactly
the same way. Sometimes we want to write different versions of the function depending on the type:

e Let’s study and discussion the following code:

// We'll use this templated function (unless we find a specialized
// implementation for our type)

template <class T>

void print_vec (const std::vector<T> &v) {

std::cout << "count=" << v.size() << " data=";

for (unsigned int i = 0; i < v.size(); i++) {
std::cout << " " << v[i]; }

std::cout << std::endl;

}

// This will match doubles (but not floats)
void print_vec (const std::vector<double> &v) {

std::cout << "count=" << v.size() << " data=";
for (unsigned int i = 0; i < v.size(); i++) {
std::cout << std::setprecision(l) << std::fixed << " " << v[i]; }

// unset the formatting
std::cout << std::defaultfloat << std::endl;

int main() {

// note: this syntax for initialization of vector contents is available with C++11
std::vector<int> int_v = { 1, 2, 3, 4, 5 };
std::vector<double> double_v = { 1, 2, 3, 4, 5
std::vector<float> float_v = { 1, 2, 3, 4, 5 };
std::vector<std::string> string v = { "1i", "2",6 "3", 6 n"4n" "Gt };
print_vec(int_v);

print_vec(double_v) ;

print_vec(float_v);

print_vec(string_v);

};

// This would match strings... but because it's placed after the

void print_vec (const std::vector<std::string> &v) {

std::cout << "count=" << v.size() << " data=";
for (unsigned int i = 0; i < v.size(); i++) {
std::cout << " \"" << v[i] << "\""; }
std::cout << std::endl;
}

e If we commented out the specialized implementations of print_vec for the double and string types:

count=5 data= 123 4 5
count=5 data= 12345
count=5 data= 123 45
count=5 data= 12 3 4 5

e If we run the original code:

count=5 data= 123 4 5
count=5 data= 1.0 2.0 3.0 4.0 5.0
count=5 data=123 45
count=5 data= 123 4 5

e If we swap the order of the main function and the string version of print_vec:

count=5 data= 12345
count=5 data= 1.0 2.0 3.0 4.0 5.0
count=5 data= 123 4 5
COul’lt=5 data= Illll |I2ll Il3ll ll4ll Il5ll

FTPUSYH

/% 8T 2In3o9T Uur pajuswardul x/
} (d® x9pPON ‘enTea A9 33SUOD])9SBID::<I>39S SP 3JUT
<] sse1o> o3eTdwel

{(esTe3 ‘(sTya‘d)I03eI2]T)<T00Q‘103RI]T>ITed: :PIS UINIDI
osT®
{(d ‘qubTta<-d ‘enTea A9y) 3IS9SUT uUINIDI
(enTea<-d < onTea Asy) IFT SSTSD
£(d “379T<-d ‘enTea A9y) 1ISSUT uanlax
(enTea<-d > anTea A9y) IT SSTS
{
f(enx3 ‘(sTylr‘d)I03RI9]T)<T00q‘I03RIS]T>ITRd: :PIS UINISI
{44+ 92TS

fquazed oy3y = jusazed<-d
szsjutod juszed 8y3 39S 03 Sn MOTTe 03 AIpesseoou ST Juswnbie eilxs //

! (enTen Aa3) opoN Mmau = d
}o(di) 3T
} (usaed 9yl x9pPON ‘d 349PON ‘onTea A9y 3] 3ISUOD) JISSUT: :<I>3IOS Sp
<T00Qq‘103BID]T: :<I>19S sp aweusadii>itTed: :p3s
<] sse1o> o3eTdwel

{Ismsue uaniax

fquaaed oyl = jusaied<-ISMsSuU®e
szsjurod jusered oyl 39S 03 sn MOTTe 03 Arpsseosu ST Jusunbie eilxe //

! (zomsue ‘ubTI<-3001 PTO) 9913 Adod = JYbTIi<-I9MSU®
! (zomsuer ‘31I9T<-23001 PTO) 9213 Adod = 3IS9T<-IOMSue
/9NTEA<-300I PTO = SNTRAL-IDMSUE

! ()9PON MU = ISMSUBy SPON
ITTIAN uInisx
(TIAN == 3001 PTO) FT
(qusaxed @yl 4OPON ‘3001 PTO xOPON) o913 AdOD::<I>39S” SP 4OPON: :<I1>39S sp sweuadi]
<] Ssse1o> o3eTdwal
SNOIIODNNA IAS™Sd //

U'6199[1957Sp

! (d® «opON ‘enTea A9 33SuUodD])SSeIS 3JUT

! (quazed oyl 49pPON ‘d ®49PON ‘onTea A2y 3L ISUOD) JISSUT <T0O0Q‘I0j3eIa3T>aTed: ::p3s
{ /x p@33TWO uoTrjPUBWSTAWT x,/ } (d xOPON ‘enTea A9y %I 3IFISUOD)PUTI I0]3BISIT

{ /x pe33TWo uorjejUsWSTAWT x/ } (d xSPON)o913 KoIlssp proa

! (Jusaed @Yl yxOPON ‘3001 PTO xOPON) o913 Adod 49PON

SNOIIDNNA ¥HdTHH HAIVAIYEd //

!T9zTs 3juTt

{73001 4OPON

NOIIVINASHYdHAY //

:o3eatad
{ #(T300x1 ‘onTea Aoy)Sseis uanilax } (SnTea A9y 33SUOD I)SSeIs JUT
{ ‘(110
‘73001 ‘enTea”A9y) 3ISSUT uanldx } (enTea A8y IISUOD 1) 3ASSUT < [0Ooq ‘Iojexs]lT >aTed::p3s
{ {(T3001 “‘onTea ASY)pPUTI uznidx } (SnTea A9y 3L ISUOD)PUTI I03BISAT
{ {(TIAN) I03BIS3T UINISI } 3FISUOD ()pPus I03BIS]T
{ /x pe233TWo uor3zejuswWSTdWT 4/ } 3ISUOD ()uTbaq 103RISIT
{ !{79zTs uan3i®x } 3SUOD ()SZTS 3JUT

AILITVNOIIONNA 1dS //
{ /x pP®33TWO uUOTIPIUSWSTAWT 4/ } (PTO 3<I>19S” Sp 3Isuod)=103erado 3319S” SP

{ 47T7AN = ~300x ! (T3001)99I3 KoI3sep } ()3I9STSp.
{ {(TIAN‘T3001°pT0) o213 AdoD = ~300I } (ToZTS'PTO) ©2zTS : (PTO 338S SP 3ISUOD) 39S SP
{} (0)7®zTs ‘(TIAN) 3001 : ()33s”sp

¥OIONYISAA 3 “‘YOIVYAJO INAWNOISSY ‘SYOIONYISNOD IAS SA //

o

{T13d «SpPON
uorjejussaxdex //
:ojeatad
——-73T7 // { !‘dwel uanidx ! (STYly)-- ¢ (STYly)dwsl x032I93T } (3UT)--J03eI2dO I031RIS]T
I3T-- // { /x pe33Two uorjejuswsaTdwr 4/ } ()--I03eIado 3 I03EBIS]T
++I3T // { !‘dwel uan3dx ! (STYlx)++ ¢ (STYlyx)dwsl I03eIS3T } (3UT)++I103ex3d0 I03RISIT
I3T++ // { /x Pe233TWO uor3zPUSWSTAWT 5/ } ! ()++I03exado % IO0JRIS]T
szojeredo juswezoep » jJuswezour 3sod » aad //
{ {713d*23bx = “13d uanlzex } (161 3I103ISIT 3JISuod) =jIo3jerado ToOq
{ {713d*3bx == “13d uanizex } (361 RI03RIS]T 3JFSuod) ==I03eI2dO TOOQq
premrogaybrerls eie szojerado suorzedwod //
{ foniea<-"123d uaniax } 3suod () yI03eiado 3] 3JFsuod
To3juTod 8y3 3P onTeA 9Yyjl O3 SS900P JUPJISUOD SOATH yI03RIadO //
{} (d)7x3d : (d x®pON)103RISIT
{} (TTAN) " x3d : ()Io3exs3t
:oTTand
} I03eI19]3T SSETO
SSYTIO ¥OIVYAII //
R
JUSWSIOSP » JUSWSIOUT I03PIS]T JO uoTrjzejuswesTdwT MOTTe 03 // #f3usxed ,SpPON
f3ybTa 4OPON
{1I9T x9PON
fsnTea 1
{} (170N) 3usxed ‘(TTAN) 3BT /(TIAN) 3FST ‘(3TUT)SnTea : (3ITUT 31 3ISUOD) SPON
{} (T10N) 3uszed ‘(TIAN) 3YLTI “(TIAN) 3IFST : ()SpPON
:oTTand

w SPON SS®eTO
SSY¥ID HAON //
:or1qnd
} 219sTsp sseTo
<] sse1o> o3eTdwsl
(ITALS HIVNYAITY) SASSYIO ¥OIVYALI ¥ HJON dAISAIN HIIM -- SSYTIO IdS SAd //
- - - //
<A3TTTIN> SpPnIoUTH
<WeaI3SOT> SPNnTOUT#
Ty T3esTsp SurIop#
Ty T3esTSp FOPUITH

L1:60-€7
Y</LO/ML

