CSCI-1200 Data Structures — Fall 2024
Lecture 17 — Trees, Part 11

Review from Lecture 16 & Lab 10
e Binary Trees, Binary Search Trees, & Balanced Trees
e In-order, pre-order, post-order, depth-first, breadth-first traversal
e Breadth-first and depth-first tree search

e STL set container class (like STL map, but without the pairs!)

Today’s Lecture

e Overview of the ds_set implementation

Finding the smallest element in a BST.

Exercises: begin and destroy_tree

A very important ds_set operation: insert

In-order, pre-order, and post-order traversal

Breadth-first and depth-first tree search

e ... and more Big O Notation practice!

17.1 ds_set and Binary Search Tree Implementation

e A partial implementation of a set using a binary search tree is in the code attached. We will continue to study
and write functions for this implementation in the lectures and lab next week.

e The increment and decrement operations for iterators have been omitted from this implementation. Next
lecture we will discuss a couple strategies for adding these operations.

e We will use this as the basis both for understanding an initial selection of tree algorithms and for thinking
about how standard library sets really work.

17.2 ds_set: Class Overview

e There is two auxiliary classes, TreeNode
and tree_iterator. All three classes are
templated. ds_set<T> tree_iterator<T>

root:

e The only member variables of the ds_set class size: 8 Node<T>
are the root and the size (number of tree nodes).

e The iterator class is declared internally, and is
effectively a wrapper on the TreeNode pointers.

Node<T>
— Note that operator* returns a const
reference because the keys can’t change.

— The increment and decrement operators

are missing (we’ll fill this in next lecture!). oot
ode<1>

e The main public member functions just call a ) vi 25
private (and often recursive) member function I'NULL ©: NULL I: NULL = NULL

(passing the root node) that does all of the

work.

Node<T> Node<T>
e Because the class stores and manages vi 10 vio17
dynamically allocated memory, a copy I: NULL I: NULL I: NULL I: NULL
constructor, operator=, and destructor

must be provided.



17.3 Exercises

1. Provide the implementation of the member function ds_set<T>::begin. This is essentially the problem of

finding the node in the tree that stores the smallest value.

2. Write the ds_set: :destroy_tree private helper function.

17.4 Insert

e Move left and right down the tree based on
comparing keys. The goal is to find the
location to do an insert that preserves the
binary search tree ordering property.

e We will always be inserting at an empty
(NULL) pointer location.

e Exercise: Why does this work? Is there
always a place to put the new item? Is there
ever more than one place to put the new
item?

ds_set<T>
root:
size: 8 Node<T>

Node<T>

Node<T>
v: 25

I: NULL r: NULL

Node<T> Node<T>

v: 10 v 17
I: NULL 1: NULL I: NULL 1: NULL




e IMPORTANT NOTE: Passing pointers by reference ensures that the new node is truly inserted into the tree.
This is subtle but important.

e Note how the return value pair is constructed.

e Exercise: How does the order that the nodes are inserted affect the final tree structure? Give an ordering
that produces a balanced tree and an insertion ordering that produces a highly unbalanced tree.

17.5 In-order, Pre-order, and Post-order Traversal

e One of the fundamental tree operations is “traversing” the nodes in the tree and doing something at each node.
The “doing something”, which is often just printing, is referred to generically as “visiting” the node.

e There are three general orders in which binary trees are traversed: pre-order, in-order and post-order.
e These are usually written recursively, and the code for the three functions looks amazingly similar.
e Here’s the code for an in-order traversal to print the contents of a tree:

void print_in_order(ostream& ostr, const TreeNode<T>* p) {
if (p) {
print_in_order(ostr, p->left);
ostr << p->value << "\n";
print_in_order(ostr, p->right);
}
}

e Draw an exactly balanced binary search tree with the elements 1-7:

The traversals for tree you just drew are:
— In-order: 123 (4 567
— Pre-order:  (4) 213 657
— Post-order: 132 576 (4)

Now modify the print function above to perform pre-order and post-order traversals.

What is the traversal order of the destroy_tree function we wrote earlier?



17.6 Depth-first vs. Breadth-first Search

e We should also discuss two other important tree traversal terms related to problem solving and searching.

— In a depth-first search, we greedily follow links down into the tree, and don’t backtrack until we have hit
a leaf.
When we hit a leaf we step back out, but only to the last decision point and then proceed to the next leaf.
This search method will quickly investigate leaf nodes, but if it has made “incorrect” branch decision early
in the search, it will take a long time to work back to that point and go down the “right” branch.

— In a breadth-first search, the nodes are visited with priority based on their distance from the root, with
nodes closer to the root visited first.

In other words, we visit the nodes by level, first the root (level 0), then all children of the root (level 1),
then all nodes 2 links from the root (level 2), etc.

If there are multiple solution nodes, this search method will find the solution node with the shortest path
to the root node.

However, the breadth-first search method is memory-intensive, because the implementation must store all
nodes at the current level — and the worst case number of nodes on each level doubles as we progress down
the tree!

e Both depth-first and breadth-first will eventually visit all elements in the tree.

e Note: The ordering of elements visited by depth-first and breadth-first is not fully specified.

— In-order, pre-order, and post-order are all examples of depth-first tree traversals.
Note: A simple recursive tree function is usually a depth-first traversal.

— What is a breadth-first traversal of the elements in our sample binary search tree above?

17.7 General-Purpose Breadth-First Search/Tree Traversal

e Write an algorithm to print the nodes in the tree one tier at a time, that is, in a breadth-first manner.

e What is the best/average/worst-case running time of this algorithm? What is the best/average/worst-case
memory usage of this algorithm? Give a specific example tree that illustrates each case.
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